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Course Outline

• Abstract algebra and number theory

• Introduction to cryptography

• Symmetric block ciphers and their implementations

• RSA, RSA signatures, and their implementations

• Probability theory and introduction to SCA

• SPA and non-profiled DPA

• Profiled DPA

• SCA countermeasures

• FA on RSA and countermeasures

• FA on symmetric block ciphers

• FA countermeasures for symmetric block cipher
• Practical aspects of physical attacks

• Invited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH
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Recommended reading

• Textbook
• Sections 3.3, 3.4, 3.5
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Lecture Outline

• Introduction

• RSA

• RSA Signatures

• Implementations of Modular Exponentiation

• Implementations of Modular Multiplication
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RSA, RSA signatures, and their implementations

• Introduction

• RSA

• RSA Signatures

• Implementations of Modular Exponentiation

• Implementations of Modular Multiplication
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Insecure communication channel

Alice

src: https://www.pngwing.com/en/free-png-zhbsy

Bob

src: https://alicebobstory.com/

Eve

src: https://pngtree.com/
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Cryptosystem

Definition

A cryptosystem is a tuple (P,C,K,E,D) with the following properties.

• P is a finite set of plaintexts, called plaintext space.

• C is a finite set of ciphertexts, called ciphertext space.

• K is a finite set of keys, called key space.

• E = { Ek : k ∈ K }, where Ek : P → C is an encryption function.

• D = {Dk : k ∈ K }, where Dk : C → P is a decryption function.

• For each e ∈ K, there exists d ∈ K such that Dd(Ee(p)) = p for all p ∈ P.

If e = d, the cryptosystem is called a symmetric key cryptosystem. Otherwise, it is
called a public-key/asymmetric cryptosystem.
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Key exchange

• For symmetric key cipher, a prior communication of the master key (key
exchange) is required before any ciphertext is transmitted.

• With only a symmetric key cipher, the key exchange may be difficult to achieve
due to, e.g. far distance, and too many parties involved.

• In practice, this is where asymmetric key cryptosystem comes into use.
• For example, Alice would like to communicate with Bob using AES.

• To exchange the master key, k, for AES, she will encrypt k by a public key
cryptosystem using Bob’s public key e, c = Ee(k).

• The resulting ciphertext c will be sent to Bob, and Bob can decrypt it with his secret
private key d, k = Dd(c).

• Then Alice and Bob can communicate with key k using AES.
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Security of public key cryptosystem

• Clearly, we require that it is computationally infeasible to find the private key d
given the public key e.

• In practice, this is guaranteed by some intractable problem
• A problem is intractable if there does not exist an efficient algorithm to solve it.

• However, the cipher might not be secure in the future.
• For example, if a quantum computer with enough bits is manufactured, it can break

many public key cryptosystems

• A public key cipher is not perfectly secure
• perfectly secure: in a ciphertext-only attack setting, the attacker cannot obtain any

information about the plaintext no matter how much computing power they have.
• the attacker can brute force the key
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Greatest common divisor

Definition

Take m,n ∈ Z, m ̸= 0 or n ̸= 0, the greatest common divisor of m and n, denoted
gcd(m,n), is given by d ∈ Z such that

• d > 0,

• d|m, d|n, and
• if c|m and c|n, then c|d.

Example

• All positive divisors of 4 and 6 are 1, 2, 4 and 1, 2, 3, 6 respectively. So
gcd(4, 6) = 2.

• All the positive divisors of 2 are 1 and 2. All the positive divisors of 3 are 1 and 3.
So gcd(2, 3) = 1.

10 / 115



Bézout’s identity

Theorem (Bézout’s identity)

For any m,n ∈ Z, such that m ̸= 0 or n ̸= 0. gcd(m,n) exists and is unique.
Moreover, ∃s, t ∈ Z such that gcd(m,n) = sm+ tn.

