
Cryptography and Embedded System Security
CRAESS I

Xiaolu Hou

FIIT, STU
xiaolu.hou @ stuba.sk

1 / 92

Course Outline

• Abstract algebra and number theory

• Introduction to cryptography

• Symmetric block ciphers and their implementations

• RSA, RSA signatures, and their implementations

• Probability theory and introduction to SCA

• SPA and non-profiled DPA

• Profiled DPA

• SCA countermeasures

• FA on RSA and countermeasures

• FA on symmetric block ciphers

• FA countermeasures for symmetric block cipher
• Practical aspects of physical attacks

• Invited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH

2 / 92

Recommended reading

• Textbook
• Sections

• 5.3.1, 5.3.4
• 5.4.1, 5.4.4

3 / 92

Lecture Outline

• Introduction to Fault Attacks

• Recall – RSA Signatures

• Bellcore Attack and Countermeasures

• Safe-error Attack and Countermeasure

4 / 92

FA on RSA and countermeasures

• Introduction to Fault Attacks

• Recall – RSA Signatures

• Bellcore Attack and Countermeasures

• Safe-error Attack and Countermeasure

5 / 92

Why are we interested in physical attacks?

• Cryptography provides algorithms that enable secure communication in theory
• In the real world, these algorithms have to be implemented on real devices:

• Software implementations: general-purpose devices
• Hardware implementations: dedicated secure hardware devices

• To evaluate the security level of cryptographic implementations, it is necessary to
include a physical security assessment

6 / 92

Targets and Attack Goals

Targets

• Credit cards

• Passports

• Key Fob

• ...

Goals:

• Recovery of the secret key

• Privilege escalation

• IP theft

• ...

picture source: https://goodtimes.ca/how-many-credit-cards-is-too-many/ 7 / 92

https://goodtimes.ca/how-many-credit-cards-is-too-many/

Different Physical Attack Methods

• Side-channel attacks
• EM/Power analysis
• Timing analysis
• Cache attacks

• Fault attacks
• Optical fault injection
• Electromagnetic fault injection
• Clock/voltage glitch

• Hardware Trojans

• ...

picture source: https://nl.dreamstime.com/stock-foto-s-hamer-die-computer-boos-tonen-raken-image34210923
8 / 92

https://nl.dreamstime.com/stock-foto-s-hamer-die-computer-boos-tonen-raken-image34210923

High Level Description of Fault Attacks

• Active attacks, the attacker tries to perturb the internal computations by external
means

• Exploit a scenario where the attacker has access to the device and can tamper
with it

• There exist also techniques that can achieve fault attacks remotely, such as
Rowhammer1

picture source: https://blog.applus.com/

1Kim, Yoongu, et al. ”Flipping bits in memory without accessing them: An experimental study of
DRAM disturbance errors.” ACM SIGARCH Computer Architecture News 42.3 (2014): 361-372.

9 / 92

https://blog.applus.com/

Fault Injection Techniques

Laser

Voltage/clock glitch EM field

FIB/X-ray

IC

10 / 92

Laser Fault Injection Setup

By carefully tuning the beam’s energy level
below a destructive threshold, it is possible
to inject faults into a device and it will not
suffer any permanent damage

11 / 92

Fault Effects

• Instruction skip/change
• Perturbs the instruction being executed by modifying the opcode for the instruction

• Bit flip
• Flips the bits in the data.
• The number of bits affected is normally limited by the size of the registers.
• For example, for an AVR device, we can have m−bit flips for m = 1, 2, . . . , 8

• Bit set/reset
• Fixes the bit value to be 1 (set) or 0 (reset)

• Random byte fault
• Changes the byte value to a random number

• Stuck-at faults
• Permanently changes the value of one bit to 0 (stuck-at-0) or 1 (stuck-at-1)

• ...

12 / 92

Fault Types

• Permanent fault
• Destructive fault that changes the value of a memory cell permanently and hence

affects data during the computations

• Transient fault
• The circuit recovers its original behavior after the fault stimulus ceases (usually just

one instruction) or after the device reset
• Can perturb both data and instruction

• In this course, we only consider transient faults

13 / 92

Fault Attack

• First introduced by Boneh et al. to attack implementation of RSA with CRT1

• After the fault injection, there are two possible scenarios
• The output (ciphertext) is faulty
• Fault is ineffective and the ciphertext is not changed
• Both scenarios can be exploited

• Attacker goal: recover secret key

• Developed on the algorithmic level

• There are also implementation-specific vulnerabilities

1Boneh, D., DeMillo, R. A., & Lipton, R. J. (1997, May). On the importance of checking
cryptographic protocols for faults. In International conference on the theory and applications of
cryptographic techniques (pp. 37-51). Springer, Berlin, Heidelberg.

14 / 92

Remarks

• Fault attacks on public key ciphers depend on the underlying intractable problem
and we do not have a systematic methodology.

• However, the general attack concept can be applied to ciphers based on similar
intractable problems.

• We will discuss a few attacks on RSA signatures and the corresponding
countermeasures

• The attacks can also be applied to RSA decryption process

15 / 92

FA on RSA and countermeasures

• Introduction to Fault Attacks

• Recall – RSA Signatures

• Bellcore Attack and Countermeasures

• Safe-error Attack and Countermeasure

16 / 92

RSA

Definition (RSA)

Let n = pq, where p, q are distinct prime numbers. Let P = C = Zn,
K = Z∗

φ(n) − { 1 }. For any e ∈ K, define encryption

Ee : Zn → Zn, m 7→ me mod n,

and the corresponding decryption

Dd : Zn → Zn, c 7→ cd mod n,

where d = e−1 mod φ(n). The cryptosystem (P,C,K,E,D), where
E = { Ee : e ∈ K }, D = {Dd : d ∈ K }, is called RSA.

• φ(n) = (p− 1)(q − 1)

• Public key: n, e, RSA modulus, encryption exponent

• Private key: d, decryption exponent
17 / 92

RSA signatures

• To use RSA for digital signature, let p and q be two distinct primes.

• n = pq, choose e ∈ Z∗
φ(n) − {1} and compute d = e−1 mod φ(n).

