Cryptography and Embedded System Security
CRAESS .|

Xiaolu Hou

FIIT, STU
xiaolu.hou @ stuba.sk

1/92

Course Outline

Abstract algebra and number theory

Introduction to cryptography

Symmetric block ciphers and their implementations
RSA, RSA signatures, and their implementations
Probability theory and introduction to SCA

SPA and non-profiled DPA

Profiled DPA

SCA countermeasures

FA on RSA and countermeasures

FA on symmetric block ciphers

FA countermeasures for symmetric block cipher
Practical aspects of physical attacks

® |nvited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH

2/92

Recommended reading

Xiaolu Hou
Jakub Breier
® Textbook

® Sections

® 531,534
® 541,544

Cryptography and
Embedded Systems

Security

@ Springer

Lecture Outline

e Introduction to Fault Attacks

e Recall — RSA Signatures

e Bellcore Attack and Countermeasures

e Safe-error Attack and Countermeasure

4/92

FA on RSA and countermeasures

e Introduction to Fault Attacks

5/92

Why are we interested in physical attacks?

e Cryptography provides algorithms that enable secure communication in theory
® |n the real world, these algorithms have to be implemented on real devices:

® Software implementations: general-purpose devices

® Hardware implementations: dedicated secure hardware devices

® To evaluate the security level of cryptographic implementations, it is necessary to
include a physical security assessment

6/92

Targets and Attack Goals

Targets
e Credit cards
® Passports
e Key Fob

Goals:
® Recovery of the secret key
® Privilege escalation <
IP theft — g

9012 3456

P
1234 5678

picture source: https://goodtimes.ca/how-many-credit-cards-is-too-many/ 7/92

https://goodtimes.ca/how-many-credit-cards-is-too-many/

Different Physical Attack Methods

Side-channel attacks
® EM/Power analysis
® Timing analysis
® Cache attacks
Fault attacks
® Optical fault injection
® Electromagnetic fault injection
® Clock/voltage glitch

Hardware Trojans

uuuuuuuu ¢

= rom Qe
picture source: https://nl.dreamstime.com/stock-foto-s-hameF=di¥<Eomputer-boos-tonen-raken— imageﬁ@@ﬂ?%ﬁ

https://nl.dreamstime.com/stock-foto-s-hamer-die-computer-boos-tonen-raken-image34210923

High Level Description of Fault Attacks

® Active attacks, the attacker tries to perturb the internal computations by external
means

® Exploit a scenario where the attacker has access to the device and can tamper
with it

® There exist also techniques that can achieve fault attacks remotely, such as
Rowhammer!

2P

P (?

!Kim, Yoongu, et al. "Flipping bits in memory without accessing them: An experimental study of
DRAM disturbance errors.” ACM SIGARCH Computer Architecture News 42.3-(2014): 361-372.

picture source: https://blog.applus.com/ 9 /92

https://blog.applus.com/

Fault Injection Techniques

Voltage/clock glitch EM field
Laser FIB/X-ray

%

10/92

Laser Fault Injection Setup

By carefully tuning the beam’s energy level
below a destructive threshold, it is possible
to inject faults into a device and it will not
suffer any permanent damage

11/92

Fault Effects

Instruction skip/change

® Perturbs the instruction being executed by modifying the opcode for the instruction
Bit flip

® Flips the bits in the data.

® The number of bits affected is normally limited by the size of the registers.
® For example, for an AVR device, we can have m—bit flips for m =1,2,...,8

Bit set/reset
® Fixes the bit value to be 1 (set) or 0 (reset)
Random byte fault
® Changes the byte value to a random number
Stuck-at faults
® Permanently changes the value of one bit to 0 (stuck-at-0) or 1 (stuck-at-1)

12/92

Fault Types

® Permanent fault

® Destructive fault that changes the value of a memory cell permanently and hence
affects data during the computations

® Transient fault

® The circuit recovers its original behavior after the fault stimulus ceases (usually just
one instruction) or after the device reset
® Can perturb both data and instruction

® In this course, we only consider transient faults

13/92

Fault Attack

First introduced by Boneh et al. to attack implementation of RSA with CRT?!
After the fault injection, there are two possible scenarios

® The output (ciphertext) is faulty
® Fault is ineffective and the ciphertext is not changed
® Both scenarios can be exploited

Attacker goal: recover secret key

Developed on the algorithmic level

® There are also implementation-specific vulnerabilities

!Boneh, D., DeMillo, R. A., & Lipton, R. J. (1997, May). On the importance of checking
cryptographic protocols for faults. In International conference on the theory and applications of

cryptographic techniques (pp. 37-51). Springer, Berlin, Heidelberg.
14/92

Remarks

Fault attacks on public key ciphers depend on the underlying intractable problem
and we do not have a systematic methodology.

However, the general attack concept can be applied to ciphers based on similar
intractable problems.

We will discuss a few attacks on RSA signatures and the corresponding
countermeasures

The attacks can also be applied to RSA decryption process

15/92

FA on RSA and countermeasures

e Recall — RSA Signatures

16 /92

RSA

Definition (RSA)
Let n = pq, where p, q are distinct prime numbers. Let P = C =Z,,
X = Z:;(n) —{1}. For any e € X, define encryption

E.:Z,— Z,, m— m®modn,
and the corresponding decryption
Dy : 7y — L, c— c? mod n,

where d = e~! mod ¢(n). The cryptosystem (P, C, X, &, D), where
E={E.:ecX}, D={Dy:de X}, is called RSA.

