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Course Outline

• Abstract algebra and number theory

• Introduction to cryptography

• Symmetric block ciphers and their implementations

• RSA, RSA signatures, and their implementations

• Probability theory and introduction to SCA

• SPA and non-profiled DPA

• Profiled DPA

• SCA countermeasures

• FA on RSA and countermeasures

• FA on symmetric block ciphers

• FA countermeasures for symmetric block cipher
• Practical aspects of physical attacks

• Invited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH
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Recommended reading

• Textbook
• Sections

• 1.7;
• 4.1;
• 4.2.1, 4.2.2, 4.2.3.
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Lecture Outline

• Probability Measure

• Random Variable

• Side-channel Analysis

• Side-channel Leakages

• Leakage Assessment
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Probability theory and introduction to SCA

• Probability Measure

• Random Variable

• Side-channel Analysis

• Side-channel Leakages

• Leakage Assessment
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Random Experiments

• Probability theory studies the mathematical theory behind random experiments.

• A random experiment is an experiment whose output cannot be predicted with
certainty in advance.

• However, if the experiment is repeated many times, we can see “regularity” in the
average output.

• For example, if we roll a die, we cannot predict the output of one roll.

• But if we roll it many times, we would expect to see the number 1 in 1/6 of the
outcomes assuming the die is fair.
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Sample Space and Events

• For a given random experiment, we define sample space, denoted by Ω, to be the
set of all possible outcomes.

• A subset A of Ω is called an event.

• If the outcome of the experiment is contained in A, then we say that A has
occurred.

• The empty set ∅ denotes the event that consists of no outcomes.

• ∅ is also called the impossible event.

Example

• When the random experiment is rolling a die, the sample space
Ω = { 1, 2, 3, 4, 5, 6 }. A = { 1, 2, 3 } ⊆ Ω is an event.

• When the random experiment is rolling two dice, Ω = { (i, j) | 1 ≤ i, j ≤ 6 }.
One possible event is A = { (1, 2), (1, 1) }.
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Events

• Recall that we have defined complement, unions, and intersections between sets in
the first week.

• Fix a sample space Ω. Take two events, A and B.

• We say that A ∪B occurs if either A or B occurs.

• Similarly,
⋃n

i=1Ai occurs when at least one Ai occurs.

• And we say A
⋂
B occurs if both A and B occur,

⋂m
i=1Ai occurs if all of the

events Ai occur.

• If A∩B = ∅, then A and B cannot both occur, they are called mutually exclusive.

• The complement of A, Ac, contains events in Ω, but not in A.
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Sample space and its power set

• Ω: sample space

• A: power set of Ω, 2Ω

Example

Let us consider the random experiment of tossing a coin, the sample space
Ω = {H,T }. A = 2Ω = { ∅,Ω, {H } , { T } }.
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Probability

Definition

A probability measure defined on (Ω,A) is a function P : A → [0, 1] such that

• P (Ω) = 1, P (∅) = 0.

• For any A1, A2, . . . ∈ A that are pairwise disjoint, i.e. Ai1 ∩Ai2 = ∅ for i1 ̸= i2,
countable additivity

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

P (A) is called the probability of A.

Example

Tossing a coin, Ω = {H,T }. A = 2Ω = { ∅,Ω, {H } , { T } }. P defined as follows is
a probability measure on (Ω,A):

P (∅) = 0, P (Ω) = 1, P ({H }) = 1

2
, P ({ T }) = 1

2
.
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Uniform probability

Definition

Let Ω be a set with finite cardinality. A = 2Ω. A probability measure P on (Ω,A) is
called uniform if

P ({ ω }) = 1

|Ω| , ∀ω ∈ Ω.

We note that if P is a uniform probability measure on (Ω,A), then for any A ∈ A,

P (A) = |A|
|Ω| .

Example

Let Ω = { 1, 2, 3, 4, 5, 6 } and A = 2Ω. The uniform probability measure on (Ω,A) is
given by P such that

P ({ i }) = 1

6

for i ∈ Ω. Let A = { 1, 2, 3 } , B = { 2, 4 }, then

P (A) = 1/2, P (B) = 1/3. 11 / 104



Probability measure on a countable set

Example

Let Ω be a countable set (finite or countably infinite). Let A = 2Ω. Then, any
probability measure on (Ω,A) is a function such that for any A ∈ A,

P (A) =
∑
ω∈A

P ({ ω }), where P ({ ω }) ≥ 0 and
∑
ω∈Ω

P ({ ω }) = 1.
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Conditional probability
• Take any A,B ∈ A such that P (B) > 0.
• We would like to compute the probability of A occurring given the knowledge that

B has occurred.
• We do not need to consider A ∩Bc since B has already occurred.
• Instead, we look at A ∩B, which occurs when both A and B occur.
• This leads to the definition of the conditional probability of A given B:

P (A|B) :=
P (A ∩B)

P (B)
.

Example

Let Ω = { 1, 2, 3, 4, 5, 6 } and A = 2Ω. The uniform probability measure on (Ω,A) is
given by P such that

P ({ i }) = 1/6

for i ∈ Ω. A = { 1, 2, 3 } , B = { 2, 4 }. Then

A ∩B =? P (A ∩B) =? P (A|B) =? 13 / 104



Conditional probability
• Take any A,B ∈ A such that P (B) > 0.

• We would like to compute the probability of A occurring given the knowledge that
B has occurred.

• We do not need to consider A ∩Bc since B has already occurred.

• Instead, we look at A ∩B, which occurs when both A and B occur.