• Same as for RSA, the public key consists of e and n.

• d is the private key.

• p, q and φ(n) should also be kept secret.

18 / 92

RSA signatures

To sign a message m, Alice computes the signature

s = md mod n.

Then Alice sends both m and s to Bob. To verify the signature, Bob computes

se mod n.

If s ≡ m mod n, then the verification algorithm outputs true, and false otherwise.

• Up to now, the only method known to compute s from m mod n is using d, so if
the verification algorithm outputs true, Bob can conclude that Alice is the owner
of d.

• RSA signatures are commonly used together with a fast public hash function h –
m will be the hashed value of the message

19 / 92

RSA signatures – Example

Example

• Alice chooses p = 5 and q = 7.

• Then
n = 35, φ(n) = 24

• Suppose Alice chooses e = 5, which is coprime to 24.

• By the extended Euclidean algorithm

d = e−1 mod φ(n) =?

20 / 92

RSA signatures – Example

Example

p = 5, q = 7, n = 35, φ(n) = 24, e = 5.

• By the extended Euclidean algorithm

24 = 5× 4 + 4, 5 = 4 + 1 =⇒ 1 = 5− (24− 5× 4) = 24× (−4) + 5× 5,

and d = e−1 mod 24 = 5.

• To sign message (hashed value) m = 10, Alice computes

s = md mod n =?

• Alice sends both the message and signature to Bob.

• Bob verifies the signature
se mod n =?

21 / 92

RSA signatures – Example

Example

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

• To sign message (hashed value) m = 10, Alice computes

s = md mod n = 105 mod 35 = 5.

• Alice sends both the message (hashed value) m = 10 and signature s = 5 to Bob.

• Bob verifies the signature

se mod n = 55 mod 35 = 10 = m.

22 / 92

CRT-based RSA implementation

By the Chinese Remainder Theorem, finding the solution for x ≡ ad mod n is
equivalent to solving

x ≡ ad mod p, x ≡ ad mod q.

We can compute

xp := ad mod (p−1) mod p, xq := ad mod (q−1) mod q,

and solve for
x ≡ xp mod p, x ≡ xq mod q.

An implementation that computes ad mod n by solving the above equation is called
CRT-based RSA.

23 / 92

CRT-based RSA implementation

To compute ad mod n. We calculate

xp := ad mod (p−1) mod p, xq := ad mod (q−1) mod q,

Mq = q, Mp = p,

yq = M−1
q mod p = q−1 mod p, yp = M−1

p mod q = p−1 mod q,

Gauss’s algorithm
ad mod n = xpyqq + xqypp mod n

Garner’s algorithm

ad mod n = xp + ((xq − xp)yp mod q)p.

24 / 92

CRT-based RSA implementation – Example

CRT-based RSA implementation

xp := ad mod (p−1) mod p, xq := ad mod (q−1) mod q,

Mq = q, Mp = p,

yq = M−1
q mod p = q−1 mod p, yp = M−1

p mod q = p−1 mod q,

Example (RSA signature computation)

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

To sign message (hashed value) m = 10, with CRT-based RSA implementation

sp =? sq =? yp =? yq =?

25 / 92

CRT-based RSA implementation – Example

Example (RSA signature computation)

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

To sign message (hashed value) m = 10, with CRT-based RSA implementation, Alice
computes

sp = md mod (p−1) mod p = 105 mod 4 mod 5 = 0,

sq = md mod (q−1) mod q = 105 mod 6 mod 7 = 5.

By the extended Euclidean algorithm

7 = 5 + 2, 5 = 2× 2 + 1 =⇒ 1 = 5− 2× (7− 5) = 5× 3− 2× 7

yp = p−1 mod q = 3 mod 7 = 3,

yq = q−1 mod p = −2 mod 5 = 3.
26 / 92

CRT-based RSA implementation – Example

Gauss’s algorithm

ad mod n = xpyqq + xqypp mod n

Example (RSA signature computation)

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

With CRT-based RSA implementation, Alice computes

sp = 0 sq = 5 yp = 3 yq = 3.

By Gauss’s algorithm
s =?

27 / 92

CRT-based RSA implementation – Example

Gauss’s algorithm

ad mod n = xpyqq + xqypp mod n

Example (RSA signature computation)

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

With CRT-based RSA implementation, Alice computes

sp = 0 sq = 5 yp = 3 yq = 3.

By Gauss’s algorithm

s = spyqq + sqypp mod n = 5× 3× 5 mod 35 = 5.

28 / 92

CRT-based RSA implementation – Example

Garner’s algorithm

ad mod n = xp + ((xq − xp)yp mod q)p.

Example (RSA signature computation)

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

With CRT-based RSA implementation, Alice computes

sp = 0 sq = 5 yp = 3 yq = 3.

By Garner’s algorithm
s =?

29 / 92

CRT-based RSA implementation – Example

Garner’s algorithm

ad mod n = xp + ((xq − xp)yp mod q)p.

Example (RSA signature computation)

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

With CRT-based RSA implementation, Alice computes

sp = 0 sq = 5 yp = 3 yq = 3.

By Garner’s algorithm

s = sp + ((sq − sp)yp mod q)p = 0 + (5× 3 mod 7)× 5 = 1× 5 = 5.

30 / 92

FA on RSA and countermeasures

• Introduction to Fault Attacks

• Recall – RSA Signatures

• Bellcore Attack and Countermeasures

• Safe-error Attack and Countermeasure

31 / 92

Background

• Boneh, D., DeMillo, R. A., & Lipton, R. J. (1997, May). On the importance of
checking cryptographic protocols for faults. In International conference on the
theory and applications of cryptographic techniques (pp. 37-51). Springer, Berlin,
Heidelberg.

• Transient fault
• The circuit recovers its original behavior after the fault stimulus ceases (usually just

one instruction) or after the device reset
• Can perturb both data and instruction

• Implementation dependent – CRT-based

• Given one faulty signature, with knowlege of correct signature, attacker can factor
the RSA modulus

• Bellcore – name of the company

• The first paper that introduced fault attacks to cryptographic implementations

32 / 92

Bellcore attack

• yp and yq can be precomputed – assume no faults

• By the design of sp and sq, we have

s ≡ sq mod q, s ≡ sp mod p,

• Suppose a malicious fault was induced during the signing of the signature and the
computation of sp or sq, but not both, is corrupted.

