
Cryptography and Embedded System Security
CRAESS I

Xiaolu Hou

FIIT, STU
xiaolu.hou @ stuba.sk

1 / 80



Course Outline

• Abstract algebra and number theory

• Introduction to cryptography

• Symmetric block ciphers and their implementations

• RSA, RSA signatures, and their implementations

• Probability theory and introduction to SCA

• SPA and non-profiled DPA

• Profiled DPA

• SCA countermeasures

• FA on RSA and countermeasures

• FA on symmetric block ciphers

• FA countermeasures for symmetric block cipher
• Practical aspects of physical attacks

• Invited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH

2 / 80



Recommended reading

• Textbook
• Sections 4.6

3 / 80



Lecture Outline

• Introduction

• Square and multiply-always

• Blinding for RSA

• Masking for PRESENT

4 / 80



SCA countermeasures

• Introduction

• Square and multiply-always

• Blinding for RSA

• Masking for PRESENT

5 / 80



Countermeasures

• Protocol level: design cryptographic protocols to survive leakage analysis
• Limiting the number of communications that can be performed with any given key,

fewer measurements can be done by the attacker for the same key
• Re-keying1

• Cryptographic primitive level
• Proposal of new cipher design

1Medwed, M., Standaert, F. X., Großschädl, J., & Regazzoni, F. (2010, May). Fresh re-keying:
Security against side-channel and fault attacks for low-cost devices. In International Conference on
Cryptology in Africa (pp. 279-296). Springer, Berlin, Heidelberg.

6 / 80



Countermeasures

• Implementation level
• Time randomization1

• Encryption of the buses2

• Hiding
• Masking and blinding

1May, D., Muller, H. L., & Smart, N. P. (2001, May). Random register renaming to foil DPA. In
International Workshop on Cryptographic Hardware and Embedded Systems (pp. 28-38). Springer,
Berlin, Heidelberg.

2Brier, E., Handschuh, H., & Tymen, C. (2001, May). Fast primitives for internal data scrambling
in tamper resistant hardware. In International Workshop on Cryptographic Hardware and Embedded
Systems (pp. 16-27). Springer, Berlin, Heidelberg.

7 / 80



Countermeasures

• Architecture level
• Use non-deterministic processor to randomly change the sequence of the executed

program during each execution1

• Integrate secure instructions into a non-secure processor2

1May, D., Muller, H. L., & Smart, N. P. (2001, July). Non-deterministic processors. In Australasian
Conference on Information Security and Privacy (pp. 115-129). Springer, Berlin, Heidelberg.

2Saputra, H., Vijaykrishnan, N., Kandemir, M., Irwin, M. J., & Brooks, R. (2003). Masking the
energy behaviour of encryption algorithms. IEE Proceedings-Computers and Digital Techniques,
150(5), 274-284.

8 / 80



Countermeasures

• Hardware level
• Conforming glues1

• Protective coating2

• Detachable power supplies3

1Anderson, R., & Kuhn, M. (1996, November). Tamper resistance – a cautionary note. In
Proceedings of the second Usenix workshop on electronic commerce (Vol. 2, pp. 1-11).

2Tuyls, P., Schrijen, G. J., Škorić, B., Geloven, J. V., Verhaegh, N., & Wolters, R. (2006, October).
Read-proof hardware from protective coatings. In International Workshop on Cryptographic Hardware
and Embedded Systems (pp. 369-383). Springer, Berlin, Heidelberg.

3Shamir, A. (2000, August). Protecting smart cards from passive power analysis with detached
power supplies. In International Workshop on Cryptographic Hardware and Embedded Systems (pp.
71-77). Springer, Berlin, Heidelberg.

9 / 80



Hiding and masking/blinding

• We have seen how the dependency of a device’s leakages (power consumption) on
data and operations can be exploited to recover the secret keys of a cryptographic
implementation.

• Goal: make the leakage of the DUT independent of the operations or the
intermediate values of the executed cryptographic implementation.

• Hiding – remove the operation/data dependency of leakage
• Change the leakage of the DUT in a way that every operation requires a similar

(balance leakages) or a random (randomize leakages) amount of energy.

• Masking/blinding – remove the data dependency of leakage by randomizing the
intermediate values that the DUT is processing

• The rationale is that since the value being processed in the DUT is randomized and
independent of the intermediate value of the cryptographic computation, we cannot
capture information on the actual intermediate value from the leakages.

• Symmetric block cipher: masking
• Asymmetric cipher: blinding

10 / 80



Hiding – randomizing power consumption

• Insert random delay (jitter)1

• Shuffle the execution order of independent operations
• Sboxes in AES2

• Randomize the sequence of square and multiply3

• Using residue number systems allow randomizing the representation of finite field
elements for computing exponentiation4

1Coron, J. S., & Kizhvatov, I. (2009, September). An efficient method for random delay generation
in embedded software. In International Workshop on Cryptographic Hardware and Embedded Systems
(pp. 156-170). Springer, Berlin, Heidelberg.

2Herbst, C., Oswald, E., & Mangard, S. (2006, June). An AES smart card implementation resistant
to power analysis attacks. In International conference on applied cryptography and network security.
Springer.

3Walter, C. D. (2002, February). MIST: An efficient, randomized exponentiation algorithm for
resisting power analysis. In Cryptographers’ Track at the RSA Conference. Springer.

4Bajard, J. C., Imbert, L., Liardet, P. Y., & Teglia, Y. (2004, August). Leak resistant arithmetic. In
International Workshop on Cryptographic Hardware and Embedded Systems. Springer.