• This leads to the definition of the conditional probability of A given B:

P (A|B) :=
P (A ∩B)

P (B)
.

Example

A = { 1, 2, 3 } , B = { 2, 4 }

A ∩B = { 2 } , P (A ∩B) =
1

6
, P (A|B) =

P (A ∩B)

P (B)
=

1/6

1/3
=

1

2
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Independent events

Definition

Two events A,B are said to be independent if P (A ∩B) = P (A)P (B). Otherwise,
we say that they are dependent.

When P (B) > 0, the condition P (A ∩B) = P (A)P (B) is equivalent to

P (A|B) =
P (A ∩B)

P (B)
=

P (A)P (B)

P (B)
= P (A).

That is, the probability of A occurring given the knowledge that B has occurred is the
same as the probability of A occurring without the knowledge that B has occurred.

15 / 104



Independent events

Example

Let Ω = { 1, 2, 3, 4, 5, 6 } and A = 2Ω. The uniform probability measure on (Ω,A) is
given by P such that

P ({ i }) = 1/6,

for i ∈ Ω.

A = { 1, 2, 3 } , B = { 2, 4 } , P (A) = 1/2, P (B) = 1/3,

A ∩B = { 2 } , P (A ∩B) =
1

6
, P (A|B) =

P (A ∩B)

P (B)
=

1/6

1/3
=

1

2

P (A)P (B) =
1

2
× 1

3
=

1

6
.

By definition, A and B are independent. We also note that

P (A|B) = P (A) = 1/2.
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Bayes’ Theorem

Theorem (Bayes’ Theorem)

If P (A) > 0 and P (B) > 0, then

P (B)P (A|B) = P (A)P (B|A).

Proof.

Since

P (A|B) =
P (A ∩B)

P (B)
, P (B|A) =

P (A ∩B)

P (A)

we have
P (B)P (A|B) = P (A ∩B), P (A)P (B|A) = P (A ∩B).
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Partition of Ω

Definition

A set of events { E1, E2, . . . | Ei ∈ A }, is called a partition of Ω if they are pairwise
disjoint, P (Ei) > 0 for all i, and ∪iEi = Ω. If the set of events is finite, it is called a
finite partition of Ω, otherwise, it is called a countable partition of Ω.

Example

Let Ω = { 1, 2, 3, 4, 5, 6 }, A = 2Ω, and P be the uniform probability measure on
(Ω,A). Let E1 = { 1, 2, 3 } , E2 = { 4, 5 }, E3 = { 6 }. Then, { E1, E2, E3 } is a finite
partition of Ω. We can also calculate that

P (E1) =
1

2
, P (E2) =

1

3
, P (E3) =

1

6
.
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Lemma

Lemma

Let { E1, E2, . . . | Ei ∈ A } be a finite or countable partition of Ω. Then, for any
A ∈ A, we have

P (A) =
∑
i

P (A|Ei)P (Ei).

Example

Continue from the previous example, Ω = { 1, 2, 3, 4, 5, 6 }, A = 2Ω, P is the uniform
probability measure on (Ω,A). E1 = { 1, 2, 3 } , E2 = { 4, 5 }, E3 = { 6 }. Let
A = { 2, 4 }, then

P (A) =? A ∩ E1 =? A ∩ E2 =? A ∩ E3 =?

P (A|E1) =? P (A|E2) =? P (A|E3) =?

3∑
i=1

P (A|Ei)P (Ei) =?
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Lemma

Lemma

Let { E1, E2, . . . | Ei ∈ A } be a finite or countable partition of Ω. Then, for any
A ∈ A, we have

P (A) =
∑
i

P (A|Ei)P (Ei).

Example

Ω = { 1, 2, 3, 4, 5, 6 }, E1 = { 1, 2, 3 } , E2 = { 4, 5 }, E3 = { 6 }, A = { 2, 4 }.

P (A) = 1/3, A ∩ E1 = { 2 } , A ∩ E2 = { 4 } , A ∩ E3 = ∅.

P (A|E1) =
1/6

1/2
=

1

3
, P (A|E2) =

1/6

1/3
=

1

2
, P (A|E3) = 0.

3∑
i=1

P (A|Ei)P (Ei) =
1

3
× 1

2
+

1

2
× 1

3
=

1

3
= P (A).
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A generalized version of Bayes’ Theorem

Theorem

Let { E1, E2, . . . | Ei ∈ A } be a finite or countable partition of Ω. For any A ∈ A

with P (A) > 0 and any m, we have

P (Em|A) =
P (A|Em)P (Em)∑
i P (A|Ei)P (Ei)

.

Proof.

By Bayes’ Theorem

P (Em|A) =
P (A|Em)P (Em)

P (A)
.

The result then follows from the previous Lemma.
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Probability theory and introduction to SCA

• Probability Measure

• Random Variable

• Side-channel Analysis

• Side-channel Leakages

• Leakage Assessment
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Definition

Definition

A random variable X is a function X : Ω → R, such that certain conditions are
satisfied.

Example

Let us consider the random experiment of tossing a coin, the sample space
Ω = {H,T }. Define X : Ω → R such that X(H) = 0, X(T ) = 1. Then X is a
random variable.
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Example of a random variable – indicator function

Example

Fix A ∈ A, the indicator function, denoted 1A, for A is defined as follows:

1A : A → R, 1A(ω) =

{
1 ω ∈ A

0 ω ̸∈ A
.

1A is a random variable.
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Distribution

Let X be a random variable, define PX as follows:

PX : R → [0, 1], B 7→ P (X−1(B)).

