
Cryptography and Embedded System Security
CRAESS I

Xiaolu Hou

FIIT, STU
xiaolu.hou @ stuba.sk

1 / 87



Course Outline

• Abstract algebra and number theory

• Introduction to cryptography

• Symmetric block ciphers and their implementations

• RSA, RSA signatures, and their implementations

• Probability theory and introduction to SCA

• SPA and non-profiled DPA

• Profiled DPA

• SCA countermeasures

• FA on RSA and countermeasures

• FA on symmetric block ciphers

• FA countermeasures for symmetric block cipher
• Practical aspects of physical attacks

• Invited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH

2 / 87



Recommended reading

• Textbook
• Sections

• 4.3.2;
• 4.6.1.

3 / 87



Lecture Outline

• Profiled DPA Attack Steps

• Stochastic Leakage Model

• Template-based DPA

• Success Rate and Guessing Entropy

• Further Reading

4 / 87



Non-profiled SCA

• If the attacker does not have access to a similar device, just the target device or
just the measurements coming from the target device, we talk about a
non-profiled SCA.

• In a general scenario, this attack utilizes a set of traces where a fixed secret key is
used to encrypt multiple (random) plaintexts.

5 / 87



Profiled SCA

• If we assume the attacker has access to a clone device of the target device, then
the attacker can carry out a profiled SCA.

• The attack operates in two phases.

• In the profiling phase, the attacker acquires side-channel measurements for known
plaintext/ciphertext and known key pairs.

• This set of data is used to characterize or model the device.

• Then the attacker acquires a few measurements from the target device, usually
identical to the clone device, with known plaintext/ciphertext but the key is secret.

• These measurements from the target device are then tested against the
characterized model from the clone device.

6 / 87



Datasets

There are two datasets that will be analyzed in more detail in this lecture.
Both datasets

• Capture one round of software implementation of PRESENT.

• nop operations before and after PRESENT computation

• Each trace has 3600 time samples

More details on individual datasets:

• Random plaintext dataset: This dataset contains 5000 traces with a fixed round
key 0xFEDCBA0123456789 and a random plaintext for each trace – attack
dataset

• Random dataset: This dataset contains 10000 traces with a random round key
and a random plaintext for each trace – profiling dataset

7 / 87



Profiled DPA

• Profiled DPA Attack Steps

• Stochastic Leakage Model

• Template-based DPA

• Success Rate and Guessing Entropy

• Further Reading

8 / 87



Profiling phase

• Suppose the Random dataset is obtained from a clone device – profiling traces

• The Random plaintext dataset is from the target device – attack traces

• Before the attack, we can analyze Random dataset to obtain more information
about the leakage behavior of the devices – profiling phase.

• The first major step in the profiling phase is to find the POIs – time samples that
will give us more information, or with better signal.

• Instead of computing the sample correlation coefficients for all time samples, we
can just focus on the POIs.

9 / 87



Attacker assumption

• The attacker has the knowledge of the plaintext and the goal is to recover the
very first round key of a symmetric block cipher – for some ciphers, e.g.
PRESENT, this is the first round key; for some ciphers, e.g. AES, this is the
whitening key, which is equal to the master key.

• Similar attack strategies apply if we assume the attacker has the knowledge of the
ciphertext and aims to recover the last round key.
• We also assume the attacker has the knowledge of the detailed implementation so
that the same program can be implemented by the attacker on the clone device.
• This is different from the non-profiled setting where only certain basic knowledge of

the implementation is required – For example, how to interface with the encryption
routine, whether the computation is executed serially or in parallel, or whether some
types of countermeasures are present.

10 / 87



Profiled DPA – step 1

Identify the target cryptographic implementation

• Profiled DPA attacks can be applied to unprotected implementations of any
symmetric block cipher that has been proposed so far.

Example

As a running example, we will look at the computation of PRESENT.

11 / 87



PRESENT – encryption

• Round function: addRoundKey, sBoxLayer,
and pLayer.

• After 31 rounds, addRoundKey is applied
again before the ciphertext output

Remark

For PRESENT specification, we consider the
0th bit of a value as the rightmost bit in its
binary representation. For example, the 0th bit
of 3 = 0112 is 1, the 1st bit is 1 and the 2nd
bit is 0.

Plaintext

addRoundKey

sBoxLayer

pLayer

31×

addRoundKey

Ciphertext 12 / 87



Two rounds of PRESENT

• For our DPA attacks, we will attack the 0th Sbox and try to recover one nibble of
the first round key

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

Ki

Ki+1

13 / 87



Profiled DPA – step 2

Measurement of profiling traces

• We first collect a set of traces for profiling using the clone device with random
plaintexts and random keys.

• Suppose there are in total Mpf profiling traces and each trace contains q time
samples.

Example

• For our illustrations, we will use the Random dataset as profiling traces

• This dataset contains 10000 traces with a random round key and a random
plaintext for each trace.

• Each trace has 3600 time samples

• Then Mpf = 10000, and q = 3600.

14 / 87



Profiled DPA – step 3

Choose the part of the key to recover

• DPA attack is normally carried out in a divide-and-conquer manner.