11 / 80



Hiding – balancing power consumption

• Cell level, logic designs
• Dual-rail precharge logic (DPL)1, in pre-charge phase, values in the weries are set to

a precharge value (either 0 or 1), during evaluation phase, one wire carries the signal
0 and the other wire carries the signal 1

• Using code {01, 10} for encoding 0, 1

• Dynamic and differential logic styles 2

1Tiri, K., & Verbauwhede, I. (2006). A digital design flow for secure integrated circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(7), 1197-1208.

2Tiri, K., Akmal, M., & Verbauwhede, I. (2002, September). A dynamic and differential CMOS
logic with signal independent power consumption to withstand differential power analysis on smart
cards. In Proceedings of the 28th European solid-state circuits conference (pp. 403-406). IEEE.

12 / 80



Hiding – balancing power consumption

• Software level
• DPL in software for symmetric block ciphers1

• DPL in software with proved security for bitsliced implementation of PRESENT2

• Linear complementary dual code3

• Error detecting and correcting code in software4

• Square and multiply-always for computing exponentiation in RSA5

1Hoogvorst, P., Duc, G., & Danger, J. L. (2011). Software implementation of dual-rail
representation. COSADE, 51, 24-25.

2Rauzy, P., Guilley, S., & Najm, Z. (2013). Formally Proved Security of Assembly Code Against
Leakage. IACR Cryptol. ePrint Arch., 2013, 554.

3Carlet, C., & Guilley, S. (2015). Complementary dual codes for counter-measures to side-channel
attacks. In Coding Theory and Applications (pp. 97-105). Springer, Cham.

4Breier, J., & Hou, X. (2017, February). Feeding two cats with one bowl: On designing a fault and
side-channel resistant software encoding scheme. In Cryptographers’ Track at the RSA Conference (pp.
77-94). Springer, Cham.

5Coron, J. S. (1999, August). Resistance against differential power analysis for elliptic curve
cryptosystems. In International workshop on cryptographic hardware and embedded systems (pp.
292-302). Springer, Berlin, Heidelberg.

13 / 80



Masking and blinding

• Let v be the secret intermediate value that we would like to mask.

• The masked value, denoted vm, concealed by a random value m, called a mask,
with a binary operation · such that

vm = v ·m.

14 / 80



Masking

• Boolean masking, the binary operation is bitwise XOR

• Arithmetic masking, the binary operation is modular addition or modular
multiplication

• Affine masking1

• Polynomial masking2

• Inner product masking3

1Willich, M. V. (2001, December). A technique with an information-theoretic basis for protecting
secret data from differential power attacks. In IMA International Conference on Cryptography and
Coding (pp. 44-62). Springer, Berlin, Heidelberg.

2Goubin, L., & Martinelli, A. (2011, September). Protecting AES with Shamir’s secret sharing
scheme. In International Workshop on Cryptographic Hardware and Embedded Systems (pp. 79-94).
Springer, Berlin, Heidelberg.

3Balasch, J., Faust, S., Gierlichs, B., & Verbauwhede, I. (2012, December). Theory and practice of
a leakage resilient masking scheme. In International Conference on the Theory and Application of
Cryptology and Information Security (pp. 758-775). Springer, Berlin, Heidelberg.

15 / 80



Masking – more methods in hardware implementations

• Masking buses1

• Boolean masking with DLP2

• Random precharging3

1Benini, L., Galati, A., Macii, A., Macii, E., & Poncino, M. (2003, August). Energy-efficient data
scrambling on memory-processor interfaces. In Proceedings of the 2003 International Symposium on
Low Power Electronics and Design, 2003. ISLPED’03. (pp. 26-29). IEEE.

2Popp, T., & Mangard, S. (2005, August). Masked dual-rail pre-charge logic: DPA-resistance
without routing constraints. In International Workshop on Cryptographic Hardware and Embedded
Systems (pp. 172-186). Springer, Berlin, Heidelberg.

3Bucci, M., Guglielmo, M., Luzzi, R., & Trifiletti, A. (2004, September). A power consumption
randomization countermeasure for DPA-resistant cryptographic processors. In International Workshop
on Power and Timing Modeling, Optimization and Simulation (pp. 481-490). Springer, Berlin,
Heidelberg.

16 / 80



SCA countermeasures

• Introduction

• Square and multiply-always

• Blinding for RSA

• Masking for PRESENT

17 / 80



Motivation

• We have seen an SPA attack on RSA implementations that exploit the part of the
square and multiply algorithm that multiplication is carried out only when the
secret key bit is 1.

• A natural countermeasure is that we always compute multiplication no matter
what the value of the secret key bit.

• Such an algorithm is called square and multiply-always algorithm

18 / 80



Recall – RSA

Definition (RSA)

Let n = pq, where p, q are distinct prime numbers. Let P = C = Zn,
K = Z∗

φ(n) − { 1 }. For any e ∈ K, define encryption

Ee : Zn → Zn, m 7→ me mod n,

and the corresponding decryption

Dd : Zn → Zn, c 7→ cd mod n,

where d = e−1 mod φ(n). The cryptosystem (P,C,K,E,D), where
E = { Ee : e ∈ K }, D = {Dd : d ∈ K }, is called RSA.

• φ(n) = (p− 1)(q − 1)

• Public key: n, e, RSA modulus, encryption exponent

• Private key: d, decryption exponent
19 / 80



RSA – Example

Example

p = 3, q = 5, n = 15, φ(n) = 2× 4 = 8

• From Z∗
8 = { 1, 3, 5, 7 }, choose public key e = 3.