We say that PX is induced by X and it is called the distribution of X.
Here R denotes the Borel set, a set of subsets of R, which contains open sets, closed
set, etc.

Remark

For simplicity, we will write P (X ∈ B) instead of P (X−1(B)). For example, we write
P (X ≤ x) instead of P (X−1((−∞, x])).
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CDF

The cumulative distribution function (CDF) of X, denoted F , is defined as

F : R → [0, 1]

x 7→ PX((−∞, x]) = P (X−1((−∞, x])) = P (X ≤ x)
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Continuous random variable

When the distribution function F (x) = P (X ≤ x) has the form

F (x) =

∫ x

−∞
f(y)dy

we say that X has probability density function (PDF) f and X is called a continuous
random variable.

Remark

When Ω is a countable set (finite or countably infinite), X is a discrete random
variable. But we will focus on continuous random variables.
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Example – continuous random variable

Example

Define f(x) = 1 for x ∈ (0, 1) and 0 otherwise. F (x) =
∫ x
−∞ f(y)dy, is given by

F (x) =


0 x ≤ 0

x 0 ≤ x ≤ 1

1 x > 1

.

If X is a random variable that has F as its CDF, then we say that X induces a
uniform distribution on (0, 1).
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Standard normal distribution

Example

A random variable Z that induces a standard normal distribution has probability
density function

f(z) =
1√
2π

exp

(
−z2

2

)
,

and cumulative distribution function

Φ(z) =
1√
2π

∫ z

−∞
exp

(
−y2

2

)
dy.

• Standard normal distribution will be very useful in later parts of the course and we
use Φ(z) instead of F (z) to denote its CDF.

• We say that Z is a standard normal random variable.
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Standard normal distribution

Example

The following figure shows that f(z) is a bell-shaped curve that is symmetric about 0.
The symmetry is also apparent from the formula for f(z).

−1 0 1

Figure: Probability density function of the standard normal random variable
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Expectations and Variances

• The expectation/mean of a random variable X is the expected average value of
X.

• And the variance of X is the average squared distance from the mean.
• By squaring the distances, the small deviations from the mean are reduced and the

big ones are enlarged.
• Thus the variance measures how the values of X vary from the mean or how “spread

out” the values of X are.
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Expectation of a continuous random variable

When X is a continuous random variable with PDF f , its expectation/mean is defined
as

E [X] =

∫ ∞

−∞
xf(x)dx.

provided the integral exists.

Example

X induces a uniform distribution on (0, 1). X has PDF f(x) = 1 for x ∈ (0, 1) and 0
otherwise.

E [X] =

∫ ∞

−∞
xf(x)dx =

∫ 1

0
xdx =

x2

2

∣∣∣∣1
0

=
1

2
.
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Expectation of the standard normal random variable
When X is a continuous random variable with PDF f , its expectation/mean is defined
as

E [X] =

∫ ∞

−∞
xf(x)dx.

provided the integral exists.

Example

Let Z be a random variable that induces the standard normal distribution. Then

f(z) =
1√
2π

exp

(
−z2

2

)
,

and

E [Z] =

∫ ∞

−∞
zf(z)dz =

1√
2π

∫ ∞

−∞
z exp

(
−z2

2

)
dz = 0.

Integral of an odd function with limits −∞ and ∞ is zero.
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Expectation of the standard normal random variable

Example

As shown in the following figure, f(x) is symmetric about 0, so it is not surprising that
the expected average value of Z is 0.

−1 0 1

Figure: Standard normal distribution.
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Some properties of expectations

• Given two random variables X,Y such that E [|X|] < ∞,E [|Y |] < ∞
• For any a, b ∈ R

E [X + Y ] = E [X] + E [Y ] , E [aX + b] = aE [X] + b, E [b] = b.
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Variance
The variance of a random variable X is given by

Var(X) = E
[
(X − µ)2

]
= E

[
X2
]
− µ2,

where µ denotes the expectation of X, E [X].
When X is a continuous random variable with PDF f(x),

E
[
X2
]
=

∫ ∞

−∞
x2f(x)dx

Example

X induces a uniform distribution on (0, 1). X has PDF f(x) = 1 for x ∈ (0, 1) and 0
otherwise. We have computed that E [X] = 0.5

Var(X) =

∫ ∞

−∞
x2f(x)dx− E [X]2 =

∫ 1

0
x2dx− 1

22
=

x3

3

∣∣∣∣1
0

− 1

4
=

1

12
.
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Properties of variances

Given two random variables X,Y such that E [|X|] < ∞,E [|Y |] < ∞. Take any
a, b ∈ R. We have seen that

E [X + Y ] = E [X] + E [Y ] , E [aX + b] = aE [X] + b, E [b] = b.

Then

Var(aX + b) = E
[
(aX + b− E [aX + b])2

]
= E

[
(aX + b− aE [X]− b)2

]
= a2E

[
(X − E [X])2

]
= a2Var(X).

In particular, we have

Var(b) =? Var(X + b) =? Var(aX) =?
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Properties of variances

Given two random variables X,Y such that E [|X|] < ∞,E [|Y |] < ∞. Take any
a, b ∈ R. We have seen that

E [X + Y ] = E [X] + E [Y ] , E [aX + b] = aE [X] + b, E [b] = b.

Then

Var(aX + b) = E
[
(aX + b− E [aX + b])2

]
= E

[
(aX + b− aE [X]− b)2

]
= a2E

[
(X − E [X])2

]
= a2Var(X).