°o(n)=@p-1(-1)
® Public key: n, e, RSA modulus, encryption exponent
® Private key: d, decryption exponent

17/92

RSA signatures

To use RSA for digital signature, let p and ¢ be two distinct primes.

n = pq, choose e € Z¥, — {1} and compute d = e~ mod ¢(n).
Same as for RSA, the public key consists of e and n.

d is the private key.

p, ¢ and ¢(n) should also be kept secret.

18/92

RSA signatures

To sign a message m, Alice computes the signature
s =m% mod n.
Then Alice sends both m and s to Bob. To verify the signature, Bob computes
s® mod n.

If s =m mod n, then the verification algorithm outputs true, and false otherwise.

® Up to now, the only method known to compute s from m mod n is using d, so if
the verification algorithm outputs true, Bob can conclude that Alice is the owner
of d.

® RSA signatures are commonly used together with a fast public hash function h —
m will be the hashed value of the message

19/92

RSA signatures — Example

Example
® Alice chooses p=5and ¢ =7.

® Then
n=235 ¢(n)=24

® Suppose Alice chooses e = 5, which is coprime to 24.

® By the extended Euclidean algorithm

d=e"! mod ¢(n) =?

20/92

RSA signatures — Example

Example

p=>5, q=7, n=35 ¢n)=24, e=5.

® By the extended Euclidean algorithm
24=5%x444,5=44+1=1=5—-(24—-5x%x4) =24 x (—4) + 5 x 5,

and d = e~ mod 24 = 5.

To sign message (hashed value) m = 10, Alice computes

s =m® mod n =?

Alice sends both the message and signature to Bob.

Bob verifies the signature

s® mod n =7
21/92

RSA signatures — Example

Example

® To sign message (hashed value) m = 10, Alice computes
s =m? mod n = 10° mod 35 = 5.

e Alice sends both the message (hashed value) m = 10 and signature s = 5 to Bob.

® Bob verifies the signature

s mod n = 5° mod 35 = 10 = m.

22/92

CRT-based RSA implementation

By the Chinese Remainder Theorem, finding the solution for z = a% mod n is
equivalent to solving
z=a’mod p, z=amod q.
We can compute
Ty 1= admod (=1) mod p, Tq = admod (a=1) 10 ¢,

and solve for
T =xp mod p, x =z, mod q.

An implementation that computes a? mod n by solving the above equation is called
CRT-based RSA.

23/92

CRT-based RSA implementation

To compute a® mod n. We calculate

_ ad mod (p—1) _ CLd mod (¢g—1)

Tp mod p, Tq: mod g,

MqZQ7 Mp:pa

1 1

yq:Mq_1 mod p = ¢~ mod p, yp:Mp_l mod ¢ = p~ " mod g,
Gauss's algorithm

a® mod n = 2,y,q + T4y,p mod n

Garner's algorithm

a® mod n = x, + (x4 —)y, mod q)p.

24 /92

CRT-based RSA implementation — Example

CRT-based RSA implementation

_ ad mod (p—1) _ CLd mod (g—1)

Tp mod p, Tg mod q,

MqZQ7 Mp:pa

1 1

yq:Mq_lmodp:q_ mod p, yp:Mp_lmodq:p_ mod g,

Example (RSA signature computation)
p=5 q=7 n=35 ¢n)=24, e=>5 d=5.
To sign message (hashed value) m = 10, with CRT-based RSA implementation

?

S8p =1 8q=" yp=" yg=?

25/92

CRT-based RSA implementation — Example
Example (RSA signature computation)
p=5 ¢q¢g=7 n=35 ¢pn)=24, e=>5 d=5.
To sign message (hashed value) m = 10, with CRT-based RSA implementation, Alice
computes
= mdmed (P-1) 64 p=10°m9% mod 5 =0,

Sy =
s, = mdmed =1 mod g =10°™46 mod 7 = 5.
By the extended Euclidean algorithm

7=5+2 5=2x24+1=1=5-2x(7T—5)=5x3—-2x7

U = p ' mod ¢ =3 mod 7 =3,
Yg = ¢ ' modp=—-2mod5=3.

26 /92

CRT-based RSA implementation — Example

Gauss's algorithm

a® mod n = TpYqq + TqYpp mod n

Example (RSA signature computation)

p=5 q=7 n=35 ¢n)=24, e=>5 d=5.

With CRT-based RSA implementation, Alice computes
s$p=0 s4=5 yp=3 yq=3.

By Gauss's algorithm
s =7

27/92

CRT-based RSA implementation — Example

Gauss's algorithm

a mod n = TpYqq + TqYpp mod n

Example (RSA signature computation)

p=>5 q=7 n=35 o¢n) =24, e=5 d=5.
With CRT-based RSA implementation, Alice computes

s, =0 s5,=5 yp=3 y,=23.
By Gauss's algorithm

5 = SpYqq + Sqypp mod n =5 x 3 x 5 mod 35 = 5.

28/92

CRT-based RSA implementation — Example

Garner's algorithm

a® mod n = x, + ((x4 —)y, mod q)p.

Example (RSA signature computation)

p=5 q=7 n=35 ¢n)=24, e=>5 d=5.

With CRT-based RSA implementation, Alice computes
s$p=0 s4=5 yp=3 yq=3.

By Garner's algorithm
s =7

29/92

CRT-based RSA implementation — Example

Garner's algorithm

a® mod n = z, + (x4 —)y, mod q)p.

Example (RSA signature computation)

p=>5 q=7 n=35 o¢n) =24, e=5 d=5.

With CRT-based RSA implementation, Alice computes
s, =0 s5,=5 yp=3 y,=23.