• We focus on a small part (e.g. a nibble, a byte) of a round key in each attack and
each part of the round key can be recovered independently.

• With the inverse key schedule, one (e.g. AES) or two round keys (e.g. PRESENT,
DES) will reveal the master key

• Let k denote the target part of the key and let Mk denote the number of possible
values of k.

Example

For our attack example, we will focus on the 0th nibble of the first round key for
PRESENT and Mk = 16.

15 / 87



Profiled DPA – step 4
Choose the target intermediate value
• To recover the key, we exploit relationships between leakages and a certain
intermediate value being processed in the DUT.
• The goal is to gain information about this intermediate value, which reveals
information about our chosen part of the key.
• Let v denote the target intermediate value.
• We require that there is a function φ, such that

v = φ(k, p),

where p denotes (part of) the plaintext.

Example

• k: 0th nibble of the first round key

• v: 0th Sbox output of the first round

• p: 0th nibble of the plaintext

v = SBPRESENT(k ⊕ p),
16 / 87



Profiled DPA – step 5

Decide on the target signal

• Before we do further analysis of the profiling traces, we need to choose what
information related to the target intermediate value v we are looking for.

• For example, the Hamming weight of v; or the 0th bit of v

Example

In our running example, we will look at two types of target signals

• The exact value of v

• wt (v), the Hamming weight of v.

17 / 87



Profiled DPA – step 6

Compute SNR and identify the POI

• Compute SNR based on the chosen target signal

• We would like to focus on the time sample where the corresponding SNR is the
highest.

Example

• Signal is given by exact value of v
• POI = 392.

• Signal is given by the Hamming weight of v
• POI = 392.

18 / 87



SNR – exact value

0 392 1,000 2,000 3,000

0

1

2

3

4

Time sample

S
N
R

Figure: The signal is given by the exact value of the 0th Sbox output. POI = 392

19 / 87



SNR – Hamming weight

0 392 1,000 2,000 3,000

0

2

4

6

Time sample

S
N
R

Figure: The signal is given by the Hamming weight of the 0th Sbox output. POI = 392

20 / 87



Profiled DPA – step 7

Measurement of attack traces

• After getting our POI, we are ready to carry out the attack.

• The efficiency and success of the attack are highly dependent on the measurement
devices the attacker has access to.

• Suppose we have taken measurements of our target device with Mp plaintexts.

• For j = 1, . . . ,Mp, let ℓj denote the corresponding power trace. Each trace has q
time samples.

Example

• We will use the Random plaintext dataset as illustrations.
• Each trace has 3600 time samples
• Contains 5000 traces with a fixed round key 0xFEDCBA0123456789 and a random

plaintext for each trace.

• Mp = 5000, q = 3600.

21 / 87



Profiled DPA – step 8

Compute hypothetical target intermediate values

• For each key hypothesis k̂i of k, and each (part of the) plaintext pj , we can
compute a hypothesis for v:

v̂ij = φ(k̂i, pj), i = 1, 2, . . . ,Mk, j = 1, 2, . . . ,Mp.

Example

• With each key hypothesis of k, we have a hypothetical value for v:

v̂ij = SBPRESENT(k̂i ⊕ pj), i = 1, 2, . . . , 16, j = 1, 2, . . . , 5000.

• pj is the 0th nibble of the plaintext corresponding to the attack trace ℓj .

• k̂i = i− 1, i = 1, 2, . . . , 16.

22 / 87



Profiled DPA – step 8
Compute hypothetical target intermediate values

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Example

For our attacks, with each key hypothesis of the 0th nibble of the first round key, we
have a hypothetical value for the 0th Sbox output:

v̂ij = SBPRESENT(k̂i ⊕ pj), i = 1, 2, . . . , 16, j = 1, 2, . . . , 5000.

We set k̂i = i− 1, i = 1, 2, . . . , 16.

• k̂1 = 0, k̂2 = 1.

• For Random plaintext dataset, we have p1 = 9, p2 = C.

• v̂ij =? i = 1, 2, j = 1, 2

23 / 87



Profiled DPA – step 8
Compute hypothetical target intermediate values

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Example

v̂ij = SBPRESENT(k̂i ⊕ pj), i = 1, 2, . . . , 16, j = 1, 2, . . . , 5000.

• k̂1 = 0, k̂2 = 1.

• p1 = 9, p2 = C.

v̂11 = SBPRESENT(k̂1 ⊕ p1) = SBPRESENT(0⊕ 9) = SBPRESENT(9) = E,

v̂12 = SBPRESENT(k̂1 ⊕ p2) = SBPRESENT(0⊕ C) = SBPRESENT(C) = 4,

v̂21 = SBPRESENT(k̂2 ⊕ p1) = SBPRESENT(1⊕ 9) = SBPRESENT(8) = 3,

v̂22 = SBPRESENT(k̂2 ⊕ p2) = SBPRESENT(1⊕ C) = SBPRESENT(D) = 7.
24 / 87



Leakage model
• Assume a value v is being processed in the DUT

• Let noise ∼ N(0, σ2) be a normal random variable with mean 0 and variance σ2.
• Identity leakage model

• The leakage is correlated to v

L(v) = v + noise.