In particular, we have

Var(b) = 0, Var(X + b) = Var(X), Var(aX) = a2Var(X).
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Variance of the standard normal random variable

Example

Let Z be a random variable that induces the standard normal distribution. We know
that

f(z) =
1√
2π

exp

(
−z2

2

)
,

and E [Z] = 0

Var(Z) = E
[
Z2
]
− 0 =

∫ ∞

−∞
z2f(z)dz =

1√
2π

∫ ∞

−∞
z2 exp

(
−z2

2

)
dz = 1.

We write Z ∼ N(0, 1) to indicate that Z induces a standard normal distribution with
mean 0 and variance 1.
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zα
Given any α ∈ (0, 1), we define zα such that

P (Z > zα) = 1− Φ(zα) = α, i.e. Φ(zα) = 1− α.

0 zα

Area is α

Figure: Probability density function f(z) for Z ∼ N(0, 1). P (Z > zα) = α, α corresponds to
the area under f(z) for z > zα.
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zα

α 0.1 0.05 0.01 0.005 0.001

1− α 0.900 0.950 0.990 0.995 0.999

zα 1.282 1.645 2.326 2.576 3.090

Table: A few values of zα with corresponding α.

41 / 104



Normal random variable

• Let Z ∼ N(0, 1) be a standard normal random variable

• Take any σ, µ ∈ R with σ2 > 0

• Define Y = σZ + µ

• It can be shown that Y has PDF

f(y) =
1

σ
√
2π

exp

(
−(y − µ)2

2σ2

)
.

And
E [Y ] = µ, Var(Y ) = σ2

• We say that Y induces a normal distribution with mean µ and variance σ2,
written Y ∼ N(µ, σ2). Y is also called normal/a normal random variable. We
note that the mean and variance fully define a normal distribution.
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Normal random variable
f(y) is a bell-shaped curve symmetric about µ and obtains its maximum value of

1

σ
√
2π

≈ 0.399

σ

at y = µ

µ− σ µ µ+ σ
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Independent random variable

Definition

Given two random variables X : Ω → R, Y : Ω → R, they are said to be independent
if for any A,B ∈ R,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B).

Here R denotes the Borel set, a set of subsets of R, which contains open sets, closed
set, etc.
If two random variables X : Ω → R, Y : Ω → R are independent, it can be proven that

E [XY ] = E [X] E [Y ] if E [|X|] < ∞ and E [|Y |] < ∞.
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Covariance

• To analyze the relation between two random variables X and Y , we define the
covariance of X and Y to be

Cov(X,Y ) = E [(X − E [X])(Y − E [Y ])] .

• It can be shown that

Cov(X,Y ) = E [XY ]− E [X] E [Y ] .

• It is easy to see that Cov(X,Y ) = Cov(Y,X) and Cov(X,X) = Var(X).

Definition

Let X and Y be two random variables. If Cov(X,Y ) = 0, we say that X and Y are
uncorrelated. Otherwise, we say that X and Y are correlated.
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Correlation coefficient

Definition

Let X and Y be two random variables with finite variances. The correlation coefficient
of X and Y is given by

ρ =
Cov(X,Y )√
Var(X)Var(Y )

.

• −1 ≤ ρ ≤ 1
• Answer the question: if large values of X tend to be paired with large Y values or
small Y values.

• If when X is large (or small), Y is also large (or small), then the signs of
X − E [X] and Y − E [Y ] will tend to be the same. And the absolute value of ρ
will be bigger.

• If when X is large (or small), Y is small (or large), then the signs of X −X and
Y − Y will tend to be different. And the absolute value of ρ will be bigger.

• In the special case when X and Y are uncorrelated, ρ = 0.
• In particular, if X and Y are independent, then ρ = 0
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Probability theory and introduction to SCA

• Probability Measure

• Random Variable

• Side-channel Analysis

• Side-channel Leakages

• Leakage Assessment
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Why are we interested in physical attacks?

• Cryptography provides algorithms that enable secure communication in theory
• In the real world, these algorithms have to be implemented on real devices:

• software implementations: general-purpose devices
• hardware implementations: dedicated secure hardware devices

• To evaluate the security level of cryptographic implementations, it is necessary to
include a physical security assessment
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Targets and Attack Goals

Targets

• Credit cards

• Passports

• Key Fob

• ...

Goals:

• Recovery of the secret key

• Privilege escalation

• IP theft

• ...

picture source: https://goodtimes.ca/how-many-credit-cards-is-too-many/ 49 / 104
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Different physical attack methods

• Side-channel analysis attacks
• EM/Power analysis
• Timing analysis
• Cache attacks

• Fault attacks
• Optical fault injection
• Electromagnetic fault injection
• Clock/voltage glitch

• Hardware Trojans

• ...

picture source: https://nl.dreamstime.com/stock-foto-s-hamer-die-computer-boos-tonen-raken-image34210923
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Side-channel analysis attacks

• Side-channel analysis attacks target cryptographic implementations passively.

• The attacks exploit the possibility of the attacker observing the physical
characteristics of a device that is running the cryptographic algorithm.

• The attacker obtains the side-channel information, e.g. power consumption, and
execution time, then utilizes such information to recover the secret key.

• In this course, we will focus on power analysis attacks that exploit power
consumption information.

• The attack methodologies can be used in a similar manner when electromagnetic
(EM) emanation is analyzed.

Remark

We use the terminology side-channel analysis attacks only in the narrower meaning
which refers to power analysis attacks. In short, we also write side-channel analysis as
SCA.
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Device under test (DUT)

• The device that we take measurement of is called the device under test (DUT)
• A microcontroller running a software implementation
• An FPGA or ASIC realizing a hardware implementation.

