Cryptography and Embedded System Security
CRAESS .|

Xiaolu Hou

FIIT, STU
xiaolu.hou @ stuba.sk

1/115

Course Outline

Abstract algebra and number theory

Introduction to cryptography

Symmetric block ciphers and their implementations
RSA, RSA signatures, and their implementations
Probability theory and introduction to SCA

SPA and non-profiled DPA

Profiled DPA

SCA countermeasures

FA on RSA and countermeasures

FA on symmetric block ciphers

FA countermeasures for symmetric block cipher
Practical aspects of physical attacks

® |nvited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH

2/115

Recommended reading

Xiaolu Hou
Jakub Breier

® Textbook

® Sections 3.3, 3.4, 3.5

Cryptography and
Embedded Systems

Security

@ Springer

Lecture Outline

e Introduction

o RSA

e RSA Signatures

e Implementations of Modular Exponentiation

e Implementations of Modular Multiplication

4/115

RSA, RSA signatures, and their implementations

e Introduction

5/115

Insecure communication channel

Alice
AP
At

JASS
-

src: https://www.pngwing.com/en/free-png-zhbsy

Eve

src: https://pngtree.com/

Bob

src: https://alicebobstory.com/

6/115

https://www.pngwing.com/en/free-png-zhbsy
https://alicebobstory.com/
https://pngtree.com/

Cryptosystem

Definition
A cryptosystem is a tuple (P,C, XK, &, D) with the following properties.
® P is a finite set of plaintexts, called plaintext space.
® (Cis a finite set of ciphertexts, called ciphertext space.
e K is a finite set of keys, called key space.
o E={E:keX}, where Ej, : P — Cis an encryption function.
® D={Dy:keX}, where Dy : C — P is a decryption function.
® For each e € K, there exists d € X such that Dy(E.(p)) = p for all p € P.

If e = d, the cryptosystem is called a symmetric key cryptosystem. Otherwise, it is
called a public-key/asymmetric cryptosystem.

7/115

Key exchange

For symmetric key cipher, a prior communication of the master key (key
exchange) is required before any ciphertext is transmitted.

With only a symmetric key cipher, the key exchange may be difficult to achieve
due to, e.g. far distance, and too many parties involved.

In practice, this is where asymmetric key cryptosystem comes into use.

For example, Alice would like to communicate with Bob using AES.

® To exchange the master key, k, for AES, she will encrypt k by a public key
cryptosystem using Bob's public key e, ¢ = E.(k).

® The resulting ciphertext ¢ will be sent to Bob, and Bob can decrypt it with his secret
private key d, k = Dy(c).

® Then Alice and Bob can communicate with key k using AES.

8/115

Security of public key cryptosystem

Clearly, we require that it is computationally infeasible to find the private key d
given the public key e.
In practice, this is guaranteed by some intractable problem

® A problem is intractable if there does not exist an efficient algorithm to solve it.
However, the cipher might not be secure in the future.

® For example, if a quantum computer with enough bits is manufactured, it can break

many public key cryptosystems

A public key cipher is not perfectly secure

® perfectly secure: in a ciphertext-only attack setting, the attacker cannot obtain any
information about the plaintext no matter how much computing power they have.
® the attacker can brute force the key

9/115

Greatest common divisor

Definition
Take m,n € Z, m # 0 or n # 0, the greatest common divisor of m and n, denoted
ged(m, n), is given by d € Z such that

° d>0,

® dlm, d|n, and

e if ¢c/m and ¢|n, then c|d.

Example
e All positive divisors of 4 and 6 are 1,2,4 and 1,2, 3,6 respectively. So
ged(4,6) = 2.

e All the positive divisors of 2 are 1 and 2. All the positive divisors of 3 are 1 and 3.
So ged(2,3) = 1.

10/115

Bézout's identity

Theorem (Bézout's identity)

For any m,n € Z, such that m # 0 or n # 0. gcd(m,n) exists and is unique.
Moreover, 3s,t € Z such that gcd(m,n) = sm + tn.

Example

ged(4,6) = 2=(-1)x4+1x6.
1=(—4)x2+3x3.

11/115

Euclidean algorithm

Theorem (Euclid’s division)
Given m,n € Z, take q,r such that n = gqm + r, then ged(m,n) = ged(m,).

Thus, to find ged(m,n), we can compute Euclid’s division repeatedly until we get
r=20.

Example
We can calculate ged(120, 35) as follows:
120 = 35 x 3+ 15 ged(120,35) = ged(35, 15),

35=15x2+5 ged(35,15) = ged(15,5),
15=5x 3 ged(15,5) = 5 = ged(120, 35) = 5.

12/115

Euclidean algorithm

Example

We can calculate ged (160, 21) using the Euclidean algorithm

160 = 21 x 7+ 13 ged(160,21) = ged(21,13),

21 =13 x1+38
13=8x1+5
8=5x1+3

5=3x1+2

3=2x1+1

2=1x2

ged(21,13) = ged(13, 8),

(

(
ged(13,8) = ged(8,5),
ged(8,5) = ged(5, 3),
ged(5,3) = gcd(3 2),
ged(3,2) = ged(2,1),
ged(2,1)

= : gcd(160,21) = 1

13/115

Extended Euclidean algorithm

Note
With the intermediate results we have from the Euclidean algorithm, we can also find
s,t such that ged(m,n) = sm + tn (Bézout's identity).

Example
We have calculated ged(120, 35) as follows:

120 =35 x 3+ 15 ged(120,35) = ged(35, 15),
35=15x2+5 gcd(35,15) = ged(15,5),
15=5x 3 ged(15,5) = 5 = ged(120, 35) = 5.

Then
5=35—15x 2,

15 =120 — 35 x 3,
5=235—(120—35x 3) x 2 = 120 x (—2) + 35 x 7.

14 /115

Extended Euclidean algorithm

Example

We have calculated ged(160,21) using the Euclidean algorithm

160 = 21 x 7+ 13 ged(160,21) = ged(21,13),

21 =13 x1+38
13=8x1+5
8=5x1+3

5=3x1+2

3=2x1+1

2=1x2

ged(21,13) = ged(13, 8),

ged(13,8) = ged(8,5),

ged(8,5) = ged(5, 3),

ged(5,3) = ged(3,2),

ged(3,2) = cd(2, 1),

ged(2,1) =1 = ged(160,21) =1

Using the extended Euclidean algorithm, find integers s, ¢ such that

gcd(160,21) = s160 + 35

15/115

Extended Euclidean algorithm

Example
By the extended Euclidean algorithm,

1=3-2, 2=5-3,
3=8-5 5=13-38,
8§=121-13, 13=160—21 x 7.