• Hamming weight model
• The leakage will then be correlated to wt (v), the Hamming weight of v1

L(v) = wt (v) + noise.

Example

v = A

• Identity leakage model: L(v) = 10 + noise

• Hamming weight leakage model: L(v) = 2 + noise
1The Hamming weight of vector v ∈ Fm

2 is defined to be the number of 1s in v
25 / 87



Profiled DPA – step 9
Identify the leakage model and compute hypothetical signals
• By our choice of the target signal, we have a corresponding leakage model.
• In our analysis, we will consider the identity leakage model and the Hamming
weight leakage model corresponding to the signal given by v and wt (v)
respectively.
• For each hypothetical target intermediate value, we can compute the hypothetical
signal depending on our leakage model

Hij := L(v̂ij)− noise, i = 1, 2, . . . ,Mk, j = 1, 2, . . . ,Mp.

Example

• With each key hypothesis of k, we have a hypothetical value for v:

v̂ij = SBPRESENT(k̂i ⊕ pj), i = 1, 2, . . . , 16, j = 1, 2, . . . , 5000.

• Hamming weight leakage model: Hij = wt (v̂ij)

• Identity leakage mode: Hij = v̂ij
26 / 87



Recall what we computed last week

Same computations apply here

Example

• Aim to recover the 0th nibble of the first round key for PRESENT encryption,
denoted k

• The target intermediate value is the 0th Sbox output

• Attack traces: Random plaintext dataset– 5000 measurements, the corresponding
0th nibble of plaintext is denoted pj

• With each key hypothesis of k, we have a hypothetical value for v:

v̂ij = SBPRESENT(k̂i ⊕ pj), i = 1, 2, . . . , 16, j = 1, 2, . . . , 5000.

• With a chosen leakage model, we have a hypothetical signal
• Hamming weight leakage model: Hij = wt (v̂ij)
• Identity leakage mode: Hij = v̂ij

27 / 87



Profiled DPA – step 10
Statistical analysis

• For a fixed key hypothesis k̂i, we view the modeled leakage as a random variable
Hi that varies when the plaintext changes.

• LPOI: random variable, leakage at POI

• Then a sample for this pair of random variables (Hi, LPOI) is given by{
(Hij , l

j
POI)

∣∣∣ j = 1, 2, . . . , M̂p

}
,

where ljPOI is the POI-th entry of the attack trace ℓj and 2 ≤ M̂p ≤Mp

• With this sample, we can compute the sample correlation coefficient between Hi

and LPOI for each key hypothesis k̂i (i = 1, 2, . . . ,Mk):

r
M̂p

i,POI :=

∑M̂p

j=1(Hij −Hi)(l
j
POI − lPOI)√∑M̂p

j=1(Hij −Hi)2
√∑M̂p

j=1(l
j
POI − lPOI)2

.

28 / 87



Profiled DPA – identity leakage model

5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

Number of traces

S
am

p
le

co
rr
el
a
ti
on

co
effi

ci
en
t

Figure: POI = 392. Computed with the Random plaintext dataset. The blue line corresponds
to the correct key hypothesis k̂10 = 9.

29 / 87



Profiled DPA – Hamming weight leakage model

5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

Number of traces

S
am

p
le

co
rr
el
a
ti
on

co
effi

ci
en
t

Figure: POI = 392. Computed with the Random plaintext dataset. The blue line corresponds
to the correct key hypothesis k̂10 = 9.

30 / 87



Nonprofiled DPA from last week

0 392 1,000 2,000 3,000
−1

−0.5

0

0.5

1

Time sample

S
am

p
le

co
rr
el
a
ti
on

co
effi

ci
en
t

Figure: Sample correlation coefficients for all 3600 time samples and all 16 key hypotheses.
Computed with the identity leakage model and Random plaintext dataset. The blue line
corresponds to the correct key hypothesis k̂10 = 9. 31 / 87



Observations

• The Hamming weight leakage model is closer to our DUT leakage compared to
the identity leakage model

• A good leakage model is beneficial to our attack.

32 / 87



Profiled DPA

• Profiled DPA Attack Steps

• Stochastic Leakage Model

• Template-based DPA

• Success Rate and Guessing Entropy

• Further Reading

33 / 87



Stochastic leakage model

• To fully utilize the cloned device in the profiled setting, we can further
characterize the leakages instead of just identifying the POI.

• Stochastic leakage model: assumes each bit of the target intermediate value
v = vmv−1vmv−2 . . . v1v0 has a different leakage.

L(v) =

mv−1∑
s=0

αsvs + noise,

• noise ∼ N(0, σ2) denotes the noise with variance σ2

• αs (s = 0, 1, . . . ,mv − 1) are real numbers – coefficients of the stochastic leakage
model

34 / 87



Attack with stochastic leakage model

• The attack with stochastic leakage model follows the same steps as described
before.

• The only difference is in Step 9, where we need extra effort to find our leakage
model by profiling.

• We note that since the stochastic leakage model assumes each value of v has
different signals, to identify the POI, we will choose the target signal to be the
exact value of v in Step 5.

• Then using the leakages at the POI we will find estimations for αs values.

• Those estimated values together with

L(v) =

mv−1∑
s=0

αsvs + noise,

provide us with hypothetical signals in Step 9.