33 / 92

Bellcore attack

s ≡ sq mod q, s ≡ sp mod p

• Assume that sp is faulty and sq is computed correctly.
• A similar attack applies if sq is faulty and sp is correct.
• Let s′ denote the faulty signature, then

s′ ≡ s ≡ sq mod q, s′ ̸≡ s mod p.

• In other words,
q|(s′ − s), p ∤ (s′ − s).

• n and e are public.
• If the attacker further has the knowledge of s and s′, then they can compute

q = gcd(s′ − s, n), p =
n

q
.

• How does the attacker compute the private key?
34 / 92

Bellcore attack

s ≡ sq mod q, s ≡ sp mod p,

• Assume that sp is faulty and sq is computed correctly.
• Let s′ denote the faulty signature, then

s′ ≡ s ≡ sq mod q, s′ ̸≡ s mod p =⇒ q|(s′ − s), p ∤ (s′ − s).

• If the attacker further has the knowledge of s and s′, then they can compute

q = gcd(s′ − s, n), p =
n

q
.

• After factorizing n, the attacker can compute

φ(n) = (p− 1)(q − 1)

• And eventually, recover the private key

d = e−1 mod φ(n)

by the extended Euclidean algorithm 35 / 92

Bellcore attack – Example

Example

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

We have computed that yq = 3 and yp = 3. Suppose m = 6. With CRT-based RSA,
to calculate the signature, Alice computes

sp = md mod (p−1) mod p =?

sq = md mod (q−1) mod q =?

And the signature
s = sp + ((sq − sp)yp mod q)p =?

36 / 92

Bellcore attack – Example

Example

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5, m = 6, yq = 3, yp = 3

With CRT-based RSA, to calculate the signature, Alice computes

sp = md mod (p−1) mod p = 65 mod 4 mod 5 = 1,

sq = md mod (q−1) mod q = 65 mod 6 mod 7 = 6.

s = sp + ((sq − sp)yp mod q)p = 1 + ((6− 1)× 3 mod 7)× 5 = 6.

We can verify that
se mod n = 65 mod 35 = 6 = m.

Now suppose the computation of sp is faulty and s′p = 3. Then the faulty signature
s′ =?

37 / 92

Bellcore attack – Example

Example

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5, m = 6, yq = 3, yp = 3

sp = 1, sq = 6, s = 6

Now suppose the computation of sp is faulty and s′p = 3. Then we have

s′ = s′p + ((sq − s′p)yp mod q)p = 3 + ((6− 3)× 3 mod 7)× 5 = 3 + 2× 5 = 13.

If the attacker has the knowledge of s = 6 and s′ = 13, they can compute

q = gcd(s′ − s, n) =?

38 / 92

Bellcore attack – Example

Example

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5, m = 6, yq = 3, yp = 3

sp = 1, sq = 6, s = 6

Now suppose the computation of sp is faulty and s′p = 3. Then we have

s′ = s′p + ((sq − s′p)yp mod q)p = 3 + ((6− 3)× 3 mod 7)× 5 = 3 + 2× 5 = 13.

If the attacker has the knowledge of s = 6 and s′ = 13, they can compute

q = gcd(s′ − s, n) = gcd(13− 6, 35) = gcd(7, 35) = 7.

39 / 92

Bellcore attack – Example

Example

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5, m = 6, yq = 3, yp = 3

sp = 1, sq = 6, s = 6

Similarly, suppose the computation of sq is faulty and s′q = 2. Then

s′ = sp + ((s′q − sp)yp mod q)p =?

If the attacker has the knowledge of s and s′, they can compute

p = gcd(s′ − s, n) =?

40 / 92

Bellcore attack – Example

Example

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5, m = 6, yq = 3, yp = 3

sp = 1, sq = 6, s = 6

Similarly, suppose the computation of sq is faulty and s′q = 2. Then

s′ = sp + ((s′q − sp)yp mod q)p = 1 + ((2− 1)× 3 mod 7)× 5 = 16.

If the attacker has the knowledge of s = 6 and s′ = 16, they can compute

p = gcd(s′ − s, n) = gcd(16− 6, 35) = gcd(10, 35).

By the Euclidean algorithm

35 = 10× 3 + 5, gcd(10, 35) = gcd(10, 5) = 5.
41 / 92

Bellcore attack – a different attack

• Lenstra, A. K. (1996). Memo on RSA signature generation in the presence of
faults.

• Assume the attacker does not have the correct signature s

• But has the knowledge of the faulty signature s′ as well as the original message
hash value m.

• For example, the attacker can request Alice for the signature of a chosen message.

42 / 92

Bellcore attack – a different attack
• yp and yq can be precomputed – assume no faults

• By the design of sp and sq, we have

s ≡ sq mod q, s ≡ sp mod p,

• which gives
m ≡ se ≡ seq mod q, m ≡ se ≡ sep mod p.

• A malicious fault was induced during the signing of the signature and the
computation of sp or sq, but not both, is corrupted.

• Suppose sp is faulty

• Then
s′e ≡ m mod q, s′e ̸≡ m mod p,

i.e.
q|(s′e −m), p ∤ (s′e −m).

• How can the attacker find q?
43 / 92

Bellcore attack – a different attack
• yp and yq can be precomputed – assume no faults
• By the design of sp, sq, yp and yq, we have

s ≡ sq mod q, s ≡ sp mod p,

• which gives
m ≡ se ≡ seq mod q, m ≡ se ≡ sep mod p.

• Suppose a malicious fault was induced during the signing of the signature and the
computation of sp or sq, but not both, is corrupted.

• Then
s′e ≡ m mod q, s′e ̸≡ m mod p,

i.e.
q|(s′e −m), p ∤ (s′e −m).

• The attacker can compute

q = gcd(s′e −m,n), p =
n

q
.

44 / 92

Bellcore attack – Example

Example

p = 11, q = 13, n = 143, φ(n) = 10× 12 = 120.