By Garner's algorithm

s=s5p+ ((sq—Sp)yp mod ¢)p=0+ (5x3mod 7) x5=1x5=>5.

30/92

FA on RSA and countermeasures

e Bellcore Attack and Countermeasures

31/92

Background

Boneh, D., DeMillo, R. A., & Lipton, R. J. (1997, May). On the importance of
checking cryptographic protocols for faults. In International conference on the
theory and applications of cryptographic techniques (pp. 37-51). Springer, Berlin,
Heidelberg.

Transient fault

® The circuit recovers its original behavior after the fault stimulus ceases (usually just
one instruction) or after the device reset
® Can perturb both data and instruction

Implementation dependent — CRT-based

Given one faulty signature, with knowlege of correct signature, attacker can factor
the RSA modulus

Bellcore — name of the company
The first paper that introduced fault attacks to cryptographic implementations

32/92

Bellcore attack

® y, and y, can be precomputed — assume no faults

® By the design of s, and s,4, we have
s=s,mod g, s=s,modp,

® Suppose a malicious fault was induced during the signing of the signature and the
computation of s, or s, but not both, is corrupted.

33/92

Bellcore attack
s=s,mod g, s=s,modp

Assume that s, is faulty and s, is computed correctly.
A similar attack applies if s is faulty and s, is correct.
Let s’ denote the faulty signature, then

s =s=s,modq, s #smodnp.

In other words,
q(s'=s), pt(s' —s).

n and e are public.
If the attacker further has the knowledge of s and s/, then they can compute

n
q=ged(s' —s,n), p= .
How does the attacker compute the private key?

34/92

Bellcore attack
5 =s,mod g, s=s,modp,

Assume that s, is faulty and s, is computed correctly.
Let s’ denote the faulty signature, then

ss=s=s,modq, s #smodp=q|(s'—3s), pt(s—s).
If the attacker further has the knowledge of s and s’, then they can compute
q=ged(s' —s,n), p= g
After factorizing n, the attacker can compute
p(n)=pP-1)(¢-1)
And eventually, recover the private key
d = e mod ¢(n)
by the extended Euclidean algorithm

35/92

Bellcore attack — Example

Example
p=5 q=7 n=35 ¢nh)=24, e=>5 d=5.

We have computed that y, = 3 and y, = 3. Suppose m = 6. With CRT-based RSA,
to calculate the signature, Alice computes

G = md med (p—1) mod p =7
8¢ = mdmed (¢=1) 69 ¢ =7

And the signature
s = sp + ((sq — 5p)yp mod q)p =7

36/92

Bellcore attack — Example

Example

p=5 ¢q=7 n=35 o¢n) =24, e=5 d=5 m=6, y;=3, yYyp=3
With CRT-based RSA, to calculate the signature, Alice computes

8p = md ™od =D mod p = 6° ™44 mod 5 =1,
S = mdmed (¢=1) ;mod g = 65 ™46 mod 7= 6.
s=5p+ ((sq— Sp)yp mod ¢)p=1+ ((6 —1) x 3mod 7) x 5 =6.

We can verify that
s¢ mod n = 6° mod 35 = 6 = m.

Now suppose the computation of s, is faulty and s; = 3. Then the faulty signature
s =?

37/92

Bellcore attack — Example

Example

sp=1, s5;,=6, s=6

Now suppose the computation of s, is faulty and s; = 3. Then we have

s'=s,+ ((sq — 5,)yp mod ¢)p =3+ ((6 —3) x3mod 7) x 5 =342 x5 =13,

If the attacker has the knowledge of s = 6 and s’ = 13, they can compute

q = ged(s' — s,n) =?

38/92

Bellcore attack — Example

Example

sp=1, s5;,=6, s=6

Now suppose the computation of s, is faulty and s; = 3. Then we have

s'=s,+ ((sq — 5,)yp mod ¢)p =3+ ((6 —3) x3mod 7) x 5 =342 x5 =13,

If the attacker has the knowledge of s = 6 and s’ = 13, they can compute

= ged(s’ — s,n) = ged(13 — 6,35) = ged(7,35) = 7.

39/92

Bellcore attack — Example

Example

sp=1, s5;,=6, s=6
Similarly, suppose the computation of s, is faulty and s; = 2. Then

s = Sp + ((Slq — 8p)yp mod q)p =7
If the attacker has the knowledge of s and s’, they can compute

p=ged(s' —s,n) =?

40/92

Bellcore attack — Example

Example

p=5 gq=7 n=35 o¢n)=24, e=5 d=5 m=6, y;=3,

sp,=1, s5,=6, s=6

Similarly, suppose the computation of s, is faulty and s'q = 2. Then

s' = sp+ ((s; — sp)yp mod ¢)p =1+ ((2—1) x 3mod 7) x 5 = 16.

If the attacker has the knowledge of s = 6 and s’ = 16, they can compute
p = ged(s’ — s,n) = ged(16 — 6,35) = ged(10, 35).
By the Euclidean algorithm

35=10x3+5, gcd(10,35) = ged(10,5) = 5.

Yp = 3

41/92

Bellcore attack — a different attack

® Lenstra, A. K. (1996). Memo on RSA signature generation in the presence of
faults.
® Assume the attacker does not have the correct signature s

e But has the knowledge of the faulty signature s’ as well as the original message
hash value m.

® For example, the attacker can request Alice for the signature of a chosen message.

42/92

Bellcore attack — a different attack
yp and gy, can be precomputed — assume no faults
By the design of s, and s;, we have

s=s,mod g, s=s,modp,

which gives
&
q

e

mod g, m=s°=s,

m=s*=s mod p.