We have

1 = 3-(5—-3)=3x2-5=8x2-5x3=8x2—-(13-8)x3
= 8x5—-13x3=21x5—-13x8=21x5—-(160—-21x7)x8
(—8) x 160 + 61 x 21.

16 /115

Prime numbers

Definition
® For m,n € Z such that m # 0 or n # 0, m and n are said to be relatively
prime/ coprime if ged(m,n) = 1.
e Given p € Z, p > 1. pis said to be prime (or a prime number) if for any m € Z,
either m is a multiple of p (i.e. p|m) or m and p are coprime (i.e. ged(p,m) = 1).

Example
® 4 and 9 are relatively prime
® 8 and 6 are not relatively prime
® 2.3,5,7 are prime numbers

® (,9,21 are not prime numbers

17 /115

The Fundamental Theorem of Arithmetic

Theorem (The Fundamental Theorem of Arithmetic)

For any n € Z, n > 1, n can be written in the form

k
.
n=][sf"
i=1

where the exponents e; are positive, the prime numbers p1,po, ..., pi are pairwise
distinct and unique up to permutation.

Example
20 =22 x 5, 135 = 33 x 5.

18/115

Congruence class

Definition
For any a € Z, the congruence class of a modulo n, denoted @, is given by

a:={blbeZ,b=amodn}.

Lemma

Let Z,, denote the set of all congruence classes of a € Z modulo n. Then
Zn={0,1,...,n—1}.

Example

19/115

Addition and multiplication in Z,

Define addition on the set Z,, as follows:

a+b=a+0.

Example
®letn=73+2=5.
e letn=4,2+2=4=0.

Define multiplication on Z,, as follows
@-b=ab.

Example
Let n =5,

)
[\
=l
w
I
o
W
Il
Ne]
I
Ny

20/115

Ly

Theorem

(Zn,+,), the set Z,, together with addition multiplication defined just now is a
commutative ring.

Remark

For simplicity, we write a instead of @ and to make sure there is no confusion we would
first say a € Z,,. In particular, Z, ={0,1,2,...,n —1}. Furthermore, to emphasize
that multiplication or addition is done in Z,,, we write ab mod n or a + b mod n.

Example

Let n = 5, we write

4x2modb=8modb=23, ord x2=8=3mod 5.

21/115

Lemma
For any a € Z,, a # 0, a has a multiplicative inverse, denoted a~! mod n, if and only
if ged(a,n) = 1.

Corollary
Zy, is a field if and only if n is prime.

22/115

Find multiplicative inverse in Z,

® Recall that by the extended Euclidean algorithm, we can find integers s,t such
that
ged(a,n) = sa+ tn
for any a,n € Z.

¢ In particular, when ged(a,n) = 1, we can find s,t such that 1 = as + tn, which
gives as mod n = 1.

® Thus, we can find ! mod n = s mod n by the extended Euclidean algorithm.

23/115

Example — Find multiplicative inverse in Z,

Example

We have calculated ged(160,21) = 1 using the Euclidean algorithm. By the extended
Euclidean algorithm,

1=3-2, 2=5-3,

3=8-05, 5=13-38,

8§=21-13, 13=160—21 x 7.

We have
1 = 3-(5-3)=3x2-5=8x2-5x3=8x2—(13—-8)x3
= 8x5—-13x3=21x5—-13x8=21x5—(160—21x7)x38
(—8) x 160 + 61 x 21.

Thus
217! mod 160 = 61.

24 /115

3
ZTL
Definition
Let Z;, denote the set of congruence classes in Z,, which have multiplicative inverses:
Z, ={a | a€Zy, gcd(a,n)=1}.
Let ¢(n) denote the cardinality of Z7
p(n) = |Zy|.

 is called the Euler’s totient function.

Example
e letn=3,Z5={1,2}, p(3)=2.
o letn=4,7Z;={1,3}, ¢(4) =2.
® Letn = p be a prime number, Z; =Z,— {0} ={1,2,...,p—1}, o(p) =p—1.

25/115

Euler's totient function
Theorem
Foranyn e€Z,n > 1,
k k 1
if n= pri, then ¢(n) = nH (1 -) , (1)
; " Di
=1 i=1

where p; are distinct primes.

Example

® et n =10. 10 =2 x 5. We can count the elements in Z(that are coprime to 10
(there are 4 of them): Z1p ={0,1,2,3,4,5,6,7,8,9 }. By the above theorem we

also have .)
10) = 10 1—— 1—=-| =4.

26 /115

Euler's totient function

Theorem
Foranyn e Z, n > 1,

k k

. 1

if n= prl, then ¢(n) = nH (1 -) , (2)
i=1 i=1 ‘

where p; are distinct primes.

Example
e Let n =120. 120 = 23 x 3 x 5.

»(120) =7
® |Let n = pqg, where p and g are two distinct primes. Then

p(n) =7

27/115

Euler's totient function

Example
o Let n=120. 120 =23 x 3 x 5.

@(120):120x<1—;>x<1—;> x (1—;>:32.

® |Let n = pqg, where p and g are two distinct primes. Then

¢(n) = pq <1 - ;) <1— ;) =(@-1(@-1).

28/115

RSA, RSA signatures, and their implementations

o RSA

20/115

RSA

Published in 1977
Named after its inventors Ron Rivest, Adi Shamir, and Leonard Adleman.
RSA is the first public key cryptosystem, and still in use today.

The security relies on the difficulty of finding the factorization of a composite
positive integer.

30/115

Definition
Definition (RSA)

Let n = pq, where p, q are distinct prime numbers. Let P = C =Z,,
X = Z:;(n) —{1}. For any e € X, define encryption

E.:Z,— Z,, m— m®modn,
and the corresponding decryption
Dy : 7y — L, c— c? mod n,

where d = e~! mod ¢(n). The cryptosystem (P, C, X, &, D), where
E={E.:ecX}, D={Dy:de X}, is called RSA.