35 / 87



Approximating αs values

• We only focus on the leakage at the POI from each profiling trace.

• Let ℓpf be the vector of leakages at t =POI from all Mpf profiling traces.

• We will find approximations of αs with ordinary least square method from linear
regression.

Example

• Same attack goal and target intermediate value as before

• POI = 392 which corresponds to the signal being the exact value of v.

• We will use Random dataset as our profiling traces, hence Mpf = 10000.

36 / 87



Approximating αs values
• For the jth profiling trace, let

vpf
j = vpfj(mv−1) . . . v

pf
j1 v

pf
j0 , j = 1, 2, . . . ,Mpf

be the corresponding target intermediate value.

• Compute matrix Mv

Mv :=


vpf10 vpf11 . . . vpf1(mv−1)

vpf20 vpf21 . . . vpf2(mv−1)
...

...
. . .

...

vpfMpf0
vpfMpf1

. . . vpfMpf (mv−1)


• The estimated values α̂s for αs are given by(

α̂0 α̂1 . . . α̂mv−1

)⊤
=
(
M⊤

v Mv

)−1
M⊤

v ℓ⊤pf .

37 / 87



Example for matrix Mv

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table: PRESENT Sbox.

Example

Take POI = 392. The first trace in Random dataset corresponds to the 0th nibble of
the plaintext= 4 and the 0th nibble of the first round key= 7. Thus the intermediate
value for the first trace is given by:

vpf
1 = SBPRESENT(4⊕ 7) = SBPRESENT(3) = B = 10112.

38 / 87



Example for matrix Mv
• For the jth profiling trace, let

vpf
j = vpfj(mv−1) . . . v

pf
j1 v

pf
j0 , j = 1, 2, . . . ,Mpf

be the corresponding target intermediate value.

Mv :=


vpf10 vpf11 . . . vpf1(mv−1)

vpf20 vpf21 . . . vpf2(mv−1)
...

...
. . .

...

vpfMpf0
vpfMpf1

. . . vpfMpf (mv−1)


Example

Take POI = 392. The first trace in Random dataset corresponds to the intermediate
value

vpf
1 = SBPRESENT(4⊕ 7) = SBPRESENT(3) = B = 10112.

And the first row of our matrix Mv is given by ?

39 / 87



Example for matrix Mv

• For the jth profiling trace, let

vpf
j = vpfj(mv−1) . . . v

pf
j1 v

pf
j0 , j = 1, 2, . . . ,Mpf

be the corresponding target intermediate value.

Mv :=


vpf10 vpf11 . . . vpf1(mv−1)

vpf20 vpf21 . . . vpf2(mv−1)
...

...
. . .

...

vpfMpf0
vpfMpf1

. . . vpfMpf (mv−1)


Example

Take POI = 392. The first trace in Random dataset corresponds to the intermediate
value B = 10112 And the first row of our matrix Mv is given by(

1 1 0 1
)
.

40 / 87



Profiling results
• Stochastic leakage model: assumes each bit of the target intermediate value
v = vmv−1vmv−2 . . . v1v0 has a different leakage.

L(v) =

mv−1∑
s=0

αsvs + noise,

Example

• With POI = 392 and the Random dataset, we got the following estimated values
for αss:

α̂0 ≈ −0.02019, α̂1 ≈ −0.02027, α̂2 ≈ −0.01920, α̂3 ≈ −0.02039.

• The leakage of a v = v3v2v1v0 is given by

L(v) = α̂0v0 + α̂1v1 + α̂2v2 + α̂3v3 + noise.

• For example, L(E) =?
41 / 87



Profiling results
• Stochastic leakage model: assumes each bit of the target intermediate value
v = vmv−1vmv−2 . . . v1v0 has a different leakage.

L(v) =

mv−1∑
s=0

αsvs +N,

Example

• With POI = 392 and the Random dataset, we got the following estimated values
for αss:

α̂0 ≈ −0.02019, α̂1 ≈ −0.02027, α̂2 ≈ −0.01920, α̂3 ≈ −0.02039.

• The leakage of a v = v3v2v1v0 is given by

L(v) = α̂0v0 + α̂1v1 + α̂2v2 + α̂3v3 + noise.

• For example, L(E) = α̂1 + α̂2 + α̂3 + noise = −0.05986 + noise.
42 / 87



Attack results

Example

• For our attacks, we aim to recover the 0th nibble of the first round key for
PRESENT encryption, denoted k

• The target intermediate value is the 0th Sbox output

• Attack traces: Random plaintext dataset– 5000 measurements, the corresponding
0th nibble of plaintext is denoted pj

• With each key hypothesis of k, we have a hypothetical value for v:

v̂ij = SBPRESENT(k̂i ⊕ pj), i = 1, 2, . . . , 16, j = 1, 2, . . . , 5000.

• With the stochastic leakage model, we have a hypothetical signal
• Hij = L(v)− noise = α̂0v0 + α̂1v1 + α̂2v2 + α̂3v3

• We have computed that v̂11 = E, v̂12 = 4, v̂21 = 3, v̂22 = 7.