• By the extended Euclidean algorithm

8 = 3× 2 + 2, 3 = 2× 1 + 1 =⇒ 1 = 3− 3× 1 = 3− (8− 3× 2) = −8 + 3× 3.

The private key d = 3−1 mod 8 = 3.

• Suppose Alice would like to send plaintext m = 2 to Bob. Alice computes

c =?

• After receiving the ciphertext c from Alice, Bob computes:

m =? 20 / 80



RSA – Example

Example

p = 3, q = 5, n = 15, φ(n) = 2× 4 = 8, e = 3, d = 3

• Suppose Alice would like to send plaintext m = 2 to Bob, using Bob’s public key
n = 15, e = 3. Alice computes

c = me mod n = 23 mod 15 = 8 mod 15.

• After receiving the ciphertext c from Alice, Bob computes the plaintext using his
private key

m = cd mod n = 83 mod 15 = 512 mod 15 = 2 mod 15.

21 / 80



Square and multiply algorithm

• Let n ≥ 2 be an integer, d ∈ Zφ(n), a ∈ Zn

• Binary representation of d = dℓd−1 . . . d2d1d0, where di = 0, 1 and

d =

ℓd−1∑
i=0

di2
i,

• Then we have

ad = a
∑ℓd−1

i=0 di2
i
=

ℓd−1∏
i=0

(a2
i
)di =

∏
0≤i<ℓd,di=1

a2
i
.

• Thus, to compute ad mod n, we can
• First compute a2

i

for 0 ≤ i < ℓd
• Then ad is a product of a2

i

for which di = 1

22 / 80



Square and multiply algorithms

Algorithm 1: Right-to-left

Input: n, a, d// n ∈ Z, n ≥ 2; a ∈ Zn;

d ∈ Zφ(n) has bit length ℓd

Output: ad mod n
1 result = 1, t = a
2 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

3 if di = 1 then
// mutiply by a2i

4 result = result ∗ t mod n// ad =∏
0≤i<ℓd,di=1

a2i

// t = a2i+1

5 t = t ∗ t mod n

6 return result

Algorithm 2: Left-to-right

Input: n, a, d// n ∈ Z, n ≥ 2; a ∈ Zn;

d ∈ Zφ(n)

Output: ad mod n
1 t = 1
2 for i = ℓd − 1, i ≥ 0, i−− do
3 t = t ∗ t mod n

// ith bit of d is 1

4 if di = 1 then
5 t = a ∗ t mod n

6 return t

23 / 80



Right-to-left square and multiply-always

Input: n, a, d// n ∈ Z, n ≥ 2; a ∈ Zn;

d ∈ Zφ(n) has bit length ℓd

Output: ad mod n
1 result = 1, t = a
2 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

3 if di = 1 then
// mutiply by a2i

4 result = result ∗ t mod n// ad =∏
0≤i<ℓd,di=1

a2i

// t = a2i+1

5 t = t ∗ t mod n

6 return result

Algorithm 3: Square and multiply-always

Input: n, a, d
Output: ad mod n

1 result = 1, t = a
2 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

3 if di = 1 then

// mutiply by a2i

4 result = result ∗ t mod n

5 else
// compute multiplication and

discard the result

6 tmp = result ∗ t mod n

// t = a2i+1

7 t = t ∗ t mod n

8 return result
24 / 80



Left-to-right square and multiply-always

Input: n, a, d// n ∈ Z, n ≥ 2; a ∈ Zn;

d ∈ Zφ(n) has bit length ℓd

Output: ad mod n
1 t = 1
2 for i = ℓd − 1, i ≥ 0, i−− do
3 t = t ∗ t mod n

// ith bit of d is 1

4 if di = 1 then
5 t = a ∗ t mod n

6 return t

Algorithm 4: Square and multiply-always

Input: n, a, d
Output: ad mod n

1 t = 1
2 for i = ℓd − 1, i ≥ 0, i−− do
3 t = t ∗ t mod n

// ith bit of d is 1

4 if di = 1 then
5 t = a ∗ t mod n

6 else
// ith bit of d is 0, compute

multiplication and discard the

result

7 tmp = a ∗ t mod n

8 return t

25 / 80



SPA on left-to-right square and multiply algorithm
For our experiment, we have set

p = 29, q = 41, n = 1189, φ(n) = 1120, e = 3, d = 747

Algorithm 5: Left-to-right square and multiply algorithm for computing modular
exponentiation with parameters from above.

Input: a// a ∈ Z1189

Output: a747 mod 1189
1 n = 1189
2 dbin = [1, 1, 0, 1, 0, 1, 1, 1, 0, 1]// binary representation of d = 747, d0 = 1, d1 = 1

3 ℓd = length of dbin// bit length of d

4 t = 1
5 for i = ℓd − 1, i ≥ 0, i−− do
6 t = t ∗ t mod n

// ith bit of d is 1

7 if di = 1 then
8 t = a ∗ t mod n

9 return t
26 / 80



SPA on left-to-right square and multiply algorithm

1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800

−0.2

−0.1

0

0.1

0.2

Time sample

L
ea
ka
ge

Figure: Green patterns (single peak cluster) → di = 0; blue patterns (multiple peak clusters)
→ di = 1

We can then read out the value of bits di (i = ℓd − 1, . . . , 0, 1)
27 / 80



SPA on left-to-right square and multiply algorithm

1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800

−0.2

−0.1

0

0.1

0.2

Time sample

L
ea
ka
ge

We can then read out the value of bits di (i = ℓd − 1, . . . , 0, 1):

1 0 1 1 1 0 1 0 1 1.