°o(n)=@p-1(-1)
® Public key: n, e, RSA modulus, encryption exponent
® Private key: d, decryption exponent

31/115

Key generation

Generate randomly and independently two large prime numbers p and q.
Compute n = pq.

® Normally p and ¢ are supposed to have equal lengths.

® For example, take p and ¢ to be 512-bit primes, and n will be a 1024-bit modulus.

*
Choose e € Zw(n)

® Note that e is odd since p(n) is even

® |n practice, e is chosen to be small to make the encryption efficient.

® However, e cannot be too small. It has been shown that only the n/4 least
significant bits of d suffice to recover d in the case of a small e

Compute d = e~! mod o(n) (extended Euclidean algorithm)
® d cannot be too small, it was proven that if d < n%292, then RSA can be broken

32/115

RSA — Example

Example

® As a toy example, suppose Bob would like to generate his private and public keys
for RSA.

® Bob randomly generates p = 3 and ¢ = 5.

® Then he computes n = 15 and

p(n) =7
Ly =7

33/115

RSA — Example

Example

® As a toy example, suppose Bob would like to generate his private and public keys
for RSA.

Bob randomly generates p = 3 and ¢ = 5.

Then he computes n = 15 and
p(n) =2x4=_8.

:;(n) :{1,3,5,7}

From Z%, Bob chooses e = 3.

Then by the extended Euclidean algorithm, he computes

d=3""mod 8 =?

34/115

RSA — Example
Example
®*p=3,¢g=5n=15and p(n) =2 x4 =38.
® From Z5=1{1,3,5,7 }, Bob chooses e = 3.
Then by the extended Euclidean algorithm, he computes

8=3%x2+23=2x141=—=1=3-2x1=3-(8—-3x2)=-8+3x3.

Hence his private key d = 37! mod 8 = 3.

Suppose Alice would like to send plaintext m = 2 to Bob, using Bob's public key
n=15,e = 3.

Alice computes

c=m° mod n =7

After receiving the ciphertext ¢ from Alice, Bob computes the plaintext using his

private key

m = c® mod n =?
35/115

RSA — Example

Example

® Suppose Alice would like to send plaintext m = 2 to Bob, using Bob's public key
n=15e=3.
® Alice computes
¢ =m® mod n = 2% mod 15 = 8.

e After receiving the ciphertext ¢ from Alice, Bob computes the plaintext using his
private key
m = ¢? mod n = 8 mod 15 = 512 mod 15 = 2.

36/115

RSA — Example

Example
p=29, g=41, n=1189

p(n) =7

37/115

RSA — Example

Example
p=29, q¢q=41, n=1189.
o(n) = 28 x 40 = 1120.

It is easy to verify that 31 ¢(n). And we choose e = 3. By the extended Euclidean
algorithm
d=e"! mod ¢(n) =2.

38/115

RSA — Example

Example
p=29, g=41, n=1189, ¢(n)=28x40=1120, e =3.

By the extended Euclidean algorithm

1120 =3x 3734+ 1= 1= 1120 — 3 x 373.

d = —373 mod 1120 = 747.

To send plaintext m = 2 to Bob. Alice computes

c=m° mod n ="

39/115

RSA — Example

Example

p=29, ¢g=41, n=1189, ¢(n)=1120, e=3, d= —373 mod 1120 = 747.
To send plaintext m = 2 to Bob. Alice computes

¢ =m° mod n = 2° mod 1189 = 8 mod 1189.
To decrypt, Bob computes

m = ¢ mod n = 84" mod 1189

40/115

RSA — Example

Example

To decrypt, Bob computes m = ¢ mod n = 8747 mod 1189.
Since 747 =512+ 128 + 64+ 32+ 8+ 2+ 1,

8% mod 1189 = 4096 mod 1189 = 529, 8% mod 1189 = 5292 mod 1189 = 426,
816 mod 1189 = 4262 mod 1189 = 748, 832 mod 1189 = 7482 mod 1189 = 674,
864 mod 1189 = 6742 mod 1189 =78, 8!2® mod 1189 = 782 mod 1189 = 139,
8256 mod 1189 = 1392 mod 1189 = 297, 8°'2 mod 1189 = 2972 mod 1189 = 223.

8o12H128 1164 1189 = 223 x 139 mod 1189 = 83,
804132 ;mod 1189 = 78 x 674 mod 1189 = 256
882 mod 1189 = 426 x 64 x 8 mod 1189 = 525,

877 mod 1189 = 83 x 256 x 525 mod 1189 = 2.

41/115

A useful lemma

To understand why the decryption works, let us first look at a lemma:

Lemma
Let p be a prime. Then for any a,b,c € Z such that b= c mod (p — 1), we have

a’ = a® mod p.

In particular,

a® = ab ™t (=1 o4 p.

Example
Letp=5,a=2 b=6. Then
26 =7 mod 5.

42/115

A useful lemma

Lemma
Let p be a prime. Then for any a,b,c € 7Z such that b= c mod (p — 1), we have

a’ = a® mod p.

In particular,

b — ab mod (p—1)

a mod p.

Example
Letp=5,a=2 b=6. Then

26 = g6modd _ 92 — 4 yy5d 5.

We can verify that indeed
20 = 64 = 4 mod 5.

43/115

Why decryption works

By the choice of e and d,
ed =1 mod ¢(n) = ed = p(n)a + 1 for some a € Z.

Then

= (mE)d _ mga(n)aJrl — m(pfl)(qfl)am‘

By the lemma above:

d:

¢ =m mod p, ¢ m mod gq.

44 /115

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let my, mo,...,my be pairwise coprime integers. For any ai,as,...,ar € 7, the
system of simultaneous congruences

xr=a; modmy, x=ay modms, ... T =ap modmy

has a unique solution modulo m = Hle m;.

Example

Take two distinct primes p, ¢, and let n = pq. By CRT, for any a € Z,, there is a
unique solution = € Z, such that

r=amodp, z=amodgq.

Since a = a mod p and a = a mod ¢, the unique solution is given by x = a € Z,.

45115

Why decryption works

By the choice of e and d,
ed =1 mod ¢(n) = ed = p(n)a + 1 for some a € Z.