• Choose e = 11, which is coprime with φ(n).

• By the extended Euclidean algorithm

d =?

yq = q−1 mod p = 13−1 mod 11 =? yp = p−1 mod q =?

45 / 92

Bellcore attack – Example

Example

p = 11, q = 13, n = 143, e = 11

120 = 11×10+10, 11 = 10×1+1 =⇒ 1 = 11−(120−11×10) = 11×11−120 =⇒ d = 11

13 = 11×1+2, 11 = 2×5+1 =⇒ 1 = 11−2×5 = 11−5×(13−11) = 11×6−13×5,

yq = q−1 mod p = 13−1 mod 11 = −5 mod 11 = 6,

yp = p−1 mod q = 11−1 mod 13 = 6.

• Suppose m = 2. To calculate the signature, Alice computes

sp = md mod (p−1) mod p =?

sq = md mod (q−1) mod q =?

By Garner’s algorithm, s =?
46 / 92

Bellcore attack – Example

Example

p = 11, q = 13, n = 143, e = 11, d = 11, yq = 6, yp = 6

• Suppose m = 2.

• To calculate the signature, Alice computes

sp = md mod (p−1) mod p = 211 mod 10 mod 11 = 2 mod 11 = 2,

sq = md mod (q−1) mod q = 211 mod 12 mod 13 = 7.

• By Garner’s algorithm,

s = sp+((sq−sp)yp mod q)p = 2+((7−2)×6 mod 13)×11 = 2+4×11 = 46.

• Suppose the computation of sp is faulty and s′p = 7.

• Then s′ =?
47 / 92

Bellcore attack – Example

Example

p = 11, q = 13, n = 143, yq = 6, yp = 6, sp = 2, sq = 7, s = 46, s′p = 7

• We have

s′ = s′p + ((sq − s′p)yp mod q)p = 7 + ((7− 7)× 6 mod 13)× 11 = 7.

• If the attacker has the knowledge of s = 46 and s′ = 7, they can compute

q = gcd(s′ − s, n) =?

48 / 92

Bellcore attack – Example

Example

p = 11, q = 13, n = 143, e = 11, d = 11, s = 46, s′ = 7

• If the attacker has the knowledge of s = 46 and s′ = 7, they can compute

q = gcd(s′ − s, n) = gcd(7− 46, 143) = gcd(−39, 143) = gcd(39, 143).

• By the Euclidean algorithm,

143 = 39× 3 + 26, gcd(39, 143) = gcd(39, 26),
39 = 26 + 13, gcd(39, 26) = gcd(26, 13),
26 = 13× 2, q = gcd(26, 13) = 13.

• If the attacker has the knowledge of s′ = 7 and m = 2, they can compute
q = gcd(s′e −m,n) =?

49 / 92

Bellcore attack – Example

Example

p = 11, q = 13, n = 143, sp = 2, sq = 7, s = 46, s′p = 7, s′ = 7

If the attacker has the knowledge of s′ = 7 and m = 2, they can compute

q = gcd(s′e −m,n) = gcd(711 − 2, 143) = gcd(1977326741, 143).

By the Euclidean algorithm,

1977326741 = 143× 13827459 + 104, gcd(1977326741, 143) = gcd(143, 104),
143 = 104 + 39, gcd(143, 104) = gcd(104, 39),
104 = 39× 2 + 26, gcd(104, 39) = gcd(39, 26),
39 = 26 + 13, gcd(39, 26) = gcd(26, 13)
26 = 13× 2, q = gcd(26, 13) = 13.

50 / 92

Shamir’s countermeasure

• A. Shamir, Method and apparatus for protecting public key schemes from timing
and fault attacks, United States Patent No. 5,991,415, November 23, 1999. Also
presented at the rump session of EUROCRYPT’97.

• Using an extended modulus

51 / 92

Shamir’s countermeasure
• Let r be a random ℓr−bit prime number.

• Typically ℓr = 32

• Instead of computing sp and sq as

sp := md mod (p−1) mod p, sq := md mod (q−1) mod q,

• We compute

s∗p = md mod (p−1)(r−1) mod pr, s∗q = md mod (q−1)(r−1) mod qr.

• Then we check if
s∗p ≡ s∗q mod r.

• If yes, the signature s is given by

s = s∗pyqq + s∗qypp mod n.

52 / 92

Shamir’s countermeasure

• Suppose the Bellcore attack is to be carried out and a malicious fault is injected
during the computation of s∗p or s∗q , but not both.

• Without loss of generality, let us assume s∗p is faulty and s∗q is computed correctly.

• Let s∗
′

p denote the faulty s∗p.

• The fault will be detected if
s∗

′
p ̸≡ s∗q mod r,

which means the probability of injecting an undetectable fault is the probability of
producing s∗

′
p such that

s∗
′

p ≡ s∗q mod r.

• The probability is 1/r.

• Thus, with Shamir’s countermeasure, the Bellcore attack will be successful with
probability 1/r.

• When the bit length of r is around 32 bits, this probability is about 2−32.

53 / 92

Shamir’s countermeasure – Example

Example

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5, m = 6, yq = 3, yp = 3

Suppose r = 3.

s∗p = md mod (p−1)(r−1) mod pr =?

s∗q = md mod (q−1)(r−1) mod qr =?

54 / 92

Shamir’s countermeasure – Example

Example

p = 5, q = 7, n = 35, e = 5, d = 5, m = 6, yq = 3, yp = 3, r = 3

s∗p = md mod (p−1)(r−1) mod pr = 65 mod (4×2) = 65 mod 15 = 6,

s∗q = md mod (q−1)(r−1) mod qr = 65 mod (6×2) = 65 mod 21 = 6.

We can check that
s∗p ≡ s∗q ≡ 0 mod 3.

The signature is given by

s = s∗pyqq + s∗qypp mod n = 6× 3× 7 + 6× 3× 5 mod 35 = 6.

Suppose an error occurred and the faulty value s∗
′

p = 4. Then s∗
′

p mod r =?