Example

gcd(4, 6) = 2 = (−1)× 4 + 1× 6.

gcd(2, 3) = 1 = (−4)× 2 + 3× 3.
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Euclidean algorithm

Theorem (Euclid’s division)

Given m,n ∈ Z, take q, r such that n = qm+ r, then gcd(m,n) = gcd(m, r).

Thus, to find gcd(m,n), we can compute Euclid’s division repeatedly until we get
r = 0.

Example

We can calculate gcd(120, 35) as follows:

120 = 35× 3 + 15 gcd(120, 35) = gcd(35, 15),
35 = 15× 2 + 5 gcd(35, 15) = gcd(15, 5),
15 = 5× 3 gcd(15, 5) = 5 =⇒ gcd(120, 35) = 5.
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Euclidean algorithm

Example

We can calculate gcd(160, 21) using the Euclidean algorithm

160 = 21× 7 + 13 gcd(160, 21) = gcd(21, 13),
21 = 13× 1 + 8 gcd(21, 13) = gcd(13, 8),
13 = 8× 1 + 5 gcd(13, 8) = gcd(8, 5),
8 = 5× 1 + 3 gcd(8, 5) = gcd(5, 3),
5 = 3× 1 + 2 gcd(5, 3) = gcd(3, 2),
3 = 2× 1 + 1 gcd(3, 2) = gcd(2, 1),
2 = 1× 2 gcd(2, 1) = 1 =⇒ gcd(160, 21) = 1
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Extended Euclidean algorithm

Note

With the intermediate results we have from the Euclidean algorithm, we can also find
s, t such that gcd(m,n) = sm+ tn (Bézout’s identity).

Example

We have calculated gcd(120, 35) as follows:

120 = 35× 3 + 15 gcd(120, 35) = gcd(35, 15),
35 = 15× 2 + 5 gcd(35, 15) = gcd(15, 5),
15 = 5× 3 gcd(15, 5) = 5 =⇒ gcd(120, 35) = 5.

Then
5 = 35− 15× 2,
15 = 120− 35× 3,
5 = 35− (120− 35× 3)× 2 = 120× (−2) + 35× 7.
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Extended Euclidean algorithm

Example

We have calculated gcd(160, 21) using the Euclidean algorithm

160 = 21× 7 + 13 gcd(160, 21) = gcd(21, 13),
21 = 13× 1 + 8 gcd(21, 13) = gcd(13, 8),
13 = 8× 1 + 5 gcd(13, 8) = gcd(8, 5),
8 = 5× 1 + 3 gcd(8, 5) = gcd(5, 3),
5 = 3× 1 + 2 gcd(5, 3) = gcd(3, 2),
3 = 2× 1 + 1 gcd(3, 2) = gcd(2, 1),
2 = 1× 2 gcd(2, 1) = 1 =⇒ gcd(160, 21) = 1

Using the extended Euclidean algorithm, find integers s, t such that
gcd(160, 21) = s160 + t35
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Extended Euclidean algorithm

Example

By the extended Euclidean algorithm,

1 = 3− 2, 2 = 5− 3,
3 = 8− 5, 5 = 13− 8,
8 = 21− 13, 13 = 160− 21× 7.

We have

1 = 3− (5− 3) = 3× 2− 5 = 8× 2− 5× 3 = 8× 2− (13− 8)× 3

= 8× 5− 13× 3 = 21× 5− 13× 8 = 21× 5− (160− 21× 7)× 8

= (−8)× 160 + 61× 21.
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Prime numbers

Definition
• For m,n ∈ Z such that m ̸= 0 or n ̸= 0, m and n are said to be relatively

prime/coprime if gcd(m,n) = 1.

• Given p ∈ Z, p > 1. p is said to be prime (or a prime number) if for any m ∈ Z,
either m is a multiple of p (i.e. p|m) or m and p are coprime (i.e. gcd(p,m) = 1).