• We assume the attacker has certain knowledge of the implementation.
• How to interface with the encryption routine
• Whether the computation is executed serially or in parallel
• Whether some types of countermeasures are present
• Generally, this type of information can be also obtained by reverse engineering, visual

inspection of the side-channel measurements, or sometimes just with a simple
trial-and-error technique.
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Attacker goal

• The ultimate goal of the attacker is to recover the master key of a symmetric
block cipher or the private key of a public-key cipher.
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Non-profiled SCA

• If the attacker does not have access to a similar device, just the target device or
just the measurements coming from the target device, we talk about a
non-profiled SCA.

• In a general scenario, this attack utilizes a set of measurements where a fixed
secret key is used to encrypt multiple (random) plaintexts.
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Profiled SCA

• If we assume the attacker has access to a clone device of the target device, then
the attacker can carry out a profiled SCA.

• The attack operates in two phases.
• In the profiling phase, the attacker acquires side-channel measurements for known
plaintext/ciphertext and known key pairs.

• This set of data is used to characterize or model the device.

• Then the attacker acquires a few measurements from the target device, usually
identical to the clone device, with known plaintext/ciphertext but the key is
secret.

• These measurements from the target device are then tested against the characterized
model from the clone device.
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Measurement device

• Power analysis measures the power consumption of the device under attack.

• The power consumption is in the form of a voltage change.

• The measurement is normally done with a digital sampling oscilloscope – a device
that takes samples of the measured voltage signal over time.

• We refer to each sample point as a time sample.
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Setup

• Ready-to-use measurement platform
NewAE ChipWhisperer-Lite (black in the
middle) – handling the communication
with the DUT and the acquisition.

• CW 308 UFO board (red) – a breakout
board with the DUT – ARM Cortex-M4
(blue) mounted on top.

• The controlling and data processing were
done from a laptop, from the Jupyter
environment available for the
ChipWhisperer platform.

• Teledyne T3DSO3504 benchtop
oscilloscope, used mainly for convenience
purposes – to precisely locate the time
intervals in the initial analysis stage.
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Trigger

• An important task during the acquisition is capturing the correct time window
corresponding to the operations we want to measure.

• In laboratory conditions, it is common to use an artificial trigger signal that
indicates the start/end of the encryption.

• In real-world settings, it is necessary to identify the correct position by examining
the captured signal – this is usually done based on the evaluator’s expertise.
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Power trace

• In our experiments, a trigger signal is raised to high during the computation that
we want to capture and lowered afterward.

• One measurement consists of the voltage values for each time sample in this
duration.

• It can be stored in an array of length equal to the total number of time samples in
the measured time interval.

• It can also be drawn in a graph where the x−axis corresponds to time samples
and the y−axis records the voltage values.

• Thus, we refer to the result of one measurement as a (power) trace.

• Note that, in the case of ChipWhisperer, which will be used for our experiments
and analysis, the y−axis does not show the actual voltage value but a 10-bit value
proportional to the current going through the shunt resistor
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One trace
• One power trace for the first five rounds of PRESENT encryption.
• A sequence nop operations before and after the cipher computation.
• Certain patterns can be seen from the trace and we can deduce the corresponding
operations in each time interval.

• From time sample 0− 312 and from time sample 2778− 3100 we have nop
instructions.

• Five repeated patterns, indicated by red dotted lines → duration of each round
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Datasets
There are four datasets that will be analyzed in more detail in the course.
All the datasets:

• Capture one round of software implementation of PRESENT.

• nop operations before and after PRESENT computation

• Each trace has 3600 time samples

More details on individual datasets:

• Fixed dataset A: This dataset contains 5000 traces with a fixed round key
0xFEDCBA0123456789 and a fixed plaintext 0xABCDEF1234567890.

• Fixed dataset B: This dataset contains 5000 traces with a fixed round key
0xFEDCBA0123456789 and a fixed plaintext 0x84216BA484216BA4.

• Random plaintext dataset: This dataset contains 5000 traces with a fixed round
key 0xFEDCBA0123456789 and a random plaintext for each trace.

• Random dataset: This dataset contains 10000 traces with a random round key
and a random plaintext for each trace.
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PRESENT

• Proposed in 2007 as a symmetric block cipher optimized for hardware
implementation.

• Block length: n = 64

• Number of rounds: Nr= 31

• Key length: either 80 or 128.
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PRESENT – encryption

• Round function: addRoundKey, sBoxLayer,
and pLayer.

• After 31 rounds, addRoundKey is applied
again before the ciphertext output

Remark

For PRESENT specification, we consider the
0th bit of a value as the rightmost bit in its
binary representation. For example, the 0th bit
of 3 = 0112 is 1, the 1st bit is 1 and the 2nd
bit is 0.

Plaintext

addRoundKey

sBoxLayer

pLayer

31×

addRoundKey

Ciphertext 63 / 104



Attack methods

• Classical power analysis attack methods
• Simple power analysis (SPA)
• Differential power analysis (DPA)

• SPA assumes the attacker has access to only one or a few measurements
corresponding to some fixed inputs.

• DPA assumes the attacker can take measurements for a potentially unlimited
number of different inputs.
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Probability theory and introduction to SCA

• Probability Measure

• Random Variable

• Side-channel Analysis

• Side-channel Leakages

• Leakage Assessment
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Leakages

• In the later parts of the course, we will see that by analyzing the power
consumption, we can deduce the secret key. Consequently, we also refer to the
power consumption as the leakage of the device.

• We consider the leakage consists of two parts: signal and noise.
• Signal refers to the part of the leakage that contains useful information for our
attack and the rest is noise.