55 / 92

Shamir’s countermeasure – Example

Example

p = 5, q = 7, n = 35, e = 5, d = 5, m = 6, yq = 3, yp = 3, r = 3

s∗p = 6, s∗q = 6, s∗p ≡ s∗q ≡ 0 mod 3, s = 6

Suppose an error occurred during the computation of s∗p, and the faulty value s∗
′

p = 4.
Then we would have

s∗
′

p ̸≡ s∗q mod r.

The fault will be detected. What if s∗
′

p = 9?

56 / 92

Shamir’s countermeasure – Example

Example

p = 5, q = 7, n = 35, e = 5, d = 5, m = 6, yq = 3, yp = 3, r = 3

s∗p = 6, s∗q = 6, s∗p ≡ s∗q ≡ 0 mod 3, s = 6

Suppose an error occurred during the computation of s∗p, and the faulty value s∗
′

p = 9,
we have

s∗
′

p ≡ s∗q ≡ 0 mod 3,

and the faulty signature will be

s′ = s∗
′

p yqq + s∗qypp mod n =?

In this case, the attacker can repeat the Bellcore attack by computing

q = gcd(s′ − s, n) =?
57 / 92

Shamir’s countermeasure – Example

Example

p = 5, q = 7, n = 35, e = 5, d = 5, m = 6, yq = 3, yp = 3, r = 3

s∗p = 6, s∗q = 6, s∗p ≡ s∗q ≡ 0 mod 3, s = 6

Suppose an error occurred during the computation of s∗p, and the faulty value s∗
′

p = 9,
we have

s∗
′

p ≡ s∗q ≡ 0 mod 3,

and the faulty signature will be

s′ = s∗
′

p yqq + s∗qypp mod n = 9× 3× 7 + 6× 3× 5 mod 35 = 34.

In this case, the attacker can repeat the Bellcore attack by computing

q = gcd(s′ − s, n) = gcd(34− 6, 35) = 7.
58 / 92

Infective countermeasure

• Although Shamir’s countermeasure can effectively protect RSA signature
computations against the Bellcore attack, a simple improved attack is to bypass
the check

s∗p ≡ s∗q mod r.

using an instruction skip.

• We will discuss a more sophisticated countermeasure against the Bellcore attack,
the infective countermeasure

• The main goal of the countermeasure is to make sp faulty if sq is faulty, hence the
name “infective”.

• Sung-Ming, Y., Kim, S., Lim, S., & Moon, S. (2002). RSA speedup with residue
number system immune against hardware fault cryptanalysis. In Information
Security and Cryptology—ICISC 2001: 4th International Conference Seoul, Korea,
December 6–7, 2001 Proceedings 4 (pp. 397-413). Springer Berlin Heidelberg.

59 / 92

Infective countermeasure

• Same as before, let p and q be distinct odd primes.

• n = pq.

• d is the private key for RSA signatures.

• e = d−1 mod φ(n).

• m is the hash value for the message.

yq = q−1 mod p, yp = p−1 mod q.

• We select a random integer r such that gcd(dr, φ(n)) = 1 and er is a small
integer, where

dr = d− r, er = d−1
r mod φ(n).

• Let

kp =

⌊
m

p

⌋
, kq =

⌊
m

q

⌋
.

60 / 92

Infective countermeasure
We select a random integer r such that gcd(dr, φ(n)) = 1 and er is a small integer,
where

dr = d− r, er = d−1
r mod φ(n).

Let

kp =

⌊
m

p

⌋
, kq =

⌊
m

q

⌋
.

The signature s is then computed as follows:

sp = mdr mod p,

m̂ = ((serp mod p) + kpp) mod q,

sq = m̂dr mod q,

sdr = spyqq + sqypp mod n,

m̃ = (serq mod q) + kqq,

s = sdrm̃
r mod n.

61 / 92

Infective countermeasure

• Bellcore attack assumes one of sp and sq is faulty, but not both.
• For the infective countermeasure, it can be shown

• When p < q, if sp is faulty, sq will also be faulty.
• When p > q, if sp is faulty, then sq has a high probability to be faulty.
• If sq is faulty and sp is not faulty, the attacker cannot repeat the attack without

brute force.

62 / 92

Infective countermeasure – Example

Example

p = 11, q = 13, n = 143, m = 2, φ(n) = 120, d = 11, yp = 6, yq = 6.

Choose r = 4, then
dr = d− r = 11− 4 = 7.

By the extended Euclidean algorithm,

er = d−1
r mod φ(n) =?

We also have

kp =

⌊
m

p

⌋
=? kq =

⌊
m

q

⌋
=?

63 / 92

Infective countermeasure – Example

Example

p = 11, q = 13, n = 143, m = 2, φ(n) = 120, d = 11, yp = 6, yq = 6.

r = 4, dr = d− r = 11− 4 = 7.

By the extended Euclidean algorithm,

120 = 7× 17 + 1 =⇒ 1 = 120− 7× 17,

hence
er = d−1

r mod φ(n) = −17 mod 120 = 103.

We also have

kp =

⌊
m

p

⌋
=

⌊
2

11

⌋
= 0, kq =

⌊
m

q

⌋
=

⌊
2

13

⌋
= 0.

64 / 92

Infective countermeasure – Example

Example

p = 11, q = 13, n = 143, m = 2, φ(n) = 120, d = 11, yp = 6, yq = 6.

r = 4, dr = 7, er = 103, kp = 0, kq = 0

sp = mdr mod p =?

m̂ = ((serp mod p) + kpp) mod q =?

sq = m̂dr mod q =?

sdr = spyqq + sqypp mod n =?

m̃ = (serq mod q) + kqq =?

s = sdrm̃
r mod n =?

65 / 92

Infective countermeasure – Example

Example

p = 11, q = 13, n = 143, m = 2, φ(n) = 120, d = 11, yp = 6, yq = 6.

r = 4, dr = 7, er = 103, kp = 0, kq = 0

sp = mdr mod p = 27 mod 11 = 128 mod 11 = 7,

m̂ = ((serp mod p) + kpp) mod q = (7103 mod 11 + 0) mod 13

= (7103 mod 10) mod 13 = (73 mod 11) mod 13 = 2,

sq = m̂dr mod q = 27 mod 13 = 128 mod 13 = 11,

sdr = spyqq + sqypp mod n = 7× 6× 13 + 11× 6× 11 mod 143 = 128,

m̃ = (serq mod q) + kqq = 11103 mod 13 + 0 = 117 mod 13 = 2,

s = sdrm̃
r mod n = 128× 24 mod 143 = 2048 mod 143 = 46.