• H11 = −0.05986, H12 = −0.03959, H21 = −0.02039, H22 = −0.05979
43 / 87



Attack results - stochastic leakage model

5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

Number of traces

S
am

p
le

co
rr
el
a
ti
on

co
effi

ci
en
t

Figure: POI = 392. Computed with the stochastic leakage model and Random plaintext
dataset. The blue line corresponds to the correct key hypothesis k̂10 = 9.

44 / 87



Comparison – identity leakage model

5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

Number of traces

S
am

p
le

co
rr
el
a
ti
on

co
effi

ci
en
t

Figure: POI = 392. Computed with the Random plaintext dataset. The blue line corresponds
to the correct key hypothesis k̂10 = 9.

45 / 87



Comparison – Hamming weight leakage model

5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

Number of traces

S
am

p
le

co
rr
el
a
ti
on

co
effi

ci
en
t

Figure: POI = 392. Computed with the Random plaintext dataset. The blue line corresponds
to the correct key hypothesis k̂10 = 9.

46 / 87



Profiled DPA

• Profiled DPA Attack Steps

• Stochastic Leakage Model

• Template-based DPA

• Success Rate and Guessing Entropy

• Further Reading

47 / 87



Template

• We have seen how to characterize the leakage assuming each bit of the target
intermediate value leaks differently focusing on one POI.

• We can also characterize/profile the leakages of each possible value of the target
intermediate value at several POIs.

• The result of this profiling process is a set of templates.

• Then during the attack phase, instead of computing correlation coefficients, we
use those templates to see which of them fits better to the measured power trace
and deduce a probability for each key hypothesis.

48 / 87



Distribution of leakages

• For a fixed time sample t, let Lt, Xt, and Nt denote the random variables
corresponding to the leakage, signal, and noise respectively

Lt = Xt +Nt.

• We consider Xt and Nt to be independent
• We fix the operation and the data, and we get a constant signal, i.e. Xt is a

constant
• The variants in the leakage will be caused by the noise
• We approximate the distribution induced by Lt with a normal distribution

Lt ∼ N(µt, σ
2
t ).

The goal of profiling in template-based DPA is to estimate the mean and variance of
the normal random variable Lt. The resulting estimations are our templates.

49 / 87



Recall – profiled DPA steps

Step 1 Identify the target cryptographic implementation

Step 2 Measurement of profiling traces

Step 3 Choose the part of the key to recover

Step 4 Choose the target intermediate value

Step 5 Decide on the target signal

Step 6 Compute SNR and identify the POI

Step 7 Measurement of attack traces

Step 8 Compute hypothetical target intermediate values

Step 9 Identify the leakage model and compute hypothetical signals

Step 10 Statistical analysis

50 / 87



Template-based DPA

Step 1 Identify the target cryptographic implementation

Step 2 Measurement of profiling traces

Step 3 Choose the part of the key to recover

Step 4 Choose the target intermediate value

Step 5 Decide on the target signal

Step 6 Compute SNR and identify the POI

Step 7 Measurement of attack traces

Step 8 Compute hypothetical target intermediate values

Step 9 Identify the leakage model and compute hypothetical signals

Step 9 Group the profiling traces

Step 10 Build template

Step 11 Statistical analysis

51 / 87



Template-based DPA – step 9

Group the profiling traces

• We take our set of profiling traces and divide them into Msignal sets according to
the target signal chosen in profiled DPA step 5

• Let us denote those sets by A1, A2, . . . , AMsignal
.

Example

• For our attacks, when the target signal is given by v, the exact value of the
output of the 0th Sbox in PRESENT, we will divide our profiling traces Random
dataset into 16 sets, A1, A2, . . . , A16, where As contains traces corresponding to
v = s− 1.

• When the target signal is given by wt (v), the Hamming weight of v, we will
divide the profiling traces into 5 sets, A1, A2, . . . , A5, where As contains traces
corresponding to wt (v) = s− 1.

52 / 87



Template-based DPA – step 10

Build template

• Let us fix a particular target signal value and only consider inputs to the
cryptographic algorithm that result in traces belonging to the corresponding set As

• Let Ls denote the random variable representing the leakage for such encryption
computations at time sample POI.

• Then Ls can be modeled by a normal random variable.

53 / 87



Normal random variable

• Let Z ∼ N(0, 1) be a standard normal random variable

• Take any σ, µ ∈ R with σ2 > 0

• Define Y = σZ + µ

• It can be shown that Y has PDF

f(y) =
1

σ
√
2π

exp

(
−(y − µ)2

2σ2

)
.

And
E [Y ] = µ, Var(Y ) = σ2

• We say that Y induces a normal distribution with mean µ and variance σ2,
written Y ∼ N(µ, σ2). Y is also called normal/a normal random variable. We
note that the mean and variance fully define a normal distribution.

54 / 87



Normal random variable
f(y) is a bell-shaped curve symmetric about µ and obtains its maximum value of

1

σ
√
2π
≈ 0.399

σ

at y = µ

µ− σ µ µ+ σ

55 / 87



Template-based DPA – step 10
Build template
• To find the PDF of a normal random variable, we need to identify its mean and
variance.
• Using our profiling traces from set As, we can compute an approximation for the

mean, denoted µs, using sample mean of Ls

• Similarly, an approximation for the variance, σ2
s , is then given by the sample

variance of Ls

• The pair (µs, σ
2
s) is called a template.