A malicious fault was induced during the signing of the signature and the
computation of s, or s4, but not both, is corrupted.

Suppose sy, is faulty

Then

s =mmod g, s°# m mod p,

ql(s"“ =m), pt (s —m).
How can the attacker find ¢?

43/92

Bellcore attack — a different attack

yp and y, can be precomputed — assume no faults
By the design of s,, s4, yp and y,, we have

s =5y mod g, s=s, mod p,

which gives
e e
q P

Suppose a malicious fault was induced during the signing of the signature and the
computation of s, or s4, but not both, is corrupted.
Then

m=s°=smodq, m=s°=s®modnp.

le

s m mod ¢, s'°# m mod p,

/e

ql(s"“ =m), pt (s —m).

The attacker can compute
n
q=ged(s* —m,n), p=—.
q

44/92

Bellcore attack — Example

Example

p=11, ¢=13, n=143, ¢(n)=10x 12 = 120.

® Choose e = 11, which is coprime with ¢(n).

® By the extended Euclidean algorithm
d="?

Yo =¢ 'mod p=13""mod 11 =7 g, =p ' mod g =?

45/92

Bellcore attack — Example
Example
p=11, ¢q=13, n=143, e=11
120 = 11x104+10, 11 = 10x1+1 =1 =11—-(120—11x10) = 11x11-120 = d =11
13=11x142, 11 =2x541=1=11-2x5=11-5x(13—11) = 11 x6—13 x5,
Yg = ¢ ' mod p=13"! mod 11 = —5 mod 11 = 6,

Y =p ! mod ¢ = 117! mod 13 = 6.

® Suppose m = 2. To calculate the signature, Alice computes

d d (p—1
sp =m* ™M =1 mod p =?

_ md mod (¢g—1)

S mod q =7

By Garner's algorithm, s =7
46 /92

Bellcore attack — Example

Example

p=11, ¢=13, n=143, e=11, d=11, y,=6, y,=6

Suppose m = 2.

To calculate the signature, Alice computes

8p = mdmed (P=1) nod p = 211 ™04 10 164 11 = 2 mod 11 = 2,

54 = md med (@=1) mod g = 211 ™04 12 o4 13 = 7.

By Garner's algorithm,

5= 5p+((8g—5p)yp mod ¢)p =2+ ((7—2) x6 mod 13) x 11 = 2+4 x 11 = 46.

Suppose the computation of s, is faulty and s}, = 7.
Then s’ =7

47/92

Bellcore attack — Example

Example

p=11, ¢=13, n=143, y, =6, y=6, s5,=2, s,=7, s=46, s5,=7

® We have
s’ = s, + ((sq — s,)yp mod ¢)p =7+ ((7—7) x 6 mod 13) x 11 = 7.

e |f the attacker has the knowledge of s = 46 and s’ = 7, they can compute

q = ged(s' — s,n) =7

48/92

Bellcore attack — Example

Example

p=11, ¢q=13, n=143, e=11, d=11, s=46, s =7

e |f the attacker has the knowledge of s = 46 and s’ = 7, they can compute

q = ged(s’ — s,n) = ged(7 — 46,143) = ged(—39,143) = ged(39, 143).

® By the Euclidean algorithm,

143 = 39 x 3426, gcd(39,143) = ged(39, 26),
39 = 26 + 13, gcd(39, 26) = ged(26, 13),
26 = 13 x 2, q = ged(26,13) = 13.

e |f the attacker has the knowledge of s’ = 7 and m = 2, they can compute
q = ged(s'® —m,n) =7

49/92

Bellcore attack — Example

Example

p=11, ¢=13, n=143, s5,=2, s,=7, s=46, s, =7, s =7
If the attacker has the knowledge of s’ = 7 and m = 2, they can compute
q = ged(s"® —m,n) = ged(7' — 2,143) = ged (1977326741, 143).
By the Euclidean algorithm,

1977326741 = 143 x 13827459 + 104, ged
143 = 104 + 39, ged
104 = 39 x 2 + 26, ged(104, 39) = ged(39, 26),
39 = 26 + 13, ged(39,26) = ged(26,13)
26 =13 x 2, q = ged(26,13) = 13.

1977326741, 143) = ged(143, 104),
143,104) = ged(104, 39),

o~ o~~~

50 /92

Shamir's countermeasure

® A. Shamir, Method and apparatus for protecting public key schemes from timing
and fault attacks, United States Patent No. 5,991,415, November 23, 1999. Also
presented at the rump session of EUROCRYPT'97.

® Using an extended modulus

51/92

Shamir's countermeasure

Let r be a random £,.—bit prime number.
Typically ¢, = 32
Instead of computing s, and s, as

- md mod (p—1)

Sp : — md mod (¢g—1)

mod p, sg4:

We compute

p q

Then we check if

If yes, the signature s is given by

8 = 5,Yqq + syypp mod n.

mod g,

F — md mod (p—1)(r—1) mod pr, §F — md mod (¢g—1)(r—1) mod gr.

52/92

Shamir's countermeasure

Suppose the Bellcore attack is to be carried out and a malicious fault is injected
during the computation of s; or s;, but not both.

* v

Without loss of generality, let us assume s, is faulty and s} is computed correctly.
/
Let s, denote the faulty s,
The fault will be detected if
s, # 8y mod 7,

which means the probability of injecting an undetectable fault is the probability of
producing s;/ such that

The probability is 1/7.

Thus, with Shamir's countermeasure, the Bellcore attack will be successful with
probability 1/7.
When the bit length of 7 is around 32 bits, this probability is about 2732.