Then

Cd o (me)d _ mcp(n)aJrl _ m(pfl)(qfl)am.

By the lemma above:

d _

cdzmmodp, c m mod gq.

By Chinese Remainder Theorem,

¢* = m mod n.

46 /115

Security of RSA

If p or g is known to the attacker
® can factorize n and compute ¢(n)
® with e, d can be computed using the extended Euclidean algorithm
All p, q,p(n) should be kept secret
Of course, if the attacker can factorize n with an efficient algorithm, then RSA is
broken.
® Up to now, the best-known algorithm for integer factorization has been used to
factorize RSA modulus of bit length 768
® |n practice, the most commonly used RSA modulus n is 1024, 2048, or 4096 bit.
® On the other hand, there is no proof that factorizing an integer n is infeasible.
It is not proven that RSA is secure if factoring is computationally infeasible —
there might be other ways to attack RSA.

47/115

RSA, RSA signatures, and their implementations

e RSA Signatures

48 /115

Digital signatures

Digital signatures provide means for an entity to bind its identity to a message.

This normally means that the sender uses their private key to sign the (hashed)
message.

Whoever has access to the public key can then verify the origin of the message.

For example, the message can be electronic contracts or electronic bank
transactions.

Suppose Alice signs a message m with a private key d and generates signature s.

Bob receives the message and the signature, he can then verify s with public key e
and a verification algorithm.

Given m and s, the verification algorithm returns true to indicate a valid signature
and false otherwise.

49 /115

RSA signatures

To use RSA for digital signature, we again let p and ¢ be two distinct primes.
n = pq, choose e € Z,\, compute d = e~ mod p(n).

The public key consists of e and n.

d is the private key.

p, ¢ and ¢(n) should be kept secret.

50/115

RSA signatures

To sign a message m, Alice computes the signature
s =m? mod n.
Then Alice sends both m and s to Bob. To verify the signature, Bob computes
s mod n.

If s =m mod n, then the verification algorithm outputs true, and false otherwise.

® Up to now, the only method known to compute s from m mod n is using d, so if
the verification algorithm outputs true, Bob can conclude that Alice is the owner
of d.

51/115

RSA signatures — Example

Example
Alice chooses p =5 and ¢ =7. Then n = 35 and

o(n) =7.

52/115

RSA signatures — Example

Example
® Alice chooses p=5and ¢ =7.

® Then
n=235 ¢(n)=24

® Suppose Alice chooses e = 5, which is coprime to 24.

® By the extended Euclidean algorithm

d=e"! mod ¢(n) =?

53/115

RSA signatures — Example

Example

p=>5, q=7, n=35 ¢n)=24, e=5.

® By the extended Euclidean algorithm
24=5%x444,5=44+1=1=5—-(24—-5x%x4) =24 x (-1)+5 x 5,

we have d = e~ mod 24 = 5.

® To sign message m = 10, Alice computes

s =m® mod n =?

Alice sends both the message and signature to Bob.

Bob verifies the signature

s® mod n =7
54 /115

RSA signatures — Example

Example

® To sign message m = 10, Alice computes
s =m? mod n = 10° mod 35 = 5.

® Alice sends both the message m = 10 and signature s = 5 to Bob.

® Bob verifies the signature

s mod n = 5° mod 35 = 10 = m.

55/115

Forgery attack on RSA signatures

The most common attack for a digital signature is to create a valid signature for a
message without knowing the secret key.

Such an attack is called forgery

Suppose the attacker, Eve, knows messages m1, ms and their corresponding
signatures s; and so.

Eve computes s = s152 mod n and m = myms mod n.

Since

d,d

s = mdmd mod n = (mimy)? mod n = m¢?

mod n,

s is a valid signature for m.

RSA signatures are commonly used together with a fast public hash function A

56 /115

Hash functions

® Hash functions map data of arbitrary length to a binary array of some fixed length
called hash values or message digests
® The following are the properties that should be met in a properly designed
cryptographic hash function:
(a) it is quick to compute a hash-value for any given input;
(b) it is computationally infeasible to generate an input that yields a given hash value (a
preimage);
(c) it is computationally infeasible to find a second input that maps to the same hash
value when one input is already known (a second preimage);
(d) it is computationally infeasible to find any pair of different messages that produce
the same hash value (a collision).

57/115

RSA signature with hash function

To sign a message m, Alice computes the signature
s = h(m)? mod n.

Then she sends both m and s to Bob.

Bob computes s mod n and h(m).

If s mod n = h(m), then Bob concludes the signature is valid.

58 /115

Forgery attack

® Suppose the attacker, Eve, knows messages mq,mo and their corresponding
signatures s; and so.

Without hash function

® Eve computes s = s159 mod n and m = myms mod n.

® Since

_nd.d dn= d _d
s =m{m§ mod n = (myme)® mod n = m® mod n,
s is a valid signature for m.

With hash function

® She can compute h(m1) and h(ms) as h is public.

® However, to repeat the forgery attack, she needs to find m such that
h(m) = h(my)h(mz), which is computationally infeasible according to property
(b) of hash functions

50 /115

RSA, RSA signatures, and their implementations

e Implementations of Modular Exponentiation

60/115

Modular exponentiation

To implement RSA or RSA signatures, we need to compute ¢ mod n for some
integer a € Zy,

n = pq is a product of two distinct primes and d € Z;(n).

We can compute d — 1 modular multiplications.