• With our profiling traces, we can compute Msignal templates.

Example

For our attacks,

• When the target signal is v, we will have 16 templates, each corresponding to a
possible value of v from 0 to F.

• When the target signal is wt (v), we will have 5 templates, each corresponding to
a Hamming weight value from 0 to 4.

56 / 87



Template-based DPA – step 11

Statistical analysis

• In this step, we would like to compute a probability for each key hypothesis given
the attack traces

• We are only interested in the leakages at the POIs for each attack trace
ℓj = (lj1, l

j
2, . . . , l

j
q) – ljPOI

• For each key hypothesis k̂i and attack trace ℓj , we compute the hypothetical
target intermediate value given the knowledge of the associated plaintext.

• Let µsij and σ2
sij be the template for this hypothetical value, corresponding to k̂i

and ℓj

57 / 87



Template-based DPA – step 11
Statistical analysis
• According to the PDF of a normal random variable

f(y) =
1

σ
√
2π

exp

(
−(y − µ)2

2σ2

)
.

• We can compute the probability of ℓj given k̂i

P (ℓj |k̂i) = P (Lsij = ljPOI) =
1√

2σ2
sijπ

exp

(
−(ljPOI − µsij )

2

2σ2
sij

)
,

• The score of k̂i is given by

Pk̂i
= −

M̂p∑
j=1

ln(σ2
sij ) +

(ljPOI − µsij )
2

σ2
sij

.

• The higher the score, the more likely the hypothesis is equal to the correct key.
58 / 87



Profiling results

• Mean values

−0.042456, −0.046059, −0.046314, −0.047441, −0.045003, −0.048246,

−0.048646, −0.051325, −0.046065, −0.049202, −0.049648, −0.052415,
−0.048188, −0.052684, −0.051630, −0.053906

• Variances

0.00000230, 0.00000232, 0.00000248, 0.00000229, 0.00000235, 0.00000247,

0.00000217, 0.00000228, 0.00000234, 0.00000257, 0.00000251, 0.00000203,

0.00000255, 0.00000243, 0.00000241, 0.00000274,

59 / 87



Attack results - target signal given by v

1 5 10 15

0

100

200

Number of traces

P
ro
b
a
b
il
it
y
sc
o
re

60 / 87



Attack results - target signal given by wt (v)

1 5 10 15

0

100

200

Number of traces

P
ro
b
a
b
il
it
y
sc
o
re

61 / 87



Note

• We can also use more than one POIs (Gaussian random vector)

62 / 87



Profiled DPA

• Profiled DPA Attack Steps

• Stochastic Leakage Model

• Template-based DPA

• Success Rate and Guessing Entropy

• Further Reading

63 / 87



Different ordering of traces

• A different ordering of the traces in Random plaintext dataset may affect our
attack results.

• For example, if arrange the traces in Random plaintext dataset in reverse order,
we get different results

64 / 87



Profiled DPA – identity model

5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

Number of traces

S
am

p
le

co
rr
el
a
ti
on

co
effi

ci
en
t

5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

Number of traces

S
am

p
le

co
rr
el
a
ti
on

co
effi

ci
en
t

65 / 87



Different ordering of traces

• To have a fair comparison between different attack methods (e.g. different
choices of leakage models, POIs, etc.), we introduce the notion of success rate
and guessing entropy.

Remark

Our aim is to evaluate the DUT and our implementation against DPA attacks with
different settings. Thus, we assume we have the knowledge of the key for the
evaluation after the attack.

66 / 87



Key rank

• Fix a number of attack traces M̂p

• For a profiled DPA attack, we assign a score to each key hypothesis after the
attack: the absolute value of the corresponding sample correlation coefficient at
POI
• Sort the scores in an array in descending order

• Rank 1st – highest score

• Key rank of a key hypothesis: index of the score for the key hypothesis in this
sorted array

• Ultimate goal of an attack: key rank of the correct key hypothesis = 1 – We note
that if the key rank is low enough, it is possible to use key enumeration
algorithms1 that enable the key recovery

1Veyrat-Charvillon, N., Gérard, B., Renauld, M., & Standaert, F. X. (2013). An optimal key
enumeration algorithm and its application to side-channel attacks. In Selected Areas in Cryptography:
19th International Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised
Selected Papers 19 (pp. 390-406). Springer Berlin Heidelberg.

67 / 87



Success rate

• The success rate of an attack method with M̂p traces, denoted SRM̂p
, is defined

to be
SRM̂p

= P (key rank of the correct key hypothesis = 1) .

• Empirically, we can estimate the value of SRM̂p
by computing the frequency of

key rank of the correct key hypothesis = 1 among a certain number of simulated
attacks.

68 / 87



Guessing entropy

• The guessing entropy for an attack method with M̂p traces is given by the
expectation of the key rank of the correct key hypothesis:

GEM̂p
= E

[
key rank of the correct key hypothesis with M̂p traces

]
.

• We can approximate GEM̂p
with a sample mean of the correct key rank.