Suppose sp is faulty and s′p = 2. Then m̂′ =? s′q =?
66 / 92

Infective countermeasure – Example

Example

p = 11, q = 13, m = 2, yp = 6, yq = 6, r = 4, dr = 7, er = 103, kp = 0, kq = 0

sp = mdr mod p = 27 mod 11 = 128 mod 11 = 7,

m̂ = ((serp mod p) + kpp) mod q = 2,

sq = m̂dr mod q = 27 mod 13 = 128 mod 13 = 11.

Suppose sp is faulty and s′p = 2. Then

m̂′ = ((s
′er
p mod p) + kpp) mod q = (2103 mod 11 + 0) mod 13 = 23 mod 11 = 8,

s′q = m̂
′dr mod q = 87 mod 13 = 5.

Thus s′q is also faulty.
67 / 92

FA on RSA and countermeasures

• Introduction to Fault Attacks

• Recall – RSA Signatures

• Bellcore Attack and Countermeasures

• Safe-error Attack and Countermeasure

68 / 92

Introduction

• Right-to-left square and multiply algorithm

• Modular multiplication: Blakely’s method

• The attack exploits the knowledge of whether an intermediate faulty value is used
or not by observing whether the final output is changed, thus the name safe error
attack 1.

• Since only knowing whether the output is changed or not is enough, if a
countermeasure that repeats the computation, compares the final results, and
outputs an error when a fault is detected is implemented, the safe error attack still
applies.

1Yen, S. M., & Joye, M. (2000). Checking before output may not be enough against fault-based
cryptanalysis. IEEE Transactions on computers

69 / 92

Notations
• n has bit length ℓn,

2ℓn−1 ≤ n < 2ℓn .

• a, b ∈ Zn, in particular, 0 ≤ a, b < n.
• ω: the computer’s word size

• for a 64-bit processor, the word size is 64

• Let κ = ⌈ℓn/ω⌉, i.e. (κ− 1)ω < ℓn ≤ κω.

• Then (|| indicates concatenation, 0 ≤ ai < 2ω)

a = aκ−1||aκ−2|| . . . ||a0,

• Note that some ai might be 0 if the bit length of a is less than ℓn. We have

a =

κ−1∑
i=0

ai(2
ω)i.

70 / 92

Blakley’s method

• We would like to compute
R = ab mod n.

• Since

a =

κ−1∑
i=0

ai(2
ω)i,

where 0 ≤ ai < 2ω.

• The product ab can be computed as follows

t = ab =

(
κ−1∑
i=0

ai(2
ω)i

)
b =

κ−1∑
i=0

(2ω)iaib,

71 / 92

Algorithm 1: Blakely’s method for computing modular multiplication.

Input: n, a, b// n ∈ Z, n ≥ 2 has bit length ℓn; a, b ∈ Zn

Output: ab mod n
1 R = 0

// κ = ⌈ℓn/ω⌉, where ω is the word size of the computer

2 for i = κ− 1, i ≥ 0, i−− do
3 R = 2ωR+ aib
4 R = R mod n

5 return R

72 / 92

Blakely’s method – Example

Input: n, a, b
Output: ab mod n

1 R = 0
2 for i = κ− 1, i ≥ 0, i−− do
3 R = 2ωR+ aib
4 R = R mod n

5 return R

Example

ω = 2, a = 13 = 11012, b = 5, n = 15 (ℓn = 4),
κ = 2.

a0 = 012 = 1, a1 = 112 = 3.

For i = 1,

R = 0 + 3× 5 mod 15 = 0 mod 15.

For i = 0,

R = 0 + 1× 5 mod 15 = 5 mod 15

We have the final result 13× 5 mod 15 = 5.

73 / 92

Attack on a simple algorithm

Algorithm 2: An algorithm involving computing modular multiplication with
Blakely’s method.

Input: n, a, b, c// a, b ∈ Zn; c = 0, 1

Output: ab mod n if c = 1 and a otherwise
1 if c = 1 then
2 R = 0

// κ = ⌈ℓn/ω⌉, where ω is the computer’s word size

3 for i = κ− 1, i >= 0, i−− do
4 R = 2ωR+ aib
5 R = R mod n

6 a = R

7 return a

74 / 92

Attack on a simple algorithm

Input: n, a, b, c
Output: ab mod n if c = 1

and a otherwise
1 if c = 1 then
2 R = 0
3 for i = κ− 1, i >= 0,

i−− do
4 R = 2ωR+ aib
5 R = R mod n

6 a = R

7 return a

• Attacker has the knowledge of the correct
output for a pair of a and b.

• Can rerun the algorithm with the same input,
inject fault, and observe the output.

• Suppose c = 1 and a fault is injected during
the loop starting from line 3 in the register
containing ai0 when i < i0. Will the output be
faulty?

• What if c = 0?

75 / 92

Attack on a simple algorithm

Input: n, a, b, c
Output: ab mod n if c = 1

and a otherwise
1 if c = 1 then
2 R = 0
3 for i = κ− 1, i >= 0,

i−− do
4 R = 2ωR+ aib
5 R = R mod n

6 a = R

7 return a

• Attacker has the knowledge of the correct
output for a pair of a and b.

• Can rerun the algorithm with the same input,
inject fault, and observe the output.

• Suppose c = 1 and a fault is injected during
the loop starting from line 3 in the register
containing ai0 when i < i0 – the fault in ai0
will not affect the output since ai0 is used
when i is equal to i0.

• If c = 0 and a fault is injected in the register
containing ai0 during the computation, then
the final result will be faulty since the faulty
value in a will be returned.