Example

• 4 and 9 are relatively prime

• 8 and 6 are not relatively prime

• 2, 3, 5, 7 are prime numbers

• 6, 9, 21 are not prime numbers
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The Fundamental Theorem of Arithmetic

Theorem (The Fundamental Theorem of Arithmetic)

For any n ∈ Z, n > 1, n can be written in the form

n =

k∏
i=1

peii ,

where the exponents ei are positive, the prime numbers p1, p2, . . . , pk are pairwise
distinct and unique up to permutation.

Example

20 = 22 × 5, 135 = 33 × 5.
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Congruence class

Definition

For any a ∈ Z, the congruence class of a modulo n, denoted a, is given by

a := { b | b ∈ Z, b ≡ a mod n } .

Lemma

Let Zn denote the set of all congruence classes of a ∈ Z modulo n. Then
Zn =

{
0, 1, . . . , n− 1

}
.

Example

Let n = 5. We have 1 = 6 = −4. Z5 =
{
0, 1, 2, 3, 4

}
.
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Addition and multiplication in Zn

Define addition on the set Zn as follows:

a+ b = a+ b.

Example

• Let n = 7, 3 + 2 = 5.

• Let n = 4, 2 + 2 = 4 = 0.

Define multiplication on Zn as follows

a · b = ab.

Example

Let n = 5,
−2 · 13 = 3 · 3 = 9 = 4
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Zn

Theorem

(Zn,+, ·), the set Zn together with addition multiplication defined just now is a
commutative ring.

Remark

For simplicity, we write a instead of a and to make sure there is no confusion we would
first say a ∈ Zn. In particular, Zn = { 0, 1, 2, . . . , n− 1 }. Furthermore, to emphasize
that multiplication or addition is done in Zn, we write ab mod n or a+ b mod n.

Example

Let n = 5, we write

4× 2 mod 5 = 8 mod 5 = 3, or 4× 2 ≡ 8 ≡ 3 mod 5.
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Zn

Lemma

For any a ∈ Zn, a ̸= 0, a has a multiplicative inverse, denoted a−1 mod n, if and only
if gcd(a, n) = 1.

Corollary

Zn is a field if and only if n is prime.
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Find multiplicative inverse in Zn

• Recall that by the extended Euclidean algorithm, we can find integers s, t such
that

gcd(a, n) = sa+ tn

for any a, n ∈ Z.
• In particular, when gcd(a, n) = 1, we can find s, t such that 1 = as+ tn, which
gives as mod n = 1.

• Thus, we can find a−1 mod n = s mod n by the extended Euclidean algorithm.
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Example – Find multiplicative inverse in Zn

Example

We have calculated gcd(160, 21) = 1 using the Euclidean algorithm. By the extended
Euclidean algorithm,

1 = 3− 2, 2 = 5− 3,
3 = 8− 5, 5 = 13− 8,
8 = 21− 13, 13 = 160− 21× 7.

We have

1 = 3− (5− 3) = 3× 2− 5 = 8× 2− 5× 3 = 8× 2− (13− 8)× 3

= 8× 5− 13× 3 = 21× 5− 13× 8 = 21× 5− (160− 21× 7)× 8

= (−8)× 160 + 61× 21.

Thus
21−1 mod 160 = 61.
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Z∗
n

Definition

Let Z∗
n denote the set of congruence classes in Zn which have multiplicative inverses:

Z∗
n := { a | a ∈ Zn, gcd(a, n) = 1 } .

Let φ(n) denote the cardinality of Z∗
n

φ(n) = |Z∗
n|.

φ is called the Euler’s totient function.

Example

• Let n = 3, Z∗
3 = { 1, 2 }, φ(3) = 2.

• Let n = 4, Z∗
4 = { 1, 3 }, φ(4) = 2.