53/92

Shamir’s countermeasure — Example

Example

p=>5 q=7 n=35 ¢n)=24, e=5 d=5 m=6, y;=3,

Suppose r = 3.

_ md mod (p—1)(r—1) mod pr =7

= mdmed (¢=1)(r=1))59 qr =7

Yp = 3

54/92

Shamir’s countermeasure — Example

Example

p=5 ¢g=7 n=35 e=5 d=5 m=6, y,=3, yp=3, r=3
_ md mod (p—1)(r—1) mod pr = 65 mod (4x2) _ 65 mod 15 = 6,
_ md mod (¢g—1)(r—1) mod gr = 65 mod (6x2) _ 65 mod 21 = 6.

We can check that

The signature is given by

8= 5,Yqq + syypp mod n =6 x 3 x 7+ 6 x 3 x 5 mod 35 = 6.

/ /
Suppose an error occurred and the faulty value s; = 4. Then s mod r =7
5502

Shamir’s countermeasure — Example

Example

p=5 q=7, n=35 e=5 d=5 m=6, y,=3, yp=3, r=3

s, =6, s,=6, s =0mod3, s=6

Suppose an error occurred during the computation of s, and the faulty value s;/ =4,

Then we would have
*/ *
$p # g mod 7.

The fault will be detected. What if s;/ =97

56 /92

Shamir’s countermeasure — Example

Example

p=5 ¢qg=7 n=35 e=5 d=5 m=6, y,=3, yp=3, r=3
s, =6, s,=6, s =0mod3, s=6
Suppose an error occurred during the computation of s;, and the faulty value s;/ =9,
we have
and the faulty signature will be
g = s;,yqq + syypp mod n =7

In this case, the attacker can repeat the Bellcore attack by computing

q = ged(s' — s,n) =7

57/92

Shamir’s countermeasure — Example
Example

p=5 ¢qg=7 n=35 e=5 d=5 m=6, y,=3, yp=3, r=3
s, =6, s,=6, s =0mod3, s=6

o - * */ —_
Sup:ose an error occurred during the computation of s7, and the faulty value s; =9,
we have

and the faulty signature will be
s':s;/yqq—l—sZyppmodn:Qx3><7+6><3>< 5 mod 35 = 34.
In this case, the attacker can repeat the Bellcore attack by computing

q = ged(s' — s,n) = ged(34 — 6,35) = 7.

58 /92

Infective countermeasure

Although Shamir's countermeasure can effectively protect RSA signature
computations against the Bellcore attack, a simple improved attack is to bypass
the check

using an instruction skip.

We will discuss a more sophisticated countermeasure against the Bellcore attack,
the infective countermeasure

The main goal of the countermeasure is to make s, faulty if s, is faulty, hence the
name “infective”.

Sung-Ming, Y., Kim, S., Lim, S., & Moon, S. (2002). RSA speedup with residue
number system immune against hardware fault cryptanalysis. In Information
Security and Cryptology—ICISC 2001: 4th International Conference Seoul, Korea,
December 6-7, 2001 Proceedings 4 (pp. 397-413). Springer Berlin Heidelberg.

59 /92

Infective countermeasure

Same as before, let p and ¢ be distinct odd primes.
n = pq.

d is the private key for RSA signatures.

e =d! mod ¢(n).

m is the hash value for the message.

Yqg = q_1 mod p, Yy, = p_1 mod gq.

We select a random integer r such that ged(d,, ¢(n)) =1 and e, is a small
integer, where
d-=d—7, e =d ' mod p(n).

o [z]. 5o[2)

Let

60 /92

Infective countermeasure

We select a random integer r such that ged(d,, ¢(n)) = 1 and e, is a small integer,
where

dr=d—r, e =d ' mod p(n).

2] 2]

The signature s is then computed as follows:

Let

8y = m® mod P,
m = ((sp” mod p) + kpp) mod g,
8¢ = m% mod q,
Sdr = SpYqq + Sqypp mod n,
m = (sg" mod q) + k,q,
s = sg-m’ mod n.

61/92

Infective countermeasure

® Bellcore attack assumes one of s, and s, is faulty, but not both.
® For the infective countermeasure, it can be shown
® When p < g, if s, is faulty, s, will also be faulty.
® When p > g, if s, is faulty, then s, has a high probability to be faulty.

® If s, is faulty and s, is not faulty, the attacker cannot repeat the attack without
brute force.

62/92

Infective countermeasure — Example

Example
p=11, ¢=13, n=143, m =2, p(n) =120, d =11, y, =6, y, = 6.

Choose r = 4, then
dr=d—r=11—-4=71.

By the extended Euclidean algorithm,
er = d; ' mod p(n) =?

We also have

63/92

Infective countermeasure — Example

Example
p=11, ¢=13, n=143, m =2, ¢(n) =120, d=11, y, =6, y, = 6.
r=4, d,.=d—-r=11—-4=1.
By the extended Euclidean algorithm,

120=7x17T4+1=1=120—-7 x 17,

hence
er = d;-! mod ¢(n) = —17 mod 120 = 103.