Finally, we recover the secret key

d = 10111010112 = 747.
28 / 80



Implementation with countermeasure

p = 29, q = 41, n = 1189, φ(n) = 1120, e = 3, d = 747

Algorithm 6: Left-to-right square and multiply-always algorithm.

Input: a// a ∈ Z1189

Output: a747 mod 1189
1 n = 1189
2 dbin = [1, 1, 0, 1, 0, 1, 1, 1, 0, 1]// binary representation of d = 747, d0 = 1, d1 = 1

3 ℓd = length of dbin// bit length of d

4 t = 1
5 for i = ℓd − 1, i ≥ 0, i−− do
6 t = t ∗ t mod n
7 if di = 1 then
8 t = a ∗ t mod n

9 else
// ith bit of d is 0, compute multiplication and discard the result

10 tmp = a ∗ t mod n

11 return t 29 / 80



The power trace

1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800
−0.3

−0.2

−0.1

0

0.1

0.2

Time sample

L
ea
ka
g
e

Figure: One trace corresponding to the computation of left-to-right square and multiply-always
algorithm. We can see ten similar patterns. But in this case, all of them have more than one
peak cluster.

30 / 80



Comparison

1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800

−0.2

−0.1

0

0.1

0.2

Time sample

L
ea
ka
ge

1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800
−0.3

−0.2

−0.1

0

0.1

0.2

Time sample

L
ea
ka
ge

31 / 80



SCA countermeasures

• Introduction

• Square and multiply-always

• Blinding for RSA

• Masking for PRESENT

32 / 80



Some history

• The application of arithmetic masks in the context of public cryptosystems is
called blinding

• First suggested by Kocher1

• Formalized by J.-S. Coron2

• There is also a patent related to blinding methods3

1Kocher, P. C. (1996, August). Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Annual International Cryptology Conference (pp. 104-113). Springer, Berlin,
Heidelberg.

2Coron, J. S. (1999, August). Resistance against differential power analysis for elliptic curve
cryptosystems. In International workshop on cryptographic hardware and embedded systems (pp.
292-302). Springer, Berlin, Heidelberg.

3Kocher, P. C., & Jaffe, J. M. (2001). U.S. Patent No. 6,298,442. Washington, DC: U.S. Patent
and Trademark Office.

33 / 80



Notations
• Let p, q be two distinct odd primes, n = pq be the RSA modulus

• d ∈ Z∗
φ(n): the private key for RSA

• e = d−1 mod φ(n): public key for RSA

• The SPA attack we have discussed exploits leakages during the computation of

ad mod n

for some a ∈ Zn.

• The attack can be during the RSA signature signing process or RSA decryption.

• DPA attacks can also be applied to RSA implementations, e.g. DPA on
left-to-right square and multiply algorithm with Montgomery’s method for
modular multiplication1

1Amiel, F., Feix, B., & Villegas, K. (2007). Power analysis for secret recovering and reverse
engineering of public key algorithms. In Selected Areas in Cryptography: 14th International Workshop,
SAC 2007, Ottawa, Canada, August 16-17, 2007, Revised Selected Papers 14 (pp. 110-125). Springer
Berlin Heidelberg.

34 / 80



Blinding

• Exponent blinding, message blinding, and modulus blinding

• Mainly against DPA attacks

• It is recommended to blind the secret values during the computation.

• It is also required that the masks and blinded values should be updated frequently,
or even during the computations.

• In this case, it will be difficult for the attacker to combine whatever partial
information obtained from the leakages of the previously blinded value and the
newly leaked information.

• Berzati, A., Canovas-Dumas, C., & Goubin, L. (2010, August). Public key
perturbation of randomized RSA implementations. In International Workshop on
Cryptographic Hardware and Embedded Systems (pp. 306-319). Springer, Berlin,
Heidelberg.

• Kocher, P., Jaffe, J., Jun, B., & Rohatgi, P. (2011). Introduction to differential
power analysis. Journal of Cryptographic Engineering, 1(1), 5-27.

35 / 80



Exponent blinding

• Generate a random number λ ∈ [0, 2ℓ − 1]

• Typically, for RSA modulus of bit length 1024, we take ℓ = 20 or 30 to guarantee
a reasonable overhead

• Instead of computing
ad mod n,

• We compute
ad+λφ(n) mod n.

36 / 80



Exponent blinding

Theorem (Fermat’s Little Theorem)

Let p be a prime. For any a ∈ Z, if p ∤ a, then ap−1 ≡ 1 mod p.

Example

• Let p = 3. 22 = 4 ≡ 1 mod 3.

• Let p = 5. 24 = 16 ≡ 1 mod 5.

37 / 80



Exponent blinding

Corollary

Let p be a prime. Then for any a, b, c ∈ Z such that b ≡ c mod (p− 1), we have

ab ≡ ac mod p, in particular, ab ≡ ab mod (p−1) mod p.

Proof.

By Fermat’s Little Theorem,

ap−1 ≡
{
1 mod p if p ∤ a
0 mod p otherwise

.

Since b ≡ c mod (p− 1), b− c = (p− 1)k for some k ∈ Z. And

ab ≡ ac+(p−1)k ≡ aca(p−1)k ≡
{
ac mod p if p ∤ a
0 mod p otherwise

≡ ac mod p.