® inefficient for large d

® impossible for practical values of d — bit length more than 1000
Two methods

® square and multiply algorithm
® CRT-based RSA implementation

61/115

Square and multiply algorithm
Let n > 2 be an integer, d € Zg,(n), a € Ly,
Binary representation of d = dy,_1 ...d2d1dy, where d; = 0,1 and

Lg—1

d= Z d;2".
=0

We have
. 0g—1
d— 91 @ . i
CLd _ azz‘:o d;2" _ H (a2)cl2 _ H CL2)
i=0 0<i<ly,d;=1
Thus, to compute a® mod n, we can

® First compute a2 for 0 < <Ay
® Then a? is a product of a?* for which d; =1

Compared to d — 1 modular multiplications, this requires at most 2log, d
multiplications

62/115

1
2

5

Square and multiply algorithm

Algorithm 1: Right-to-left square and multiply algorithm for computing modular
exponentiation

Input: n, a, d// n€eZ,n>2; ac€Zy; de Ziy(n) has bit length {4
Output: a? mod n

result =1, t=a

fori=0,i< ¥, i+ + do

// ith bit of d is 1

if d; =1 then

// mutiply by a®
result = result ¥t mod n// o' = || o
0<i<ly,d;=1
oi+1
// t=a"
t=t*xt modn

6 return result

63/115

—

(=]

Right-to-left square and multiply algorithm

result =1, t=a
fori=0,i</{4, i+ + do
// ith bit of d is 1
if d; =1 then
// mutiply by a?
L result = result*t mod n

// t=a%"
t=t*xt modn

return result

Example
Let n =15, d =3 =119, a = 2. Then

a® mod n = 23 mod 15 = 8 mod 15 = 8

i‘di ‘ t ‘ result
0?17 ?
1177 ?

64/115

Right-to-left square and multiply algorithm

lresult=1,¢t=a
2 fori=0,i</{y, i+ + do

3

5

// ith bit of d is 1
if d; =1 then
// mutiply by a?
L result = resultxt mod n

// t=a%"
t=t*xt modn

6 return result

Example
Let n =15, d =3 =119, a = 2. Then

a® mod n = 23 mod 15 = 8 mod 15 = 8

i‘di ‘ t ‘ result
0114 2
11111 8

65/115

—

(=]

Right-to-left square and multiply algorithm

result =1, t=a
fori=0,i</{4, i+ + do
// ith bit of d is 1

if d; =1 then

L // mutiply by a?

Example
Let n =23, d =4 =1002, a =5. Then

a® mod n = 5* mod 23 = 625 mod 23 = 4

result = result+t mod n 1 ‘ d; ‘ t ‘ result
20+ 0| ? 17 ?
= ? ? ?
t=t*xt modn Lyl :
- 217?717 ?

return result

66 /115

—

(=]

Right-to-left square and multiply algorithm

result =1, t=a
fori=0,i</{4, i+ + do
// ith bit of d is 1
if d; =1 then
// mutiply by a?
L result = result*t mod n

// t=a%"
t=t*xt modn

return result

Example

Let n =23, d =4 =1002, a =5. Then

a® mod n = 5* mod 23 = 625 mod 23 = 4

1 ‘ d; ‘ t ‘ result
0|0 2 1
110 4 1
211116 4

67/115

w N =

LI

Left-to-right square and multiply algorithm

Algorithm 2: Left-to-right square and multiply algorithm for computing modular
exponentiation.

Input: n, a, d// neZ,n>2; acZy; deZ,,
Output: ¢ mod n

t=1
fori=0;—1,7>0,i— — do
t=t*xt modn
// ith bit of d is 1
if d; =1 then
Lt:a*tmodn
return t

68/115

Left-to-right square and multiply algorithm

11=1 . _ Example
2fori=»£3—1120i-—do Letn=15 d=3=1ly, a=2. Then
3 t=txt modn
// ith bit of d is 1 a® mod n = 23 mod 15 = 8 mod 15 = 8
4 if d; =1 then

[&,]

Lt:a*tmodn

6 returnt

69 /115

Left-to-right square and multiply algorithm

11=1 . _ Example
2fori=»£3—1120i-—do Letn=15 d=3=1ly, a=2. Then
3 t=txt modn
// ith bit of d is 1 a® mod n = 23 mod 15 = 8 mod 15 = 8
4 if d; =1 then

[&,]

Lt:a*tmodn

6 returnt

70/115

Left-to-right square and multiply algorithm

1t=1 . _ Example

2fori=ty—1,i20,i——do Let n =23, d =4 = 1002, a = 5. Then

3 t=txt modn
// ith bit of d is 1 a® mod n = 5* mod 23 = 625 mod 23 = 4
if d; = 1 then

o b

Lt:a*tmodn

6 returnt

71/115

Left-to-right square and multiply algorithm

1t=1 . _ Example

2fori=ty—1,i20,i——do Let n =23, d =4 = 1002, a = 5. Then

3 t=txt modn
// ith bit of d is 1 a® mod n = 5* mod 23 = 625 mod 23 = 4
if d; = 1 then

o b

Lt:a*tmodn

6 returnt

72/115

CRT-based

® p, ¢: distinct primes
® n = pq is the RSA modulus
® de Z;(n) is the private key for RSA or RSA signatures.

73/115

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m1,ma, ..., my be pairwise coprime integers. For any ai,ao,...,a; € Z, the
system of simultaneous congruences
xr=a; modmy, x=ay modms, ... T =ap modmy

has a unique solution modulo m = [F_, m;.

Example

Take two distinct primes p, ¢, and let n = pq. By CRT, for any a € Z, there is a
unique solution x € Z,, such that

r=amodp, =z =amodq.

d

= to find solution for x = a® mod n is equivalent to solving

z=a%mod p, x=amodq. 747115

A useful lemma

Lemma
Let p be a prime. Then for any a,b,c € 7Z such that b= c mod (p — 1), we have

a’ = a® mod p.

In particular,

b — ab mod (p—1)

a mod p.

Example
Letp=5,a=2 b=6. Then

26 = g6modd _ 92 — 4 yy5d 5.

We can verify that indeed
20 = 64 = 4 mod 5.

75/115

CRT-based

By the Chinese Remainder Theorem, finding the solution for z = a% mod n is
equivalent to solving
z=a’mod p, z=amod q.
By the lemma, we can compute
Ty 1= admod (=1) 1m6d p, Tq = admod (a=1) 10 ¢,

and solve for
T =xp mod p, x =z, mod q.

An implementation that computes a? mod n by solving the above equation is called
CRT-based RSA.

76 /115

Gauss's algorithm

We have discussed in week 1 that, we can compute

M, =q, M, = p, yq:]W(;1 mod p = ¢~ ! mod p, yp:M;1 mod ¢ = p~! mod g¢,

and
T = TpYyqq + Tqypp mod n

gives us the solution to
T =xp mod p, x =z, mod q.

Calculating = by with this method is called the Gauss’s algorithm.