3] Lo o3l

We also have

64 /92

Infective countermeasure — Example

Example
p=11, ¢=13, n=143, m =2, ¢(n) =120, d =11, y, =6, y, =6.
r=4, d. =7 e =103, k=0, k;=0

Sp = m% mod p =7

m = ((s;” mod p)+ kpp) mod ¢ =7
8q = m% mod ¢ =7

Sqr = SpYqq + SqYpp mod n =7

3
I

(sq” mod q) + kgq =7

s = sgm modn ="

65 /92

Infective countermeasure — Example

Example
p=11, ¢=13, n=143, m =2, ¢(n) =120, d =11, y, =6, y, = 6.
r=4, d. =7 e =103, k=0, k;=0

sy = m® mod p = 2" mod 11 = 128 mod 11 = 7,
m = ((s;” mod p)+ kpp) mod q = (71 mod 11 + 0) mod 13
= (7103 mod10) 164 13 = (73 mod 11) mod 13 = 2,
sg = 1% mod ¢ =2" mod 13 = 128 mod 13 = 11,
Sar = SpYqq + Sqypp mod n =7 x 6 x 13+ 11 x 6 x 11 mod 143 = 128,
m = (sg" mod q) + kyq = 11'% mod 13+ 0 =117 mod 13 = 2,
s = sgm” modn =128 x 2* mod 143 = 2048 mod 143 = 46.

Suppose s, is faulty and s; = 2. Then m/ =? s; =7
66 /92

Infective countermeasure — Example

Example
p=11,¢q=13, m=2, y,=6, Yy, =6, r=4, d, =7, ¢, =103, k, =0, kg =0

sp = m% mod p = 2" mod 11 = 128 mod 11 = 7,
m = ((s;” mod p) + kpp) mod ¢q = 2,

sq = 1% mod ¢ =2" mod 13 = 128 mod 13 = 11.
Suppose s, is faulty and s;, = 2. Then

m = ((s;fr mod p) + kpp) mod ¢ = (2'** mod 11 + 0) mod 13 = 2° mod 11 = 8,

s; = Mm% mod ¢ =28" mod 13 = 5.

Thus sy, is also faulty.

67/92

FA on RSA and countermeasures

e Safe-error Attack and Countermeasure

68 /92

Introduction

® Right-to-left square and multiply algorithm

® Modular multiplication: Blakely's method

® The attack exploits the knowledge of whether an intermediate faulty value is used
or not by observing whether the final output is changed, thus the name safe error
attack 1.

® Since only knowing whether the output is changed or not is enough, if a
countermeasure that repeats the computation, compares the final results, and
outputs an error when a fault is detected is implemented, the safe error attack still
applies.

Yen, S. M., & Joye, M. (2000). Checking before output may not be enough against fault-based

cryptanalysis. IEEE Transactions on computers
69 /92

Notations
n has bit length £,
2=l < < 9n,

a,b € Zy,, in particular, 0 < a,b < n.
w: the computer's word size
® for a 64-bit processor, the word size is 64

Let k = [{p/w], ie. (k— 1w < £y < Kw.

Then (|| indicates concatenation, 0 < a; < 2¢)
a = a,ﬁ_1|‘a,€_2’| ‘e Hao,

Note that some a; might be 0 if the bit length of a is less than ¢,,. We have

|
—

K .
a=" a;(2¥).

ﬂ.
o

70/92

Blakley's method

® We would like to compute
R = ab mod n.

® Since .
e

a= Z ai(2¢)7,
i=0

where 0 < q; < 2.

® The product ab can be computed as follows

k—1 k—1
t=ab= (Z ai(Z‘“)i) b= (2°)ab,

=0 =0

71/92

B W N

Algorithm 1: Blakely’s method for computing modular multiplication.

Input: n, a, b// n<c7Z,n>2 has bit length (,; a,bc Z,
Output: ab mod n

R=0
// k= [l,/w], where w is the word size of the computer
fori=xk—-1,i>0,7i—— do
R=2“R+a
L R =R modn
return R

72/92

Blakely's method — Example

Input: n, a, b

Example
Output: ab mod n
1R=0 w=2a=13=11015, b=5n=15 ({, = 4),
2fori=xk—-1,9>0,i— — do Kk =2.
— 9w .
Z Lg;éﬁ;aj ap=013=1, a3 =113=3.
5 return R Fori=1,

R=0+4+3 x5 mod 15 =0 mod 15.
For i =0,
R=0+1x5mod 15 =5 mod 15

We have the final result 13 x 5 mod 15 = 5.

73/92

Attack on a simple algorithm

Algorithm 2: An algorithm involving computing modular multiplication with
Blakely's method.
Input: n, a, b, ¢// a,bcZ,; ¢c=0,1
Output: ab mod n if ¢ =1 and a otherwise
1 if ¢ =1 then

2 R=0
// k= [l,/w], where w is the computer’s word size
fori=rx—-1,i>=0,7i— — do
R=2“R+ a;b
R=R modn
6 a=R
7 return a

74/92

Attack on a simple algorithm

Input: n, a, b, c ® Attacker has the knowledge of the correct
Output: ab mod nifc=1 output for a pair of a and b.
and a otherwise ® Can rerun the algorithm with the same input,
if c =1 then inject fault, and observe the output.
R :‘0 ’ ® Suppose ¢ = 1 and a fault is injected during
fqr i=r—11>=0, the loop starting from line 3 in the register
i—— do containing a;, when i < ig. Will the output be
L R=2R+a;b faulty?
Rt =R modn e What if ¢ = 07
| a=R
return a

75/92

Input: n, a, b, ¢
Output: ab mod nifc=1
and a otherwise

if c=1 then
R=0
fori=x—-1,1>=0,
i — — do

R=2R+ a;b
L R=R modn

a=R

return a

Attack on a simple algorithm

e Attacker has the knowledge of the correct

output for a pair of a and b.

Can rerun the algorithm with the same input,
inject fault, and observe the output.

Suppose ¢ =1 and a fault is injected during
the loop starting from line 3 in the register
containing a;, when i < ig — the fault in a;,
will not affect the output since a;, is used
when ¢ is equal to ig.