• Let n = p be a prime number, Z∗
p = Zp−{ 0 } = { 1, 2, . . . , p− 1 }, φ(p) = p− 1.
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Euler’s totient function

Theorem

For any n ∈ Z, n > 1,

if n =

k∏
i=1

peii , then φ(n) = n

k∏
i=1

(
1− 1

pi

)
, (1)

where pi are distinct primes.

Example

• Let n = 10. 10 = 2× 5. We can count the elements in Z10 that are coprime to 10
(there are 4 of them): Z10 = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } . By the above theorem we
also have

φ(10) = 10×
(
1− 1

2

)
×
(
1− 1

5

)
= 4.
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Euler’s totient function

Theorem

For any n ∈ Z, n > 1,

if n =

k∏
i=1

peii , then φ(n) = n

k∏
i=1

(
1− 1

pi

)
, (2)

where pi are distinct primes.

Example

• Let n = 120. 120 = 23 × 3× 5.

φ(120) =?

• Let n = pq, where p and q are two distinct primes. Then

φ(n) =?
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Euler’s totient function

Example

• Let n = 120. 120 = 23 × 3× 5.

φ(120) = 120×
(
1− 1

2

)
×
(
1− 1

3

)
×
(
1− 1

5

)
= 32.

• Let n = pq, where p and q are two distinct primes. Then

φ(n) = pq

(
1− 1

p

)(
1− 1

q

)
= (p− 1)(q − 1).
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RSA, RSA signatures, and their implementations

• Introduction

• RSA

• RSA Signatures

• Implementations of Modular Exponentiation

• Implementations of Modular Multiplication
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RSA

• Published in 1977

• Named after its inventors Ron Rivest, Adi Shamir, and Leonard Adleman.

• RSA is the first public key cryptosystem, and still in use today.

• The security relies on the difficulty of finding the factorization of a composite
positive integer.
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Definition

Definition (RSA)

Let n = pq, where p, q are distinct prime numbers. Let P = C = Zn,
K = Z∗

φ(n) − { 1 }. For any e ∈ K, define encryption

Ee : Zn → Zn, m 7→ me mod n,

and the corresponding decryption

Dd : Zn → Zn, c 7→ cd mod n,

where d = e−1 mod φ(n). The cryptosystem (P,C,K,E,D), where
E = { Ee : e ∈ K }, D = {Dd : d ∈ K }, is called RSA.

• φ(n) = (p− 1)(q − 1)

• Public key: n, e, RSA modulus, encryption exponent

• Private key: d, decryption exponent
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Key generation

• Generate randomly and independently two large prime numbers p and q.
• Compute n = pq.

• Normally p and q are supposed to have equal lengths.
• For example, take p and q to be 512-bit primes, and n will be a 1024-bit modulus.

• Choose e ∈ Z∗
φ(n)

• Note that e is odd since φ(n) is even
• In practice, e is chosen to be small to make the encryption efficient.
• However, e cannot be too small. It has been shown that only the n/4 least

significant bits of d suffice to recover d in the case of a small e

• Compute d = e−1 mod φ(n) (extended Euclidean algorithm)
• d cannot be too small, it was proven that if d < n0.292, then RSA can be broken
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RSA – Example

Example

• As a toy example, suppose Bob would like to generate his private and public keys
for RSA.

• Bob randomly generates p = 3 and q = 5.

• Then he computes n = 15 and
φ(n) =?

Z∗
φ(n) =?
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RSA – Example

Example

• As a toy example, suppose Bob would like to generate his private and public keys
for RSA.

• Bob randomly generates p = 3 and q = 5.

• Then he computes n = 15 and

φ(n) = 2× 4 = 8.

Z∗
φ(n) = { 1, 3, 5, 7 }

• From Z∗
8, Bob chooses e = 3.

• Then by the extended Euclidean algorithm, he computes

d = 3−1 mod 8 =?
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RSA – Example

Example

• p = 3, q = 5, n = 15 and φ(n) = 2× 4 = 8.

• From Z∗
8 = { 1, 3, 5, 7 }, Bob chooses e = 3.