77/115

Garner's algorithm

Garner's algorithm calculates
z = xp + ((xg — zp)yp mod ¢)p.
This indeed gives the solution to
T =xp mod p, x =1z, modq.
Firstly, it is straightforward to see x = x;,, mod p. Furthermore,
=1z, + (xg — 2p) = x4 mod q.
Since x), € Zy, x, < p. Similarly, (x4 — zp)y, mod ¢ < ¢ — 1. And
z = xp + ((2g — 2p)yp mod ¢)p <p+ (¢ —1)p=n,

thus = € Z,.

78/115

CRT-based RSA implementation — Example
CRT-based RSA implementation

_ ad mod (p—1) d mod (g—1)

mod p, z4:=a mod g,

My=q, Mp,=p

Tp -

1 1

yq:]Wq_1 mod p = ¢~ mod p, yp:Mp_1 mod ¢ =p~ " mod q.
Example
p=3, q=5 n=15 ¢n)=8, e=3, d=3, m=2 c=38
After receiving the ciphertext ¢, Bob computes the plaintext using his private key
m = ¢? mod n = 8 mod 15 = 512 mod 15 = 2 mod 15.
With CRT-based RSA implementation, Bob computes

mp =7 mg=? yp=7 yg=7
i o Yp Y 79/115

CRT-based RSA implementation — Example

Example
p=3, ¢q=5 n=15 ¢n)=8 e=3, d=3, m=2, c=38

After receiving the ciphertext ¢, with CRT-based RSA implementation, Bob computes

my = ¢ med (P=1) od p =82 M4 2 mod 3 =8 mod 3 =2,

Wy — c¢mod (@=1) 16d g = 83 ™M 4 od 5 = 512 mod 5 = 2.
By the extended Euclidean algorithm,
5=3%x142,3=24+1=—=1=3-(5—-3)=3x2-5.
Thus

Yp = p tmod ¢ =3"'mod 5=2mod 5,
Yg = ¢ 'modp=>5"mod3=—1mod3=2mod 3.

80/115

CRT-based RSA implementation — Example

Gauss's algorithm
T = TpYqeq + Tqypp mod n

Example

p=3, ¢g=5 n=15 ¢n)=8, e=3, d=3, c=8
With CRT-based RSA implementation, Bob computes
mp=2 mg=2 yYp=2 y;=2.
By Gauss's algorithm

m ="?

81/115

CRT-based RSA implementation — Example

Gauss's algorithm

T = TpYqq + Tqypp mod n

Example
p=3, ¢q=5 n=15 n)=8 e=3, d=3, m=2, c=38
With CRT-based RSA implementation, Bob computes

mp=2 mg=2 yYyp=2 y;=2.
By Gauss's algorithm

m = MpYeq +Mgypp mod n =2 x 2 x5+2x 2 x 3 mod 15 =32 mod 15 = 2.

82/115

CRT-based RSA implementation — Example

Garner's algorithm
z =1zp+ ((zg — 2p)yp mod q)p.
Example

p=3, ¢g=5 n=15 ¢n)=8, e=3, d=3, c=8
With CRT-based RSA implementation, Bob computes
mp=2 mg=2 yYp=2 y;=2.
By Garner's algorithm

m ="?

83/115

CRT-based RSA implementation — Example

Garner's algorithm
z =zp+ ((xg — 2p)yp mod q)p.
Example

p=3, ¢q=5 n=15 ¢n)=8, e=3, d=3, ¢=8
With CRT-based RSA implementation, Bob computes

mp=2 mg=2 yYyp=2 y,=2.
By Garner's algorithm

m =myp + ((mg —mp)yp, mod ¢)p =240 = 2.

84/115

CRT-based RSA implementation — Example

CRT-based RSA implementation

_ ad mod (p—1) _ CLd mod (g—1)

Tp mod p, Tg mod q,

MqZQ7 Mp:pa

1 1

yq:Mq_lmodp:q_ mod p, yp:Mp_lmodq:p_ mod g,

Example (RSA signature computation)
p=5 q=7 n=35 ¢n)=24, e=>5 d=5.
To sign message m = 10, with CRT-based RSA implementation, Alice computes

?

S8p =1 8q=" yp=" yg=?

85,115

CRT-based RSA implementation — Example
Example (RSA signature computation)

p=5 ¢q¢g=7 n=35 ¢pn)=24, e=>5 d=5.
To sign message m = 10, with CRT-based RSA implementation, Alice computes

sp = m@md P~ mod p=10° M4 mod 5 =0,

Sq = mdmed (4= mod ¢ = 10° ™46 mod 7 = 5.
By the extended Euclidean algorithm
7=5+425=2x241=1=5-2x(7T—-5)=5x3—-2x7
We have
Yp = p~ ' mod ¢ = 3 mod 7,

Yg = ¢ ' mod p=—2mod 5 = 3.

86115

CRT-based RSA implementation — Example

Gauss's algorithm

T = TpYqeq + Tqypp mod n

Example (RSA signature computation)

p=5 q=7 n=35 ¢n)=24, e=>5 d=5.

With CRT-based RSA implementation, Alice computes
s$p=0 s4=5 yp=3 yq=3.

By Gauss's algorithm
s =7

87/115

CRT-based RSA implementation — Example

Gauss's algorithm

T = TpYqq + Tqypp mod n

Example (RSA signature computation)

p=>5 q=7 n=35 o¢n) =24, e=5 d=5.
With CRT-based RSA implementation, Alice computes

s, =0 s5,=5 yp=3 y,=23.
By Gauss's algorithm

5 = SpYqq + Sqypp mod n =5 x 3 x 5 mod 35 = 5.

88/115

CRT-based RSA implementation — Example

Garner's algorithm
z =xp + ((xg — xp)y, mod q)p.

Example (RSA signature computation)

p=5 q=7 n=35 ¢n)=24, e=>5 d=5.

With CRT-based RSA implementation, Alice computes
s$p=0 s4=5 yp=3 yq=3.

By Garner's algorithm
s =7

89/115

CRT-based RSA implementation — Example

Garner's algorithm
x =z + ((xg — 2p)yp mod q)p.

Example (RSA signature computation)

p=>5 q=7 n=35 o¢n) =24, e=5 d=5.

With CRT-based RSA implementation, Alice computes
s, =0 s5,=5 yp=3 y,=23.