• For example, if we would like to recover the hamming weight of an intermediate
value, then the part of the leakage correlated to the hamming weight of that
intermediate value is our signal.
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Leakage is dependent on the operations being executed
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Figure: The averaged trace for 5000 traces from the Fixed dataset A. The blue, pink, and green
parts of the trace correspond to addRoundKey, sBoxLayer, and pLayer respectively.

67 / 104



Leakage is dependent on the data being processed

• 1000 traces: each for a random plaintext with the 0th bit equal to 0; Take the
average

• 1000 traces: each for a random plaintext with the 0th bit equal to 1; Take the
average

• Take the difference trace of those two averages
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Leakage is dependent on the data being processed
• A few peaks in the difference trace and apart from those peaks, most of the
points are close to zero.

• Those peaks indicate that at the corresponding time samples, the 0th bit of the
plaintext is involved in the computations.

0 376 569 1,000 2,000 3,000

−2

0

2
·10−3

Time sample

L
ea
ka
ge

69 / 104



Leakage is dependent on the data being processed
• Compared with the previous figure, we can guess that the first and second peaks
most likely correspond to addRoundKey and sBoxLayer.

• The later peaks are probably related to the pLayer operation.
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Remark

• SPA exploits typically the relationship between the executed operations and the
leakage

• DPA focuses on the relationship between the processed data and the leakage
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Distribution of leakages

• For a fixed time sample t, let Lt, Xt, and Nt denote the random variables
corresponding to the leakage, signal, and noise respectively

Lt = Xt +Nt.

• We consider Xt and Nt to be independent – “independent noise assumption”
• We fix the operation and the data, and we get a constant signal, i.e. Xt is a

constant
• The variants in the leakage will be caused by the noise
• Let us take the Fixed dataset A: This dataset contains 5000 traces with a fixed

round key 0xFEDCBA0123456789 and a fixed plaintext 0xABCDEF1234567890.
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Histogram of leakage
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Figure: Histogram of leakages at t = 3520 across 5000 traces from the Fixed dataset A.
t = 3520 corresponds to nop operations
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Histogram of leakage
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Figure: Histogram of leakages at t = 2368 across 5000 traces from the Fixed dataset A.
t = 2368 corresponds to the highest peak in the averaged trace.
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Distribution of leakages

• For a fixed time sample t, let Lt, Xt, and Nt denote the random variables
corresponding to the leakage, signal, and noise respectively

Lt = Xt +Nt.

• We consider Xt and Nt to be independent
• We fix the operation and the data, and we get a constant signal, i.e. Xt is a

constant
• The variants in the leakage will be caused by the noise
• We approximate the distribution induced by Lt with a normal distribution

Lt ∼ N(µt, σ
2
t ).

E [Lt] = Xt + E [Nt] , Var(Lt) = Var(Nt).
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Leakage model
• Assume a value v is being processed in the DUT

• Let noise ∼ N(0, σ2) be a normal random variable with mean 0 and variance σ2.
• Identity leakage model

• The leakage is correlated to v

L(v) = v + noise.

• Hamming weight model
• The leakage will then be correlated to wt (v), the Hamming weight of v1

L(v) = wt (v) + noise.

Example

v = A

• Identity leakage model: L(v) = 10 + noise

• Hamming weight leakage model: L(v) = 2 + noise
1The Hamming weight of vector v ∈ Fm

2 is defined to be the number of 1s in v
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Leakage model

L(v) = v + noise, L(v) = wt (v) + noise.

• Even though the actual leakage may not be exactly equal to L(v), those leakage
models can be used to approximate the behavior of the actual leakages or for
statistical analysis.

• For example, our previous experiments have demonstrated that the identity
leakage model is realistic since when the data is fixed, the distribution of leakages
is close to a normal distribution.
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Probability theory and introduction to SCA

• Probability Measure

• Random Variable

• Side-channel Analysis

• Side-channel Leakages

• Leakage Assessment
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Motivation

• In the next few weeks, we will see various SCA attacks on cryptographic
implementations.

• As a developer, one might want to evaluate the DUT and conclude if it is
vulnerable against SCA or not.

• Different new attacks are being developed and it is impractical to verify the
security of our device against all of them.

• Leakage assessment aims to solve this problem by analyzing the power trace and
answering the question of whether any input-dependent information can be
detected in the traces of the DUT.

• We will see a method based on the student’s t−test.

• The methodology is also referred to as test vector leakage assessment (TVLA).
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Remark

• Leakage assessment methods do not provide any conclusions in cases where
data-dependent leakage is not detected.

• The absence of data-dependent leakage indicated by a particular method does not
prove that the implementation is leakage-free.
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Properties of expectations and variances

Given two random variables X,Y such that E [|X|] < ∞,E [|Y |] < ∞. Take any
a, b ∈ R. Then

E [X + Y ] = E [X] + E [Y ] , E [aX + b] = aE [X] + b, E [b] = b.

And
Var(b) = 0, Var(X + b) = Var(X), Var(aX) = a2Var(X).
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Modelling leakages

• Let us fix a time sample t.

• Lt: the random variable corresponding to the leakage at t.

• When the data being processed in the DUT is fixed, Lt ∼ N(µt, σ
2
t )

• Since we focus on one time sample, the operation is also fixed. We know that the
signal Xt, which is dependent on only operation and/or data, is fixed.

• Since
Lt = Xt +Nt,

• According to the properties of expectations and variances,

µt = Xt + E [Nt] , σ2
t = Var(Nt).

when the data being processed is fixed in the DUT.
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Leakages for two plaintexts

• Let us consider a DUT running PRESENT encryption and let Lt, L
′
t denote the

leakages corresponding to encryptions of two different plaintexts at time sample t.