• Then by the extended Euclidean algorithm, he computes

8 = 3× 2 + 2, 3 = 2× 1 + 1 =⇒ 1 = 3− 2× 1 = 3− (8− 3× 2) = −8 + 3× 3.

• Hence his private key d = 3−1 mod 8 = 3.

• Suppose Alice would like to send plaintext m = 2 to Bob, using Bob’s public key
n = 15, e = 3.

• Alice computes
c = me mod n =?

• After receiving the ciphertext c from Alice, Bob computes the plaintext using his
private key

m = cd mod n =?
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RSA – Example

Example

p = 3, q = 5, n = 15, φ(n) = 2× 4 = 8, e = 3, d = 3−1 mod 8 = 3.

• Suppose Alice would like to send plaintext m = 2 to Bob, using Bob’s public key
n = 15, e = 3.

• Alice computes
c = me mod n = 23 mod 15 = 8.

• After receiving the ciphertext c from Alice, Bob computes the plaintext using his
private key

m = cd mod n = 83 mod 15 = 512 mod 15 = 2.
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RSA – Example

Example

p = 29, q = 41, n = 1189

φ(n) =?
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RSA – Example

Example

p = 29, q = 41, n = 1189.

φ(n) = 28× 40 = 1120.

It is easy to verify that 3 ∤ φ(n). And we choose e = 3. By the extended Euclidean
algorithm

d = e−1 mod φ(n) =?.
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RSA – Example

Example

p = 29, q = 41, n = 1189, φ(n) = 28× 40 = 1120, e = 3.

By the extended Euclidean algorithm

1120 = 3× 373 + 1 =⇒ 1 = 1120− 3× 373.

d = −373 mod 1120 = 747.

To send plaintext m = 2 to Bob. Alice computes

c = me mod n =?
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RSA – Example

Example

p = 29, q = 41, n = 1189, φ(n) = 1120, e = 3, d = −373 mod 1120 = 747.

To send plaintext m = 2 to Bob. Alice computes

c = me mod n = 23 mod 1189 = 8 mod 1189.

To decrypt, Bob computes

m = cd mod n = 8747 mod 1189

40 / 115



RSA – Example

Example

To decrypt, Bob computes m = cd mod n = 8747 mod 1189.
Since 747 = 512 + 128 + 64 + 32 + 8 + 2 + 1,

84 mod 1189 = 4096 mod 1189 = 529, 88 mod 1189 = 5292 mod 1189 = 426,
816 mod 1189 = 4262 mod 1189 = 748, 832 mod 1189 = 7482 mod 1189 = 674,
864 mod 1189 = 6742 mod 1189 = 78, 8128 mod 1189 = 782 mod 1189 = 139,
8256 mod 1189 = 1392 mod 1189 = 297, 8512 mod 1189 = 2972 mod 1189 = 223.

8512+128 mod 1189 = 223× 139 mod 1189 = 83,

864+32 mod 1189 = 78× 674 mod 1189 = 256

88+2+1 mod 1189 = 426× 64× 8 mod 1189 = 525,

8747 mod 1189 = 83× 256× 525 mod 1189 = 2.
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A useful lemma

To understand why the decryption works, let us first look at a lemma:

Lemma

Let p be a prime. Then for any a, b, c ∈ Z such that b ≡ c mod (p− 1), we have

ab ≡ ac mod p.

In particular,
ab ≡ ab mod (p−1) mod p.

Example

Let p = 5, a = 2, b = 6. Then
26 ≡? mod 5.
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A useful lemma

Lemma

Let p be a prime. Then for any a, b, c ∈ Z such that b ≡ c mod (p− 1), we have

ab ≡ ac mod p.

In particular,
ab ≡ ab mod (p−1) mod p.

Example

Let p = 5, a = 2, b = 6. Then

26 ≡ 26 mod 4 ≡ 22 ≡ 4 mod 5.