If ¢ =0 and a fault is injected in the register
containing a;, during the computation, then
the final result will be faulty since the faulty
value in a will be returned.

76 /92

Input: n, a, b, c

Output: ab modnifc=1

and a otherwise

1 if ¢ =1 then

2 R=0

3 fori=rx—1,17>=0,
i — — do

4 R=2“R+ a;b

5 R =R mod n

6 ¥a:R

7 return a

Attack on a simple algorithm

Attacker knows: correct output, a, b.

If ¢ =1 and a fault is injected during the loop
starting from line 3 in the register containing
ai, when i < iy — output will not be affected

If ¢ =0, output will be faulty

Now, if the attacker does not know the value
of ¢ and would like to recover it by fault
injection attacks.

Attacker assumes ¢ = 1 and the loop in line 3
is executed.

Injects fault in a;, at the time when ¢ is less
than 1.

By comparing the output with the correct one,
how does the attacker recover ¢?

77/92

Attack on a

Input: n, a, b, c
Output: ab mod n if c =1 and °
a otherwise
1 if c =1 then

R:O 'Y
fori=xk—-1,1>=0,7— — o
do
R=2R+ a;b
R=Rmodn
[}
6 ¥a:R
7 return a °

simple algorithm

Attacker knows: correct output, a, b.

If c =1 and a fault is injected during the loop
starting from line 3 in the register containing a;,
when i < ig — output will not be affected

If ¢ =0, output will be faulty

Now, if the attacker does not know the value of ¢
and would like to recover it by fault injection
attacks.

Assume that ¢ = 1 and the loop in line 3 is
executed.

Injects fault in a;, at the time when i is less than
10.

Compares the output with the correct one and

recovers the value of ¢ — if the output is correct,
c = 1; otherwise ¢ = 0. 78,92

Square and multiply algorithm

m € ZLnp,
Binary representation of d = dy,_1 ...dad1dp, where d; = 0,1 and

041

d= > d?2,
=0

Then we have

01 la—1
} : d— 9 i . 7
md = m+~i=0 2 = I | (m2)dl = | | m2 .
=0 0<i<ly,d;=1

To compute m¢ mod n, we can

® First compute m? for 0 <i<{y
® Then m% is a product of m2" for which d; = 1

79/92

Right-to-left Square and Mulitply Algorithm

Algorithm 3: Computing RSA signature with the right-to-left square and multiply
algorithm.

Input: n, m, d

Output: s = m? mod n
1s=1,t=m
2fori=0,1<¥44, i+ + do
// ith bit of d is 1
3 if d; =1 then

// multiply by m?'
L s=s*xtmodn
-1

/] t=m*
5 t=t*xt modn

6 return s

80/92

Right-to-left square and multiply algorithm with Blakely's method

® Since /,, is the bit length of n, the bit lengths of the variables s and ¢ are at most
ly,.

® o is the computer’s word size
k= [ln/w]

® \We can write

Kk—1 k—1
s=Y s5;(29, t=> t;(29).
j=0 =0

81/92

Right-to-left square and multiply algorithm with Blakely's method

Input: n,m,d. Output: m? mod n

15s=1, t=m

2 fori=0,i< /4, i+ + do

3 if d; =1 then

// lines 4 -- 8 implement s = s*t mod n

4 R=0

5 forj=xk—-1,5>0,57——do

6 R = sz + Sjt

7 R=Rmodn

8 | s=R

9 R =0// lines 9 —- 13 implement ¢ =t ¢ mod n
10 forj=xk—-1,>0,j——do

1 R=2R+t;t

12 | R=Rmodn

B3 | t=R
14 return s

82/92

14

Right-to-left square and multiply algorithm with Blakely's method

s=1, t=m
fori=0,i< /4, i+ + do
if d; =1 then

R=0

R=2“R+ s;t
R =R modn

return s

forj=xk—-1,j>0,j——do

Example

n=15 d=3=11, m=2, w=2
by=4 Lg3=2, K=2.
Line 1 gives:
s=1,so=01, s =00. t=2,ty=10, t; = 00.
For ¢ =0, dy = 1, loop from line 5 computes

j=1 R=2R+ s1t mod n =7
j=0 R=2YR+ sgt mod n ="?

Line 8: s =7, s9 =7, s1 ="
83,92

g A W N =

Right-to-left square and multiply algorithm with Blakely's method

s=1, t=m
fori=0,i</{y, i+ + do
if d; =1 then
R=0
forj=k—1,7>0,j——do
R=2“R+ s;t
R =R modn
s=R
R=0
forj=xk—-1,7>0,j——do
R=2R+t;t
R =R modn
| t=R

return s

Example

n =15,

d=3=11y, m=2, =2, k=2

1=0,dp=1 lineb j=1 R=sitmodn=20

i=1,d

j=0 R=spt modn=2
line8 s=2 s3=10,51 =00
linel0 j=1 R=0

j=0 R=14
line13 t=4 t9=00,¢; =01

=1 line5 j=1 R=0
7=0 R=8
ine9 s=28

m® mod n = 2% mod 15 = 8

84/92

Safe error attack on RSA Signatures

1 s=1, t=m ® Suppose d; = 1 and a fault is injected during
2 fori=0,i</{y i+-+ do the ith iteration of the outer loop and at the
3 if d; = 1 then time when j < jp during the loop starting
. R=0 from line 5, in the register containing s;.
5 forj=rk—-1,7>0,j—— do ® The fault in s;, will not affect the output
6 R=92R+ st since s;, is used when j is equal to jo and
. R = R mod 7Jz the value in s is replaced by R in line 8.
8 s—R ® Suppose d; = 0 and a fault is injected during
RW— 0 the ith iteration of the outer loop in the
13 for_j —k—1,7>0 j—— do register containing s;,, then the value in s
i R—9R4tt will be changed and the final result will be
- J .
12 R =R modn different.
13 t=R ® How does the attacker recover the value of
L -
14 return s d;