By Garner's algorithm

s=s5p+ ((sq—Sp)yp mod ¢)p=0+ (5x3mod 7) x5=1x5=>5.

90/115

CRT-based RSA implementation — Example

CRT-based RSA implementation

_ ad mod (p—1) _ ad mod (g—1)

Tp ¢ mod p, ity - mod q,

]Vfé =4q, jtfﬁ =D,

1

yq:qulmodp:q* mod p, yp:Mpflmodq:p*Imodq,

Example
p=29, q=41, n=1189, ¢(n)=1120, e=3, d=747, c=38
With CRT-based RSA implementation, Bob computes

it =1 g =1 up =0 ="

91/115

CRT-based RSA implementation — Example
Example
p=29, q=41, n=1189, ¢(n)=1120, e=3, d=747, c¢=8
With CRT-based RSA implementation, Bob computes

m, = c?mod Pl mod p = 8747 mod 28 13164 29 = 819 mod 29 = 2,

My = c¢mod (@=1) 5d g = 8747 mod 40 1154 41 = 827 mod 41 = 2.
By the extended Euclidean algorithm

41=29+12, 20 =12x2+5, 12=5x2+2, 5=2x 2+ 1,
1 = 5-2x(12-5x2)=-2x12+(29-12x2) x 5
= 29x5—12x (41 —29) = —41 x 12+ 29 x 17.
yp = p 'modqg=29" mod 41 = 17 mod 41,
Uy = ¢ ' mod p =41"! mod 29 = —12 mod 29 = 17 mod 29.

92/115

CRT-based RSA implementation — Example

Gauss's algorithm

T = TpYqeq + Tqypp mod n

Example

p=29, qg=41, n=1189, ¢(n)=1120, e=3, d="747,
With CRT-based RSA implementation, Bob computes

mpy=2 mg=2 yYp=17 y,=17

By Gauss's algorithm
m =7

c=38

93/115

CRT-based RSA implementation — Example

Gauss's algorithm

T = TpYqq + Tqypp mod n

Example
p=29, q=41, n=1189, ¢(n)=1120, e=3, d=747, c¢=8
With CRT-based RSA implementation, Bob computes

mpy=2 mg=2 yp,=17 y,=17
By Gauss's algorithm

m = MpYeq+mqypp mod n = 2x17x414+2x17x29 mod 1189 = 2380 mod 1189 = 2.

94 /115

CRT-based RSA implementation — Example

Garner's algorithm
z =1zp+ ((zg — 2p)yp mod q)p.
Example

p=29, qg=41, n=1189, ¢(n)=1120, e=3, d="747,
With CRT-based RSA implementation, Bob computes

mpy=2 mg=2 yYp=17 y,=17

By Garner's algorithm
m =7

c=38

95/115

CRT-based RSA implementation — Example

Garner's algorithm
z =zp+ ((xg — 2p)yp mod q)p.
Example

p=29, q=41, n=1189, ¢(n)=1120, e=3, d=747, c¢=8
With CRT-based RSA implementation, Bob computes

mpy=2 mg=2 yp,=17 y,=17
By Garner's algorithm

m =myp + ((mg —mp)yp, mod ¢)p =240 = 2.

96 /115

CRT-based RSA implementation

yp and y, can be precomputed, which saves time during communication.

The intermediate values during the computation are only half as big compared to
computations of a mod n since they are in Zy, or Zg rather than Z,.

= g4 mod (P=1) mod p and Tq = a?m0d (@-1) 164 ¢ can be calculated by

square and multiply algorithm to further improve the efficiency.

Lp

d mod (p — 1) and d mod (¢ — 1) are much smaller than d, computing z, or z,
requires fewer multiplications than computing a? mod p and a® mod q.

Compared to Gauss's algorithm, Garner's algorithm does not require the final
modulo n reduction.

97/115

RSA, RSA signatures, and their implementations

e Implementations of Modular Multiplication

98/115

Modular operations

To have more efficient modular exponentiation implementations, we need to
compute modular addition, subtraction, inverse, and multiplications.

For modular addition and subtraction, we can just compute the corresponding
integer operation and then perform a single reduction modulo the modulus.

For inverse modulo an integer, as has been mentioned a few times, we can utilize
the extended Euclidean algorithm.

We will look at one method for computing modular multiplication

99/115

Notations
n: an integer of bit length £,

2=l <y < 9bn,

® q,b€ Zy,, in particular, 0 < a,b < n.

w: the computer’s word size
® for a 64-bit processor, the word size is 64

Let k = [{p/w], ie. (k— 1w < £y < Kw.
Then (]| indicates concatenation, 0 < a; < 2¢)

a = ax—1||ax—2||--.|ao,

Note that some a; might be 0 if the bit length of a is less than ¢,,. We have

I
—

K .
a=" a;(2¥)".

I
o

100/115

Notations
n: an integer of bit length ¢,
a,b € Zy, in particular, 0 < a,b < n.
w: the computer’s word size
Let k = [4y/w], ie. (k— 1w < £y, < Kw.
Then (|| indicates concatenation, 0 < a; < 2¥)

a = aK,1|\an,2]| ||a0,

Note that some a; might be 0 if the bit length of a is less than £,,. We have
k—1
a= Z a;(29)",
i=0
Example
w=2,a=13=11015, n = 15. Then

bo=4, K= [lyjw]=[4/2] =2.

101/115

Notations — Example
® n: an integer of bit length ¢,
® a,b € Zy,, in particular, 0 < a,b < n.
Let k = [{,/w]
Then (]| indicates concatenation, 0 < a; < 2%)

a = ax—1||ax—2||--.1|ao,

Note that some a; might be 0 if the bit length of a is less than ¢,,. We have

|
—

K .
a=Y a;(2°).

<.
Il
=)

Example
w=2,a=13=11013, n =15. Then ¢, =4, xk = 2.

ap=0la=1, a1=113=3, a=0ap(2°)°+a1(2°)! =1+3x4=13

102/115

Notations — Example
® n: an integer of bit length ¢,
® q,b€ Zy,, in particular, 0 < a,b < n.
Let k = [, /w]
Then (]| indicates concatenation, 0 < a; < 2%)

a = ax—1||ax—2||--.1|ao,

Note that some a; might be 0 if the bit length of a is less than ¢,,. We have

I
—

K .
a="Y a;(2¥)".