• We can write
Lt = Xt +Nt, L′

t = X ′
t +N ′

t ,

with
Lt ∼ N(µt, σ

2
t ), L′

t ∼ N(µ′
t, σ

′2
t ).

• We take the signal to be part of the leakage related to the plaintext value.

• Since the noise is independent of the signal, we have Nt = N ′
t .

• And
σ2
t = σ

′2
t , µt −Xt = µ′

t −X ′
t.
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Equal signal

• We have seen before that the leakage Lt is dependent on the data being
processed in the device.

• In fact, certain SCA attacks (e.g. DPA) exploit the dependency of the leakage on
data.

• If the leakage is not exploitable, we would expect, at least, that the signals at
time sample t should be the same when the only difference is the values of the
data being processed.

• With our notations, this means that we would like to test if

Xt = X ′
t, and equivalently µt = µ′

t.
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Sample

• We have discussed that a random experiment is an experiment whose output
cannot be predicted with certainty in advance.

• However, if the experiment is repeated many times, we can see “regularity” in the
average output.

• For a given random experiment, the sample space, denoted by Ω, is the set of all
possible outcomes.

• A random variable X : Ω → R.
• X ∼ N(µx, σ

2
x): normal random variable

• We repeat the random experiment n times and record the outcomes.

• Then the possible outcomes {X1, X2, . . . , Xn } are n independent identically
distributed random variables.

• We refer to this set as a sample.
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Sample mean and sample variance

The sample mean (empirical mean), denoted X, is given by

X :=
1

n

n∑
i=1

Xi.

The sample variance (empirical variance), denoted S2
x, is given by

S2
x :=

1

n− 1

n∑
i=1

(Xi −X)2.

Remark

The sample mean and sample variance are random variables. A realization of X and
S2
x are represented as x and s2x.
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Statistical hypothesis
• Statistical hypothesis: a statement about the parameters of an unknown
distribution

• We call such a statement hypothesis because it is not known whether or not it is
true.

• We will use samples from an unknown distribution to draw certain conclusions
regarding a given hypothesis about this distribution.

• A procedure for determining whether or not the values of a sample are consistent
with the hypothesis.

• The decision will then be either accept the hypothesis, or reject it.

• By accepting a hypothesis, we conclude that the resulting data from the sample
appear to be consistent with it.

Example (Example of a hypothesis)

If we are interested in whether µt = µ′
t, we can set a hypothesis that µt = µ′

t.
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Samples for TVLA
• Two datasets, each with M traces
• Encryption of one plaintext
• Encryption of another plaintext
• We will use

• Fixed dataset A: This dataset contains 5000 traces with a fixed round key
0xFEDCBA0123456789 and a fixed plaintext

p1 = ABCDEF1234567890.

• Fixed dataset B: This dataset contains 5000 traces with a fixed round key
0xFEDCBA0123456789 and a fixed plaintext

p2 = 0x84216BA484216BA4.

• Lt: leakage for encryption of p1 at time sample t. We will take Fixed dataset A as
a sample for Lt

• L′
t: leakage for encryption of p2 at time sample t. We will take Fixed dataset B as

a sample for Lt
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Statistical hypothesis
• The hypothesis that we want to test is called the null hypothesis, denoted by H0.

• For example
H0 : µt = µ′

t, H0 : µt ≥ µ′
t.

• We will test the null hypothesis against an alternative hypothesis, denoted by H1.
For example

H1 : µt ̸= µ′
t, H1 : µt > µ′

t.

• For TVLA, the null and alternative hypotheses are:

H0 : µt = µ′
t, H1 : µt ̸= µ′

t.

Example

Let t = 392, the null and alternative hypotheses are

H0 : µ392 = µ′
392, H1 : µ392 ̸= µ′

392.
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t−value

t− valuet :=
Lt − L′

t√
S2
t +S

′2
t

M

,

• Lt: sample mean of Lt

• S2
t : sample variance of Lt

• L′
t: sample mean of L′

t

• S
′2
t : sample variance of L′

t

• M : the number of traces.
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t−value – Example

Example

Let t = 392. We can compute the sample mean and sample variance of L392 with
Fixed dataset A:

l392 ≈ −0.0525, s2392 ≈ 1.5141× 10−6.

With Fixed dataset B, we compute the sample mean and sample variance of L′
392:

l′392 ≈ −0.0501, s
′2
392 ≈ 1.4801× 10−6.

We set the following hypotheses

H0 : µ
′
392 = µ392, H1 : µ

′
392 ̸= µ392.

According to student’s t−test, we calculate

t− valuet :=
lt − l′t√
s2t+s

′2
t

M

=
l′392 − l392√

s2392+s
′2
392

5000

=
0.0024√

1.5141×10−6+1.4801×10−6

5000

≈ −98.1.
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zα
Given any α ∈ (0, 1)), we define zα such that

P (Z > zα) = 1− Φ(zα) = α, i.e. Φ(zα) = 1− α.

0 zα

Area is α

Figure: Probability density function f(z) for Z ∼ N(0, 1). P (Z > zα) = α, α corresponds to
the area under f(z) for z > zα.
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Student’s t−test
• level of significance of the test, α: when H0 is true, the probability of rejecting it
is not bigger than α.

P (reject H0|H0 is true) ≤ α.

• Given α, the procedure of hypothesis testing is to find the correct condition for
rejecting/accepting H0

• Student’s t−test: reject H0 if |t− valuet| > zα/2

P
(
|t− valuet| > zα/2

∣∣ H0 is true
)
= α.