38 / 80



Exponent blinding

Corollary

Let p and q be two distinct primes and n = pq. For any a, b ∈ Z, we have

ab ≡ ab mod φ(n) mod n.

Proof.

Since φ(n) = (p− 1)(q − 1),

b mod φ(n) ≡ b mod (p− 1), b mod φ(n) ≡ b mod (q − 1).

By the previous corollary,

ab ≡ ab mod φ(n) mod p, ab ≡ ab mod φ(n) mod q.

By Chinese Remainder Theorem,

ab ≡ ab mod φ(n) mod n.
39 / 80



Exponent blinding

• Instead of computing
ad mod n,

• We compute
ad+λφ(n) mod n.

Corollary

Let p and q be two distinct primes and n = pq. For any a, b ∈ Z, we have

ab ≡ ab mod φ(n) mod n.

d+ λφ(n) mod ≡ d mod φ(n)

40 / 80



Example for exponent blinding

Example

p = 3, q = 5, n = 15, φ(n) = 8, e = 3, d = 3

Take a = 8 and λ = 2.
ad mod n = 83 mod 15 = 2.

With the countermeasure, we have

ad+λφ(n) mod n =?

41 / 80



Example for exponent blinding

Example

p = 3, q = 5, n = 15, φ(n) = 8, e = 3, d = 3

Take a = 8 and λ = 2.
ad mod n = 83 mod 15 = 2.

With the countermeasure, we have

ad+λφ(n) mod n = 83+2×8 mod 15 = 819 mod 15 = 8× (82)9 mod 15

= 8× 49 mod 15 = 8× 4× (42)4 mod 15 = 32 mod 15 = 2.

42 / 80



Effectiveness against our SPA attack

• With one decryption computation, even if we recover the bits of the exponent, it
will be d+ a random number

• But if we attack two decryption computations, we get

d+ λ1φ(n), d+ λ2φ(n)

then we will have the value of φ(n)

• Effective against certain DPA attacks

43 / 80



Message blinding

Take a random number λ such that gcd(λ, n) = 1, compute

a1 = λe mod n, a2 = λ−1 mod n.

And to get
ad mod n,

we calculate
(((aa1)

d mod n)a2) mod n.

44 / 80



Recall corollary

We just proved the following corollary

Corollary

Let p and q be two distinct primes and n = pq. For any a, b ∈ Z, we have

ab ≡ ab mod φ(n) mod n.

Example

p = 5, q = 3, n = 15, a = 2, b = 6, φ(n) = 8

Then
210 ≡ 210 mod 8 ≡ 22 ≡ 4 mod 15.

We can verify that indeed
210 ≡ 1024 ≡ 4 mod 5.

45 / 80



Message blinding

• Since
ed ≡ 1 mod φ(n),

by the corollary,
λed ≡ λ mod n =⇒ λed−1 mod n = 1.

• Then

(((aa1)
d mod n)a2) mod n = (((aλe mod n)d mod n)(λ−1 mod n)) mod n

= ((ad mod n)(λed−1 mod n)) mod n = ad mod n.

• The first mask a1 randomizes the input of the computation

• The second mask a2 corrects the output to the expected result.

46 / 80



Example for message blinding

a1 = λe mod n, a2 = λ−1 mod n, ad mod n = (((aa1)
d mod n)a2) mod n.

Example

p = 3, q = 5, n = 15, e = 3, d = 3, a = 8, φ(n) = 8

Take λ = 4, which is coprime with n. Then

a1 =?,

47 / 80



Example for message blinding

a1 = λe mod n, a2 = λ−1 mod n, ad mod n = (((aa1)
d mod n)a2) mod n.

Example

p = 3, q = 5, n = 15, e = 3, d = 3, a = 8, φ(n) = 8

Take λ = 4, which is coprime with n. Then

a1 = λe mod n = 43 mod 15 = 64 mod 15 = 4.

By the extended Euclidean algorithm

a2 =?

48 / 80



Example for message blinding

a1 = λe mod n, a2 = λ−1 mod n, ad mod n = (((aa1)
d mod n)a2) mod n.

Example

p = 3, q = 5, n = 15, e = 3, d = 3, a = 8, φ(n) = 8

Take λ = 4, which is coprime with n. Then a1 = 4. By the extended Euclidean
algorithm

15 = 4× 3 + 3, 4 = 3 + 1 =⇒ 1 = 4− 3 = 4− (15− 4× 3) = 4× 4− 15

and
a2 = λ−1 mod n = 4.

Finally,
(((aa1)

d mod n)a2) mod n =?

49 / 80



Example for message blinding

a1 = λe mod n, a2 = λ−1 mod n, ad mod n = (((aa1)
d mod n)a2) mod n.

Example

p = 3, q = 5, n = 15, e = 3, d = 3, a = 8, φ(n) = 8

Take λ = 4, which is coprime with n. Then

a1 = 4, a2 = 4.

(((aa1)
d mod n)a2) mod n = (((8× 4)3 mod 15)× 4) mod 15

= ((23 mod 15)× 4) mod 15 = 32 mod 15 = 2.

We can compute

ad mod n = 83 mod 15 = 512 mod 15 = 2.
50 / 80



Modulus blinding

Generate a random number λ and compute

(ad mod (λn)) mod n.

It is easy to see that
(ad mod (λn)) mod n = ad mod n.