69 / 87



Estimating success rate and guessing entropy of an attack
• For a fixed number of traces, we carry out the attacks for a certain number of
times, e.g. 100

1 zero array of size 51 Ssr, Sge// variables to store estimations of success rate

and guessing entropy, initialized to zero

2 for M̂p = 2, M̂p ≤ 50, M̂p ++ do

3 array of size M̂p×no of attack A
randomly choose←−−−−−−−−−Random plaintext dataset

4 for i = 0, i < 100, i++ do

5 B = A[i× M̂p : (i+ 1)× M̂p]// take M̂p traces from A without repetition

for each ith attack

6 Carry out the attack, compute rk = key rank of the correct key

7 Sge[M̂p] + = rk
8 if rk == 1 then

9 Ssr[M̂p] + = 1

10 Ssr[M̂p] = Ssr[M̂p]/no of attack// compute the frequency of successful attacks

11 Sge[M̂p] = Sge[M̂p]/no of attack// compute the sample mean

70 / 87



Success rate – results

5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

Number of traces

S
u
cc
es
s
ra
te

Stochastic leakage model, POI= 392

Identity leakage model, POI= 392

Identity leakage model, POI= 1328

Hamming weight leakage model, POI= 392

Hamming weight leakage model, POI= 1304

71 / 87



Guessing entropy – results

5 10 15 20 25 30 35 40 45 50
0

5

10

Number of traces

G
u
es
si
n
g
en
tr
op

y

Stochastic leakage model, POI= 392

Identity leakage model, POI= 392

Identity leakage model, POI= 1328

Hamming weight leakage model, POI= 392

Hamming weight leakage model, POI= 1304

72 / 87



Observations

• Fewer traces are needed for SR/GE to reach 1 with the Hamming weight model
and stochastic model.

• Attack results for the Hamming weight model and stochastic model are similar,
with the stochastic model giving slightly better performance.

• The choice of POI is important for the attack. With the wrong POI, the attack
will need much more traces.

73 / 87



Results for template-based DPA – success rate

2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

Number of traces

S
u
cc
es
s
ra
te

Stochastic leakage model, POI= 392

Identity leakage model, POI= 392

Hamming weight leakage model, POI= 392

signal = v, 1 POI

signal = wt(v), 1 POI

Figure: Estimations of success rate for leakage model based and template-based DPA attacks
computed using the Random plaintext dataset.

74 / 87



Results for template-based DPA – guessing entropy

2 4 6 8 10 12 14 16 18 20
0

5

10

Number of traces

G
u
es
si
n
g
en
tr
o
p
y

Stochastic leakage model, POI= 392

Identity leakage model, POI= 392

Hamming weight leakage model, POI= 392

signal = v, 1 POI

signal = wt(v), 1 POI

Figure: Estimations of guessing entropy for leakage model based template-based DPA attacks
computed using the Random plaintext dataset.

75 / 87



Observations

• When the target signal is given by v, the attack requires fewer traces as compared
to the case when the target signal is given by wt (v). This is expected as for the
former case we have 16 templates while for the latter we have 5.
• Of course, the attack results demonstrated that we had enough traces for profiling to

get good templates. Without enough profiling traces, different attack results might
appear.

• Template-based DPA, in general, performs better than leakage model based DPA.
This is not surprising as more information is retrieved from the profiling traces
using template-based attacks.

76 / 87



Profiled DPA

• Profiled DPA Attack Steps

• Stochastic Leakage Model

• Template-based DPA

• Success Rate and Guessing Entropy

• Further Reading

77 / 87



Remarks

• Last week we discussed SPA on RSA

• It is more common to see SPA attacks on public key ciphers and DPA on
symmetric key block ciphers
• There are also

• DPA on RSA1

• Profiled SPA2

1Amiel, F., Feix, B., & Villegas, K. (2007, August). Power analysis for secret recovering and reverse
engineering of public key algorithms. In International Workshop on Selected Areas in Cryptography
(pp. 110-125). Springer, Berlin, Heidelberg.

2Mangard, S., Oswald, E., & Popp, T. (2008). Power analysis attacks: Revealing the secrets of
smart cards (Vol. 31). Springer Science & Business Media. Chapter 5

78 / 87



Other Attacks

• Collision attacks: identify collision of intermediate values in power trace to recover
secret key
• Schramm, K., Wollinger, T., & Paar, C. (2003, February). A new class of collision

attacks and its application to DES. In International Workshop on Fast Software
Encryption (pp. 206-222). Springer, Berlin, Heidelberg.

• Algebraic side-channel attacks (ASCA): express both the target algorithm and its
leakages as equations
• Renauld, M., & Standaert, F. X. (2009, December). Algebraic side-channel attacks.

In International Conference on Information Security and Cryptology (pp. 393-410).
Springer, Berlin, Heidelberg.

• SCADPA: side-channel assisted differential plaintext attack
• Breier, J., Jap, D., Hou, X., & Bhasin, S. (2018). On side-channel vulnerabilities of

bit permutations: Key recovery and reverse engineering. Cryptology ePrint Archive.

79 / 87



AI-assisted SCA – Motivation

• If we look at DPA, the key recovery is essentially a classification problem.