α 0.1 0.05 0.01 0.005 0.001

zα 1.282 1.645 2.326 2.576 3.090

Example

For t = 392, we have computed |t|−value392 ≈ 98.1. What is the conclusion of the
student’s t−test with a level of significance 0.01?
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Student’s t−test

H0 : µ392 = µ′
392, H1 : µ392 ̸= µ′

392.

Student’s t−test: reject H0 if t− valuet > zα/2

P
(
t− valuet > zα/2|H0 is true

)
= α.

α 0.1 0.05 0.01 0.005 0.001

zα 1.282 1.645 2.326 2.576 3.090

Example

• For t = 392, we have computed |t|−value392 ≈ 98.1. Take α = 0.01, then
zα/2 = 2.576.

• 98.1 > 2.576. By the student’s t−test with a level of significance, 0.01 is to reject
H0.

• We conclude that µ392 ̸= µ′
392

• The probability that our conclusion is wrong is α = 0.01.
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What does the conclusion mean to us

• Certain SCA attacks (e.g. DPA) exploit the dependency of the leakage on data.

• If the leakage Lt is not exploitable, we would expect, at least, that the signals at
time sample t should be the same when different values of the data are being
processed at this specific time.

• This means:
Xt = X ′

t, and equivalently µt = µ′
t.

• When we take the signal to be part of the leakage correlated to the plaintext
value, our example concludes that the signals at time sample 392 for encryption of
plaintexts ABCDEF1234567890 and 84216BA484216BA4 are very likely to be
different, according to our measurements Fixed dataset A and Fixed dataset B.

• The probability of the conclusions being wrong is 0.01.
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TVLA threshold

Following the convention for TVLA, we set zα/2 = 4.5. By definition, this threshold
corresponds to

α

2
= 1− Φ(zα) = 1− Φ(4.5) = 1− 0.9999966023268753 ≈ 3.4× 10−6.

The significance level is given by

α ≈ 6.8× 10−6.

This means that there is a 6.8× 10−4 percent chance that we would reject the null
hypothesis (i.e. conclude that the means are different) in case it is true (i.e. the means
are in fact the same).
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TVLA procedure

• Fix the master key

• Measure M traces for one fixed plaintext

• Measure M traces for another fixed plaintext
• For each time sample t

• Compute the t−values with the two sets of traces
• Compare the t−value with the threshold 4.5 and −4.5
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TVLA results – 5000 and 50 traces
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Other settings

• We can also have different numbers of traces for those two measurements -
another formula for t−value

• We have seen fixed vs. fixed (two different fixed plaintexts). Can also have fixed
vs. random (a fixed plaintext, random plaintexts) – Welch’s t−test

• Instead of fixing the plaintext, we can also fix one intermediate value, e.g. the 0th
Sbox output of PRESENT
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TVLA results – Sbox output – fixed vs. fixed – Random dataset

0 392 1,000 2,000 3,000
−50

0

50

100

Time sample
t−

va
lu
e

0 392 1,000 2,000 3,000

0

20

40

Time sample

t−
va
lu
e

100 / 104



Code

• A simplified code for TVLA with Sbox output as the fixed intermediate value can
be found here

https://github.com/XIAOLUHOU/

SCA-measurements-and-analysis----Experimental-results-for-textbook/

blob/main/Assignment_materials/TVLA.ipynb

• All datasets and analysis code related to SCA can be found here

https://github.com/XIAOLUHOU/

SCA-measurements-and-analysis----Experimental-results-for-textbook/

tree/main
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Observations

• When more traces are used (i.e. when the sample size is bigger), it is more likely
for us to capture information about the inputs from the leakages. We will see next
week that more traces indeed indicate higher chances for the attacks to be
successful.

• When we take signal to be the 0th Sbox output, the highest |t|−value is obtained
at 392. We will see that this is our point of interest (POI) for our attack – sample
points that give the best attack results

• Compared to the signal being the plaintext, the |t|−values are in general smaller
with much fewer times samples crossing the threshold when the signal is given by
an Sbox output. This is unsurprising as we would expect more computations to be
correlated with the plaintext rather than a single Sbox output.
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More about leakage assessment

• TVLA was first proposed in 20111

• More discussions on how to set the threshold2

• Another prominent leakage assessment method - Person’s χ2−test3

1Gilbert Goodwill, B. J., Jaffe, J., & Rohatgi, P. (2011, September). A testing methodology for
side-channel resistance validation. In NIST non-invasive attack testing workshop (Vol. 7, pp. 115-136).

2Ding, A. A., Zhang, L., Durvaux, F., Standaert, F. X., & Fei, Y. (2017, November). Towards
sound and optimal leakage detection procedure. In International Conference on Smart Card Research
and Advanced Applications (pp. 105-122). Springer, Cham.

3Schneider, T., & Moradi, A. (2015). Leakage assessment methodology: A clear roadmap for
side-channel evaluations. In Cryptographic Hardware and Embedded Systems–CHES 2015: 17th
International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings 17 (pp. 495-513).
Springer Berlin Heidelberg.
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Week 6 - Quiz

• Before the lecture

• 1.5 hours: 11 am - 12:30pm

• Do not use “ṕısané ṕısmo” but “paličkové”.

• Write down the answers on the papers given to you, more can be provided upon
request - full name should be written on each page of the answer sheet.

• Detailed computation steps are required. 0 mark will be given if only a final
answer is provided.

• Four questions

• Weeks 1 – 3
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