51 / 80



Example for modulus blinding

Example

p = 3, q = 5, n = 15, e = 3, d = 3, a = 8, φ(n) = 8

Take λ = 4, then
(ad mod (λn)) mod n =?

52 / 80



Example for modulus blinding

Example

p = 3, q = 5, n = 15, e = 3, d = 3, a = 8, φ(n) = 8

Take λ = 4, then

(ad mod (λn)) mod n = (83 mod (4× 15)) mod 15

= (512 mod 60) mod 15 = 32 mod 15 = 2.

We can check that
ad mod n = 2.

53 / 80



Effectiveness on DPA attacks

• DPA attacks that rely on knowing certain intermediate values related to a cannot
be carried out when a or n is randomized

54 / 80



Attacks on Countermeasures

• Fouque, P. A., & Valette, F. (2003, September). The doubling attack–why
upwards is better than downwards. In International Workshop on Cryptographic
Hardware and Embedded Systems (pp. 269-280). Springer, Berlin, Heidelberg.

• Recover a blinded secret exponent by SPA
• Only works for left to right implementation for square and multiply algorithm

• Witteman, M. F., van Woudenberg, J. G., & Menarini, F. (2011, February).
Defeating RSA multiply-always and message blinding countermeasures. In
Cryptographers’ Track at the RSA Conference (pp. 77-88). Springer, Berlin,
Heidelberg.

• DPA attack

• Fouque, P. A., Réal, D., Valette, F., & Drissi, M. (2008, August). The carry
leakage on the randomized exponent countermeasure. In International Workshop
on Cryptographic Hardware and Embedded Systems (pp. 198-213). Springer,
Berlin, Heidelberg.

• Exploit leakage during the computation of the random exponent

55 / 80



SCA countermeasures

• Introduction

• Square and multiply-always

• Blinding for RSA

• Masking for PRESENT

56 / 80



Boolean masking

• Proven to be secure given that the source of randomness is truly random1

• The cryptographic algorithm needs to be changed a bit for us to carry out
computations with the masked intermediate values and keep track of all the masks

• At the end of the encryption, we can remove the masks to output the original
ciphertext

1Prouff, E., & Rivain, M. (2013, May). Masking against side-channel attacks: A formal security
proof. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques (pp. 142-159). Springer, Berlin, Heidelberg.

57 / 80



Masking scheme

• A masking scheme specifies how masks are applied to the plaintext and
intermediate values, as well as how they are removed from the ciphertext.

• There are a few principles we follow for a masking scheme design
• All intermediate values should be masked during the computation. In particular, we

would apply masks to the plaintext (and the key).
• We assume the attacker does not have knowledge of the masks – otherwise, the

attacker can carry out a DPA attack by making hypotheses about the key values.
• When some intermediate values are to be XOR-ed with each other (e.g. in AES

MixClomns operation), different masks should be applied to each of them.
• Each encryption has a different set of randomly generated masks.

• For any function f , the mask that is applied to an input of f is called the input
mask of f .

• The corresponding mask for the output is called the output mask for f .

58 / 80



Linear function

Definition

Let f : Fm1
2 → Fm2

2 be a function, where m1 and m2 are positive integers. f is said to
be linear (w.r.t. ⊕) if for any x,y ∈ Fm1

2 , we have

f(x⊕ y) = f(x)⊕ f(y).

f is non-linear if it is not linear.

Example

• AddRoundKey operation in AES round function is ?

• DES Sboxes ?

• pLayer in PRESENT round function is ?

59 / 80



Linear function

Definition

Let f : Fm1
2 → Fm2

2 be a function, where m1 and m2 are positive integers. f is said to
be linear (w.r.t. ⊕) if for any x,y ∈ Fm1

2 , we have

f(x⊕ y) = f(x)⊕ f(y).

f is non-linear if it is not linear.

Example

• AddRoundKey operation in AES round function is a linear function. In fact,
bitwise XOR with a round key is a linear function in general.

• DES Sboxes are non-linear functions. Any Sbox proposed so far for symmetric
block ciphers is non-linear.

• pLayer in PRESENT round function is linear.

60 / 80



Boolean masking for linear functions

• With Boolean masking, it is easy to keep track of the masks with linear operations.

• Let f be a linear operation and take any input of f , v, with a corresponding mask
m, we have

f(v ⊕m) = f(v)⊕ f(m).

• When the input mask is m, the output mask is given by f(m).

• One of the main challenges in designing a masking scheme is to find ways to keep
track of masks for non-linear operations.

61 / 80



PRESENT

• Proposed in 2007 as a symmetric block cipher optimized for hardware
implementation.

• Block length: 64

• Number of rounds: 31

• Key length: 80 or 128.

62 / 80



PRESENT – encryption

• Round function: addRoundKey, sBoxLayer,
and pLayer.

• After 31 rounds, addRoundKey is applied
again before the ciphertext output

Remark

For PRESENT specification, we consider the
0th bit of a value as the rightmost bit in its
binary representation. For example, the 0th bit
of 3 = 0112 is 1, the 1st bit is 1 and the 2nd
bit is 0.

Plaintext

addRoundKey

sBoxLayer

pLayer

31×

addRoundKey

Ciphertext 63 / 80



PRESENT – sBoxLayer
• sBoxLayer applies sixteen 4−bit Sboxes to each nibble of the current cipher state.
• For example, if the input is 0, the output is C.