• In particular, in a profiled setting, the analysis of the leakage traces can be seen as
a classification problem where the goal of an attacker is to classify those traces
based on the related data (e.g. a specific Sbox output value).

• Various AI-based techniques have been adopted for SCA

• It has also been shown that, with neural networks, protected implementations can
be broken.

80 / 87



Various AI Techniques have been Adopted for SCA

• k−nearest neighbor algorithm1

• Random forest2

• Support vector machines3

• Multilayer perceptron (MLP)4

• Convolutional neural networks (CNN)5

1Martinasek, Z., Zeman, V., Malina, L., & Martinasek, J. (2016). K-nearest neighbors algorithm in
profiling power analysis attacks. Radioengineering, 25(2), 365-382.

2L. Lerman, G. Bontempi, O. Markowitch. “A machine learning approach against a masked AES.”
Journal of Cryptographic Engineering 2015.

3A. Heuser, M. Zohner. “Intelligent machine homicide.” International Workshop on Constructive
Side-Channel Analysis and Secure Design. 2012.

4R. Gilmore, N. Hanley, M. O’Neill. “Neural network based attack on a masked implementation of
AES.” 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST).

5Zaid, G., Bossuet, L., Habrard, A., Venelli, A. “Methodology for efficient CNN architectures in
profiling attacks.” IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020.

81 / 87



DPA on AES

• Target intermediate value: 0th Sbox output

• Instead of one nibble of the key, we recover one byte of the key

82 / 87



AI-assisted SCA on AES implementation

• Neural network used for the classification problem in a DPA attack on AES
implementations
• Input of the network: (part of) the traces.
• Output layer: a softmax activation function and each class corresponds to one

possible value of the target Sbox output, hence leading to one key byte hypothesis
with the knowledge of the plaintext.

• During the inference, for each input data, the network output indicates the
possibilities of the 256 values for the Sbox output, which gives a possibility of
each of the corresponding key byte hypotheses.

• Guessing entropy and success rate can be defined in a similar way

• The goal of AI-based SCA is then to achieve low guessing entropy (or high success
rate) with as few traces as possible after training.

83 / 87



Hyperparameter Tuning

• Bayesian optimization and random search1

• Reinforcement learning2

• Genetic algorithm for choosing architectures3

• Genetic algorithm for all hyperparameters4

1Wu, L., Perin, G., & Picek, S. (2020). I choose you: Automated hyperparameter tuning for deep
learning-based side-channel analysis. Cryptology ePrint Archive.

2Rijsdijk, J., Wu, L., Perin, G., & Picek, S. (2021). Reinforcement learning for hyperparameter
tuning in deep learning-based side-channel analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 677-707.

3Maghrebi, H., Portigliatti, T., & Prouff, E. (2016, December). Breaking cryptographic
implementations using deep learning techniques. In International Conference on Security, Privacy, and
Applied Cryptography Engineering (pp. 3-26). Springer, Cham.

4Acharya, R. Y., Ganji, F., & Forte, D. (2021). InfoNEAT: Information Theory-based
NeuroEvolution of Augmenting Topologies for Side-channel Analysis. CHES 2023.

84 / 87



Training Strategy

• Test accuracy in machine learning cannot properly assess SCA performance1

• Stopping criteria based on success rate2

• Stopping criteria based on mutual information3

1Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F. “The curse of class imbalance and
conflicting metrics with machine learning for side-channel evaluations.” IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2019.

2Robissout, D., Zaid, G., Colombier, B., Bossuet, L., & Habrard, A. (2020). Online performance
evaluation of deep learning networks for side-channel analysis. Cryptology ePrint Archive.

3Perin, G., Buhan, I., & Picek, S. (2020). Learning when to stop: a mutual information approach
to fight overfitting in profiled side-channel analysis. Cryptology ePrint Archive..

85 / 87



Public Datasets

• ASCAD1: masking and artificially introduced random jitter

• AES HD2: unprotected AES hardware implementation on FPGA

• AES RD3: random delay countermeasure

1Benadjila, R., Prouff, E., Strullu, R., Cagli, E., & Dumas, C. (2020). Deep learning for side-channel
analysis and introduction to ASCAD database. Journal of Cryptographic Engineering, 10(2), 163-188.

2https://github.com/AESHD/AES_HD_Dataset
3https://github.com/ikizhvatov/randomdelays-traces

86 / 87

https://github.com/AESHD/AES_HD_Dataset
https://github.com/ikizhvatov/randomdelays-traces


Other Aspects of SCA

• Identify points of interest1

• Leakage assessment2

• whether any input-dependent information can be detected in side-channel
measurements of the device under test

1Lu, X., Zhang, C., Cao, P., Gu, D., & Lu, H. (2021). Pay attention to raw traces: A deep learning
architecture for end-to-end profiling attacks. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 235-274.

2Moos, T., Wegener, F., & Moradi, A. (2021). DL-LA: Deep Learning Leakage Assessment: A
modern roadmap for SCA evaluations. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 552-598.

87 / 87


	Profiled DPA Attack Steps
	Stochastic Leakage Model
	Template-based DPA
	Success Rate and Guessing Entropy
	Further Reading