76 / 92

Attack on a simple algorithm

Input: n, a, b, c
Output: ab mod n if c = 1

and a otherwise
1 if c = 1 then
2 R = 0
3 for i = κ− 1, i >= 0,

i−− do
4 R = 2ωR+ aib
5 R = R mod n

6 a = R

7 return a

• Attacker knows: correct output, a, b.

• If c = 1 and a fault is injected during the loop
starting from line 3 in the register containing
ai0 when i < i0 – output will not be affected

• If c = 0, output will be faulty

• Now, if the attacker does not know the value
of c and would like to recover it by fault
injection attacks.

• Attacker assumes c = 1 and the loop in line 3
is executed.

• Injects fault in ai0 at the time when i is less
than i0.

• By comparing the output with the correct one,
how does the attacker recover c?

77 / 92

Attack on a simple algorithm

Input: n, a, b, c
Output: ab mod n if c = 1 and

a otherwise
1 if c = 1 then
2 R = 0
3 for i = κ− 1, i >= 0, i−−

do
4 R = 2ωR+ aib
5 R = R mod n

6 a = R

7 return a

• Attacker knows: correct output, a, b.

• If c = 1 and a fault is injected during the loop
starting from line 3 in the register containing ai0
when i < i0 – output will not be affected

• If c = 0, output will be faulty

• Now, if the attacker does not know the value of c
and would like to recover it by fault injection
attacks.

• Assume that c = 1 and the loop in line 3 is
executed.

• Injects fault in ai0 at the time when i is less than
i0.

• Compares the output with the correct one and
recovers the value of c – if the output is correct,
c = 1; otherwise c = 0. 78 / 92

Square and multiply algorithm

• m ∈ Zn

• Binary representation of d = dℓd−1 . . . d2d1d0, where di = 0, 1 and

d =

ℓd−1∑
i=0

di2
i,

• Then we have

md = m
∑ℓd−1

i=0 di2
i
=

ℓd−1∏
i=0

(m2i)di =
∏

0≤i<ℓd,di=1

m2i .

• To compute md mod n, we can
• First compute m2i for 0 ≤ i < ℓd
• Then md is a product of m2i for which di = 1

79 / 92

Right-to-left Square and Mulitply Algorithm

Algorithm 3: Computing RSA signature with the right-to-left square and multiply
algorithm.

Input: n, m, d
Output: s = md mod n

1 s = 1, t = m
2 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

3 if di = 1 then
// multiply by m2i

4 s = s ∗ t mod n

// t = m2i+1

5 t = t ∗ t mod n

6 return s

80 / 92

Right-to-left square and multiply algorithm with Blakely’s method

• Since ℓn is the bit length of n, the bit lengths of the variables s and t are at most
ℓn.

• ω is the computer’s word size
κ = ⌈ℓn/ω⌉

• We can write

s =

κ−1∑
j=0

sj(2
ω)j , t =

κ−1∑
j=0

tj(2
ω)j .

81 / 92

Right-to-left square and multiply algorithm with Blakely’s method
Input: n,m, d. Output: md mod n

1 s = 1, t = m
2 for i = 0, i < ℓd, i++ do
3 if di = 1 then

// lines 4 -- 8 implement s = s ∗ t mod n

4 R = 0
5 for j = κ− 1, j ≥ 0, j −− do
6 R = 2ωR+ sjt
7 R = R mod n

8 s = R

9 R = 0// lines 9 -- 13 implement t = t ∗ t mod n

10 for j = κ− 1, j ≥ 0, j −− do

11 R = 2ωR+ tjt
12 R = R mod n

13 t = R

14 return s
82 / 92

Right-to-left square and multiply algorithm with Blakely’s method

1 s = 1, t = m
2 for i = 0, i < ℓd, i++ do
3 if di = 1 then
4 R = 0
5 for j = κ− 1, j ≥ 0, j −− do

6 R = 2ωR+ sjt
7 R = R mod n

8 s = R

9 R = 0
10 for j = κ− 1, j ≥ 0, j −− do
11 R = 2ωR+ tjt
12 R = R mod n

13 t = R

14 return s

Example

n = 15, d = 3 = 112, m = 2, ω = 2

ℓn = 4 ℓd = 2, κ = 2.

Line 1 gives:

s = 1, s0 = 01, s1 = 00. t = 2, t0 = 10, t1 = 00.

For i = 0, d0 = 1, loop from line 5 computes

j = 1 R = 2ωR+ s1t mod n =?

j = 0 R = 2ωR+ s0t mod n =?

Line 8: s =?, s0 =?, s1 =?
83 / 92

Right-to-left square and multiply algorithm with Blakely’s method

1 s = 1, t = m
2 for i = 0, i < ℓd, i++ do
3 if di = 1 then
4 R = 0
5 for j = κ− 1, j ≥ 0, j −− do

6 R = 2ωR+ sjt
7 R = R mod n

8 s = R

9 R = 0
10 for j = κ− 1, j ≥ 0, j −− do
11 R = 2ωR+ tjt
12 R = R mod n

13 t = R

14 return s

Example

n = 15, d = 3 = 112, m = 2, ℓd = 2, κ = 2.

i = 0, d0 = 1 line 5 j = 1 R = s1t mod n = 0
j = 0 R = s0t mod n = 2

line 8 s = 2 s0 = 10, s1 = 00
line 10 j = 1 R = 0

j = 0 R = 4
line 13 t = 4 t0 = 00, t1 = 01

i = 1, d1 = 1 line 5 j = 1 R = 0
j = 0 R = 8

line 9 s = 8

md mod n = 23 mod 15 = 8
84 / 92

Safe error attack on RSA Signatures

1 s = 1, t = m
2 for i = 0, i < ℓd, i++ do
3 if di = 1 then
4 R = 0
5 for j = κ− 1, j ≥ 0, j −− do

6 R = 2ωR+ sjt
7 R = R mod n

8 s = R

9 R = 0
10 for j = κ− 1, j ≥ 0, j −− do
11 R = 2ωR+ tjt
12 R = R mod n

13 t = R

14 return s

• Suppose di = 1 and a fault is injected during
the ith iteration of the outer loop and at the
time when j < j0 during the loop starting
from line 5, in the register containing sj0 .