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

Ki

Ki+1

64 / 80



PRESENT – pLayer

pLayer permutes the 64 bits using the following formula:

pLayer(j) =

⌊
j

4

⌋
+ (j mod 4)× 16,

where j denotes the bit position.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

65 / 80



Masking PRESENT Sbox

• Compute a lookup table T1 such that for any v ∈ F4
2, any input mask min and its

corresponding output mask mout for PRESENT Sbox,

T1[v ⊕min,min] = SB(v)⊕mout.

• Table T2 helps us keep track of the masks

T2[min] = mout, min = 0, 1, . . . , F.

• Do not need to generate a masked Sbox lookup table whenever the input mask for
the Sbox changes.

• The size of T1 is 8× 4, and the storage required is 28 × 4 = 210 bits, or 27 bytes.

• The table T2 requires 24 × 4 = 64 bits of memory.

66 / 80



Masked cipher state

• Since the pLayer operation is linear, we can simply apply pLayer to the masks to
keep track of their changes.

• We represent the intermediate values of PRESENT encryption as

b15, b14, . . . , b1, b0,

where each bj denotes a nibble of the cipher state.

• At the beginning of one encryption, we randomly generate 16 masks, and each is
applied to one nibble of the plaintext.

• Suppose the cipher state at the input of round i is of the following format:

b15 ⊕mi−1
15,in, b14 ⊕mi−1

14,in, . . . , b1 ⊕mi−1
1,in , b0 ⊕mi−1

0,in .

67 / 80



Masked addRoundKey

Suppose the cipher state at the input of round i is of the following format:

b15 ⊕mi−1
15,in, b14 ⊕mi−1

14,in, . . . , b1 ⊕mi−1
1,in , b0 ⊕mi−1

0,in .

• We do not apply masks to the round keys. Consequently, after the addRoundKey
operation, the cipher state will be?

68 / 80



Masked addRoundKey

Suppose the cipher state at the input of round i is of the following format:

b15 ⊕mi−1
15,in, b14 ⊕mi−1

14,in, . . . , b1 ⊕mi−1
1,in , b0 ⊕mi−1

0,in .

• We do not apply masks to the round keys. Consequently, after the addRoundKey
operation, each nibble of the cipher state still has the same mask

b15 ⊕mi−1
15,in, b14 ⊕mi−1

14,in, . . . , b1 ⊕mi−1
1,in , b0 ⊕mi−1

0,in ,

69 / 80



Masked sBoxLayer

Let
mi−1

j,out = T2
[
mi−1

j,in

]
, j = 0, 1, . . . , 15,

denote the output mask for PRESENT Sbox corresponding to the input mask mi−1
j,in .

Then after sBoxLayer, the cipher state is ?

70 / 80



Masked sBoxLayer

Let
mi−1

j,out = T2
[
mi−1

j,in

]
, j = 0, 1, . . . , 15,

denote the output mask for PRESENT Sbox corresponding to the input mask mi−1
j,in .

Then after sBoxLayer, the cipher state is as follows:

b15 ⊕mi−1
15,out, b14 ⊕mi−1

14,out, . . . , b1 ⊕mi−1
1,out, b0 ⊕mi−1

0,out,

71 / 80



Masked pLayer

• We apply the pLayer operation to both the cipher state and the mask for the
whole cipher state, i.e. the string obtained by concatenating all 16 masks mi−1

j,out:

mi−1
15,out,m

i−1
14,out, . . . ,m

i−1
1,out,m

i−1
0,out.

• After pLayer, masks for each nibble of the cipher state will be changed and the
cipher state will become:

b15 ⊕mi
15,in, b14 ⊕mi

14,in, . . . , b1 ⊕mi
1,in, b0 ⊕mi

0,in.

• Where

mi
15,in,m

i
14,in, . . . ,m

i
1,in,m

i
0,in = pLayer(mi−1

15,out,m
i−1
14,out, . . . ,m

i−1
1,out,m

i−1
0,out).

• Consequently, mi
j,in will be the input mask for the jth Sbox in round i+ 1.

72 / 80



Final addRoundKey

• Finally, after 31 rounds, we have another addRoundKey operation, which does not
change the masks of the cipher state.

• The cipher state will be

b15 ⊕m31
15,in, b14 ⊕m31

14,in, . . . , b1 ⊕m31
1,in, b0 ⊕m31

0,in.

• To get the unmasked ciphertext, we remove the masks by XORing the cipher state
with

m31
15,in,m

31
14,in, . . . ,m

31
1,in,m

31
0,in.

73 / 80



Algorithmic description
• Input: p, T1, T2, Ki (i = 1, 2, . . . , 32)
• Output: ciphertext

1 randomly generate 16 masks m0,m1, . . . ,m15

2 array of size 16 state = p⊕m15,m14, . . . ,m1,m0// mask the jth nibble of the

plaintext with mj, each entry of the array is one masked nibble

3 array of size 16 masks = m15,m14, . . . ,m1,m0

4 for i = 0, i < 31, i++ do
5 state = addRoundKey(state, Ki)
6 for j = 0, j < 16, j ++ do

// for each nibble

7 state[j] = T1[state[j],masks[j]]// masked Sbox computation

8 masks[j] = T2[masks[j]]// record the output masks of Sbox computation

9 state = pLayer(state)// apply pLayer to the cipher state

10 masks = pLayer(masks)// apply pLayer to the masks

11 state = addRoundKey(state, Ki)
12 state = state ⊕ masks// remove mask from the ciphertext

13 return state
74 / 80



Design of T2

• It is suggested that T2 be designed such that all possible values of min ⊕mout

appear.