ﬂ.
[e=]

Example
a=55=1101113, n =69, w = 2.

by =" k= [l w] ="

103 /115

Notations — Example
n: an integer of bit length £,
a,b € Zy, in particular, 0 < a,b < n.
Let k = [4),/w]
Then (]| indicates concatenation, 0 < a; < 2¢)

a = ax—1|ax—2||--.|ao,

Note that some a; might be 0 if the bit length of a is less than ¢,,. We have

|
—

K

a=) a;(2°).

I
o

Example
a =55=1101112, n =69, and w = 2.

by =T, k=[l,/w]=][7/2] =4.

ag =7 al =7 a = as =7
104 /115

Notations — Example
n: an integer of bit length £, i.e.
a,b € Zy, in particular, 0 < a,b < n.
Let k = [4),/w]
Then (]| indicates concatenation, 0 < a; < 2¢)

a = ax—1]|ax—2||--.|ao,

Note that some a; might be 0 if the bit length of a is less than ¢,,. We have
rk—1)
a="Y a;(2¥).
i=0
Example
a=>55=1101119, n =69, w =2. £, =7, k= [lp/w]| = [7/2] = 4.

CLO:11:3, a1:01:1, CL2:11:3, a3:O.

a=3x(2)"+1x (2 +3x (222 +0x (22)> =3 +4+48 +0 = 55.

105 /115

Blakley's method

® We would like to compute
R:=abmod n, a,beZ,.

® \We have discussed that

where 0 < a; < 2%.

® The product ab can be computed as follows

K—1 Kk—1
t=ab= (Z ai(2“)i> b= Z(Q”)iaib,
=0 =0

106 /115

B W N

Algorithm 3: Blakely's method for computing modular multiplication.

Input: n, a, b// n<c7Z,n>2 has bit length (,; a,bc Z,
Output: R = ab mod n

R=0
// k= [l,/w], where w is the word size of the computer
fori=xk—-1,i>0,7i—— do
R=2“R+a
L R =R modn
return R

107 /115

Blakely's method

Input: n, a, b Line 3,
Output: R = ab mod
B :po abmod n R < 2°(n—1)+(2-1)(n—1) = (2T —1)n— (21 -1
2fori=x—-1,920,7——do Line 4 can be replaced by comparing R with n for
3 R=2R+ab 2«1 _ 2 times and subtract n from R in case
5 return R 1 for j=0,1,2...,29*1 —2 do
2 if R>nthen R=R-—n
3 else break

in this way, we can avoid dividing by n

108 /115

Blakely's method — Example

Input: n, a, b

Output: R = ab mod n
1 R=0
2fori=x—-1,71>0,i— — do
3 R=2“R+ a;b
4 R=Rmodn

5 return R

Example

w=2,a=13=11019, b=5,n =15 (¢, =4),
Kk = 2.

a0:012:1, a1:112:3.
Fori=1,
R=0+4+3 x5 mod 15 =0 mod 15.

For i =0,
R =7

109/115

Blakely's method — Example

Input: n, a, b

Example
Output: R = ab mod n
L R—0 w=2 a=13=1101y b="5,n=15 ({, = 4),
2fori=r—1,i>0,i— — do =2
1) .
Z Lg;iﬁ;aﬁlb ag=0lz=1, a;=1l=3.
5 return R Fori=1,

R=0+4+3 x5 mod 15 =0 mod 15.
For i =0,
R=0+1x5mod 15 =5 mod 15

We have the final result 13 x 5 mod 15 = 5.

110/115

Blakely's method — Example

Input: n, a, b

Example
Output: R =ab mod n

a=>55=1101113, b=46,n =69, w =2, £, =7,

1 R=0

sfori—r—1:i>0 i——do k=4, a0=11=3,a1 =01 =1, ap =11 = 3,
3 LRzQ“R—i—aib ag =0

4 | R=Rmodn i=3 line3, R=?

5 return R line 4 R —=?

111/115

Blakely's method — Example

Input: n, a, b

Example
Output: R = ab mod n

a=55=1101119, b=46,n =69, w =2, £, =7,

1 R=0

2fori=x—1,i>0,i—— do k=4,a0=11=3,a;=01=1, a3 =11=3,
3 LR:2°JR+a¢b =0

4 R =R modn ;=3 line 3, =

;=2 line 3,

R=0

5 return R line4, R=0
R

line4, R

112/115

Blakely's method — Example

Input: n, a, b

Example
Output: R = ab mod n

a=55=1101119, b=46, n =69, w =2, £, =7,

;ﬁ)r:z’o:/@—l,i>0,i——do PG L A [O)
3 LRzQ“R—HLib a3 =0
¢ | R=HRmodn i=3 line3, R=0,
5 return R line4, R=0,
i=2 line3, R=3x46= 138,
line 4, R = 138 mod 69 = 0,
i=1 line3, R=?
line 4, R =7
i=0 line3, R=7
line 4, R =7

113 /115

Blakely's method — Example

Input: n, a, b

Output: R = ab mod n
1 R=0
2fori=x—-1,9>0,7— — do
3 R=2“R+a
4 LR:Rmodn

5 return R

Example

a=55=110111y, b =46, n =69, w =2, ¢, =7,
k=4, a0=11=3,a1 =01 =1, ap =11 = 3,

az =0
1=3
=2
g =1l
1=0

line 3,
line 4,
line 3,
line 4,
line 3,
line 4,
line 3,

line 4,

R=0,

R=0,

R =3 x 46 = 138,
R =138 mod 69 = 0,
R=1x 46 = 46,

R = 46 mod 69 = 46,
R = 2% x 46 4 3 x 46 = 322,
R = 322 mod 69 = 46.

114 /115

Final remarks

Currently, a few hundred qubits (a quantum counterpart to the classical bit) are
possible for a quantum computer

To break RSA, thousands of qubits are required.

Post-quantum public key cryptosystems are being proposed to protect
communications after a sufficiently strong quantum computer is built.

Various public key cryptosystems based on different problems
Various digital signature designs

Provable secure signature, similarity to one-time pad

115/115

	Introduction
	RSA
	RSA Signatures
	Implementations of Modular Exponentiation
	Implementations of Modular Multiplication