• The fault in sj0 will not affect the output
since sj0 is used when j is equal to j0 and
the value in s is replaced by R in line 8.

• Suppose di = 0 and a fault is injected during
the ith iteration of the outer loop in the
register containing sj0 , then the value in s
will be changed and the final result will be
different.

• How does the attacker recover the value of
di?

85 / 92

Safe error attack on RSA Signatures

1 s = 1, t = m
2 for i = 0, i < ℓd, i++ do
3 if di = 1 then
4 R = 0
5 for j = κ− 1, j ≥ 0, j −− do
6 R = 2ωR+ sjt
7 R = R mod n

8 s = R

9 R = 0
10 for j = κ− 1, j ≥ 0, j −− do
11 R = 2ωR+ tjt
12 R = R mod n

13 t = R

14 return s

• Suppose di = 1 and a fault is injected during
the ith iteration of the outer loop and at the
time when j < j0 during the loop starting
from line 5, in the register containing sj0 –
correct output

• If di = 0 and a fault is injected during the ith
iteration of the outer loop in the register
containing sj0 – faulty output

• Similarly to the attack on the simple
algorithm, the attacker first assumes di = 1,
and injects fault in sj0 at the time
corresponding to j < j0.

• If the final result is not changed, the attacker
can conclude that di = 1, otherwise, di = 0.

86 / 92

Safe error attack on RSA signatures – Example

1 s = 1, t = m
2 for i = 0, i < ℓd, i++ do
3 if di = 1 then
4 R = 0
5 for j = κ− 1, j ≥ 0, j −− do

6 R = 2ωR+ sjt
7 R = R mod n

8 s = R

9 R = 0
10 for j = κ− 1, j ≥ 0, j −− do
11 R = 2ωR+ tjt
12 R = R mod n

13 t = R

14 return s

Example

n = 15, d = 3 = 112, m = 2, ℓd = 2, κ = 2.

i = 0, d0 = 1 line 5 j = 1 R = s1t mod n = 0
j = 0 R = s0t mod n = 2

line 8 s = 2 s0 = 10, s1 = 00
line 10 j = 1 R = 0

j = 0 R = 4
line 13 t = 4 t0 = 00, t1 = 01

i = 1, d1 = 1 line 5 j = 1 R = 0
j = 0 R = 8

line 9 s = 8

Makes guess d0 = 1, injects fault into s1 when
i = 0, j = 0 (line 5)

87 / 92

Safe error attack on RSA signatures – Example

Example

n = 15, d = 3 = 112, m = 2, ℓd = 2, κ = 2.

i = 0, d0 = 1 line 5 j = 1 R = s1t mod n = 0
j = 0 R = s0t mod n = 2

line 8 s = 2 s0 = 10, s1 = 00
line 10 j = 1 R = 0

j = 0 R = 4
line 13 t = 4 t0 = 00, t1 = 01

i = 1, d1 = 1 line 5 j = 1 R = 0
j = 0 R = 8

line 9 s = 8

• Makes guess d0 = 1, injects fault into s1 when i = 0, j = 0 (line 5)

• s1 is used (blue s1) before j = 0 and reassigned value in line 8 (orange s1).

• Thus the computations are not affected and the final result is unchanged.

• The attacker can conclude that d0 = 1.

88 / 92

Safe error attack on RSA signatures

• The attacker can repeat the attack for different values of i to recover the entire
private key.

• Similar techniques can also be applied to attack the left-to-right square and
multiply algorithm with Blakely’s method1.

1Yen, S. M., & Joye, M. (2000). Checking before output may not be enough against fault-based
cryptanalysis. IEEE Transactions on Computers

89 / 92

Countermeasure for the simple algorithm

Input: n, a, b, c
Output: ab mod n if c = 1 and a

otherwise
1 R = 0
2 if c = 1 then
3 for i = κ− 1, i >= 0, i−− do
4 R = 2ωR+ aib
5 R = R mod n

6 a = R

7 return a

Algorithm 4: Modified algorithm.

Input: n, a, b, c// a, b ∈ Zn; c = 0, 1

Output: ab mod n if c = 1 and a otherwise
1 R = 0
2 if c = 1 then
3 for i = κ− 1, i >= 0, i−− do
4 R = 2ωR+ bia
5 R = R mod n

6 a = R

7 return a

Will the output be faulty if the fault is injected

• in bi0 when i < i0 and c = 1

• in b and c = 0

• in a
90 / 92

Countermeasure for the simple algorithm

Input: n, a, b, c// a, b ∈ Zn;

c = 0, 1

Output: ab mod n if c = 1 and a
otherwise

1 R = 0
2 if c = 1 then
3 for i = κ− 1, i >= 0, i−− do
4 R = 2ωR+ bia
5 R = R mod n

6 a = R

7 return a

• c = 1 and the fault is in bi0 when i < i0 –
since bi0 is used before the fault happens,
the final result will not be affected.

• c = 0, a fault in bi0 at any time will not
change the final output.

• If a fault is injected in a, the output will
be faulty no matter what value c takes.

91 / 92

Countermeasure for RSA Signatures

Input: n,m, d

1 s = 1, t = m
2 for i = 0, i < ℓd, i++ do
3 if di = 1 then
4 R = 0
5 for j = κ− 1, j ≥ 0, j −− do
6 R = 2ωR+ sjt
7 R = R mod n

8 s = R

9 R = 0
10 for j = κ− 1, j ≥ 0, j −− do
11 R = 2ωR+ tjt
12 R = R mod n

13 t = R

14 return s

Output: md mod n.

1 s = 1, t = m
2 for i = 0, i < ℓd, i++ do
3 if di = 1 then
4 R = 0
5 for j = κ− 1, j ≥ 0, j −− do
6 R = 2ωR+ tjs
7 R = R mod n

8 s = R

9 R = 0
10 for j = κ− 1, j ≥ 0, j −− do
11 R = 2ωR+ tjt
12 R = R mod n

13 t = R

14 return s

92 / 92

	Introduction to Fault Attacks
	Recall – RSA Signatures
	Bellcore Attack and Countermeasures
	Safe-error Attack and Countermeasure