• For example, one possible choice of T2 is as follows

min,SB 0 1 2 3 4 5 6 7 8 9 A B C D E F

mout,SB = T2[min,SB] E 4 F 9 0 3 D 5 7 8 A 2 B 1 6 C

min,SB ⊕mout,SB E 5 D A 4 6 B 2 F 1 0 9 7 C 8 3

Sasdrich, P., Bock, R., & Moradi, A. (2018). Threshold Implementation in Software: Case Study of

PRESENT. In Constructive Side-Channel Analysis and Secure Design: 9th International Workshop,

COSADE 2018, Singapore, April 23–24, 2018, Proceedings 9 (pp. 227-244). Springer International

Publishing.

75 / 80



Higher order DPA

• In fact, in general, we have the following observations:

• Let f be any function and let min,f (resp. mout,f ) denote its input mask (resp.
output mask).

• For any input x of f , we have

(x⊕ f(x))⊕ (min,f ⊕mout,f ) = (x⊕min,f )⊕ (f(x)⊕mout,f ).

• Thus, when choosing the input mask min,f and output mask mout,f of f , we need
to ensure that all possible values of min,f ⊕mout,f appear.

• Otherwise, the distribution induced by (x⊕ f(x))⊕ (min,f ⊕mout,f ) will not be
uniform, and the signal corresponding to the value of x⊕ f(x) cannot be properly
concealed, making it vulnerable to DPA attacks.

• Second-order DPA

76 / 80



Higer-order masking

• The masked value vm is related to the original value v and the mask m through a
binary operation vm = v ·m.

• In the language of secret sharing1, we can say that the secret value v is
represented by two shares, vm and m.

• Given only one of the two shares, no information about v can be revealed.

• Instead of two shares (or one mask), we can also use several shares, resulting in a
higher-order masking.

• In particular, a dth order masking apply d− 1 masks to the secret value v.

1Beimel, A. (2011, May). Secret-sharing schemes: A survey. In International conference on coding
and cryptology (pp. 11-46). Berlin, Heidelberg: Springer Berlin Heidelberg.

77 / 80



Higher order DPA

• The DPA attack we have discussed uses one intermediate value – such a DPA
attack is also called first-order DPA.

• When information leakage from several intermediate values (e.g. by combining
leakages from a few time samples) is analyzed, we have a higher-order DPA1

• The number of traces needed for a higher-order DPA to succeed is exponential in
the standard deviation of the noise. The exponent is given by d+ 1, where d+ 1
is the order of the masking (i.e. d masks are applied)2

1Chari, S., Jutla, C. S., Rao, J. R., & Rohatgi, P. (1999, August). Towards sound approaches to
counteract power-analysis attacks. In Annual International Cryptology Conference (pp. 398-412).
Springer, Berlin, Heidelberg.

2Prouff, E., & Rivain, M. (2013, May). Masking against side-channel attacks: A formal security
proof. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques (pp. 142-159). Springer, Berlin, Heidelberg.

78 / 80



Security of Boolean masking

• Let us take a secret value v of bit length at most mv.

• The masked value is given by v ⊕m, where m ∈ Fmv
2 .

• We can consider the value of m as a discrete random variable.

• In case the distribution induced by this random variable is uniform on Fmv
2 , the

distribution induced by the value of v ⊕m is also uniform on Fmv
2 regardless of

the value of v.

• Thus, we expect the leakage to be independent of v when only first-order DPA is
carried out.

• For Boolean masking schemes with one mask, security proofs have been given1

• Security proofs for higher order masking is also given2

1Blömer, J., Guajardo, J., & Krummel, V. (2004, August). Provably secure masking of AES. In
International workshop on selected areas in cryptography (pp. 69-83). Springer, Berlin, Heidelberg.

2Rivain, M., & Prouff, E. (2010, August). Provably secure higher-order masking of AES. In
International Workshop on Cryptographic Hardware and Embedded Systems (pp. 413-427). Springer,
Berlin, Heidelberg.

79 / 80



Further Reading
• Masking was first proposed by Goubin and Patarin1 and Chari et al.2

independently

• Hardware implementations of masking are vulnerable to DPA attacks due to
glitches in CMOS circuits3

• Threshold Implementation, which is based on multiparty computation4, was
introduced as a proper way to realize Boolean masking in hardware platforms5

1Goubin, L., & Patarin, J. (1999, August). DES and differential power analysis the “Duplication”
method. In International Workshop on Cryptographic Hardware and Embedded Systems (pp.
158-172). Springer, Berlin, Heidelberg.

2Chari, S., Jutla, C. S., Rao, J. R., & Rohatgi, P. (1999, August). Towards sound approaches to
counteract power-analysis attacks. In Annual International Cryptology Conference (pp. 398-412).
Springer, Berlin, Heidelberg.

3Mangard, S., Popp, T., & Gammel, B. M. (2005, February). Side-channel leakage of masked
CMOS gates. In Cryptographers’ Track at the RSA Conference. Springer, Berlin, Heidelberg.

4Cramer, R., & Damg̊ard, I. (2005). Multiparty computation, an introduction. In Contemporary
cryptology (pp. 41-87). Birkhäuser Basel.

5Nikova, S., Rijmen, V., & Schläffer, M. (2011). Secure hardware implementation of nonlinear
functions in the presence of glitches. Journal of Cryptology, 24(2), 292-321.

80 / 80


	Introduction
	Square and multiply-always
	Blinding for RSA
	Masking for PRESENT