85/92

P A N

9
10
11
12

13

Safe error attack on RSA Signatures

s=1, t=m
fori=0,i< /{4, i+ + do
if d; =1 then
R=0
forj=xk—1,7>0,j——do
R:2MR+Sjt
LR:Rmodn
s=R

R=0

forj=xk—-1,7>0,j——do
R=2“R+t;t

LRszodn

| t=R

14 return s

® Suppose d; = 1 and a fault is injected during

the ith iteration of the outer loop and at the
time when j < jp during the loop starting
from line 5, in the register containing s;, —
correct output

If d; =0 and a fault is injected during the ith
iteration of the outer loop in the register
containing s;, — faulty output

Similarly to the attack on the simple
algorithm, the attacker first assumes d; = 1,
and injects fault in s, at the time
corresponding to j < jo.

If the final result is not changed, the attacker
can conclude that d; = 1, otherwise, d; = 0.

86 /92

a A W N =

Safe error attack on RSA signatures — Example

s=1, t=m
fori=0,i< /4, i+ + do
if d; =1 then
R=0
forj=k—1,7>0,j——do
R=2“R+ s;t
R =R modn
s=R
R=0
forj=k—-1,7>0,j——do
R=2R+t;t
R =R modn
| t=R

return s

Example

n:15, d:3:112, m:2, fd:2, K= 2.

1=0,dp=1 lineb j=1 R=sitmodn=20
j=0 R=spt modn=2

line8 s=2 s9=10,5;, =00
linel0 j=1 R=0
j=0 R=4

linel13 t=4 ty=00,t; =01
i=1,dy =1 line5 j=1 R=0
7=0 R=8
line9 s=38

Makes guess dy = 1, injects fault into s; when
i =20, =0 (line 5)

87/92

Safe error attack on RSA signatures — Example

Example

n:15, d:3:112, m:2, Ed:2, K= 2.

i=0,dgp=1 lineb =1 R=sitmodn=20
j=0 R=sgt modn=2
line8 s=2 s3=10,5, =00
linel0 j=1 R=0
j=0 R=4
linel1l3 t=4 ty,=00,t; =01

i=1,di=1 lineb j=1 R=0
j=0 R=8
ine9 s=28

® Makes guess dy = 1, injects fault into s; when i =0, j = 0 (line 5)
® 51 is used (blue s1) before j = 0 and reassigned value in line 8 (orange s/).

® Thus the computations are not affected and the final result is unchanged. 88,92

Safe error attack on RSA signatures

® The attacker can repeat the attack for different values of 7 to recover the entire
private key.

® Similar techniques can also be applied to attack the left-to-right square and
multiply algorithm with Blakely’s method?.

Yen, S. M., & Joye, M. (2000). Checking before output may not be enough against fault-based
cryptanalysis. IEEE Transactions on Computers

89/92

g A WN =

(=]

Countermeasure for the simple algorithm

Input: n, a, b, c
Output: abmod nifc=1and a
otherwise
R=0
if c =1 then
fori=x—-1,i>=0,7i—— do
R=2R+ a;b
L R=Rmodn
a=R

return a

a A WO N =

[=)]

Algorithm 4: Modified algorithm.
Input: n, a, b, ¢// a,bcZ,; c=0,1
Output: ab mod n if ¢ = 1 and a otherwise
R=0
if ¢ =1 then
fori=rx—1,i>=0,71—— do
L R=2R+ba

R=Rmodn
a=R

return a

Will the output be faulty if the fault is injected
® in b, wheni <ipandc=1
® inbandc=0

® ina
90/92

g H» W N =

=)

-~

Countermeasure for the simple algorithm

Input: n, a, b, ¢// a,b€Z,;
c=0,1
Output: ab modnifc=1 and a
otherwise
R=0
if c=1 then
fori=x—-1,i>=0,i—— do
R=2YR+ bja
L R=R modn
a=R

return a

® ¢ =1 and the fault is in b;, when i < iy —
since b;, is used before the fault happens,
the final result will not be affected.

® ¢ =0, a fault in b;, at any time will not
change the final output.

e |f a fault is injected in a, the output will
be faulty no matter what value ¢ takes.

91/92

Countermeasure for RSA Signatures

Input: n,m,d Output: m? mod n.
1s=1, t=m 1s=1, t=m
2 fori=0,i< /4, i+ + do 2 fori=0,i< /¥4, i+ + do
3 if d; =1 then 3 if d; =1 then
4 R=0 a R=0
5 forj=rx-1,j>0,j——do 5 forj=r—1,7>0j——do
6 RZQWR—FSjt 6 R=2wR+tj8
7 R=Rmodn 7 R=Rmodn
8 ¥S=R 8 gs:R
9 R=0 9 R=0
10 forj=x-1,7j>0,j——do 10 forj=k—-1,7>0,j——do
1 R=2R+t;t 1 R=2“R+t;t
12 | R=Rmodn 12 | R=Rmodn
13 t=R 13 t=R

14 return s 14 return s

92/92

	Introduction to Fault Attacks
	Recall – RSA Signatures
	Bellcore Attack and Countermeasures
	Safe-error Attack and Countermeasure