We can verify that indeed
26 ≡ 64 ≡ 4 mod 5.
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Why decryption works

By the choice of e and d,

ed ≡ 1 mod φ(n) =⇒ ed = φ(n)a+ 1 for some a ∈ Z.

Then
cd = (me)d = mφ(n)a+1 = m(p−1)(q−1)am.

By the lemma above:
cd ≡ m mod p, cd ≡ m mod q.
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m1,m2, . . . ,mk be pairwise coprime integers. For any a1, a2, . . . , ak ∈ Z, the
system of simultaneous congruences

x ≡ a1 mod m1, x ≡ a2 mod m2, . . . x ≡ ak mod mk

has a unique solution modulo m =
∏k

i=1mi.

Example

Take two distinct primes p, q, and let n = pq. By CRT, for any a ∈ Zn, there is a
unique solution x ∈ Zn such that

x ≡ a mod p, x ≡ a mod q.

Since a ≡ a mod p and a ≡ a mod q, the unique solution is given by x = a ∈ Zn.
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Why decryption works

By the choice of e and d,

ed ≡ 1 mod φ(n) =⇒ ed = φ(n)a+ 1 for some a ∈ Z.

Then
cd = (me)d = mφ(n)a+1 = m(p−1)(q−1)am.

By the lemma above:
cd ≡ m mod p, cd ≡ m mod q.

By Chinese Remainder Theorem,

cd ≡ m mod n.
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Security of RSA

• If p or q is known to the attacker
• can factorize n and compute φ(n)
• with e, d can be computed using the extended Euclidean algorithm

• All p, q, φ(n) should be kept secret
• Of course, if the attacker can factorize n with an efficient algorithm, then RSA is
broken.

• Up to now, the best-known algorithm for integer factorization has been used to
factorize RSA modulus of bit length 768

• In practice, the most commonly used RSA modulus n is 1024, 2048, or 4096 bit.
• On the other hand, there is no proof that factorizing an integer n is infeasible.

• It is not proven that RSA is secure if factoring is computationally infeasible –
there might be other ways to attack RSA.
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RSA, RSA signatures, and their implementations

• Introduction

• RSA

• RSA Signatures

• Implementations of Modular Exponentiation

• Implementations of Modular Multiplication
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Digital signatures

• Digital signatures provide means for an entity to bind its identity to a message.

• This normally means that the sender uses their private key to sign the (hashed)
message.

• Whoever has access to the public key can then verify the origin of the message.

• For example, the message can be electronic contracts or electronic bank
transactions.

• Suppose Alice signs a message m with a private key d and generates signature s.

• Bob receives the message and the signature, he can then verify s with public key e
and a verification algorithm.

• Given m and s, the verification algorithm returns true to indicate a valid signature
and false otherwise.
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RSA signatures

• To use RSA for digital signature, we again let p and q be two distinct primes.

• n = pq, choose e ∈ Z∗
φ(n), compute d = e−1 mod φ(n).

• The public key consists of e and n.

• d is the private key.

• p, q and φ(n) should be kept secret.
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RSA signatures

To sign a message m, Alice computes the signature

s = md mod n.

Then Alice sends both m and s to Bob. To verify the signature, Bob computes

se mod n.

If s ≡ m mod n, then the verification algorithm outputs true, and false otherwise.

• Up to now, the only method known to compute s from m mod n is using d, so if
the verification algorithm outputs true, Bob can conclude that Alice is the owner
of d.
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RSA signatures – Example

Example

Alice chooses p = 5 and q = 7. Then n = 35 and

φ(n) =?.
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RSA signatures – Example

Example

• Alice chooses p = 5 and q = 7.

• Then
n = 35, φ(n) = 24

• Suppose Alice chooses e = 5, which is coprime to 24.

• By the extended Euclidean algorithm

d = e−1 mod φ(n) =?
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RSA signatures – Example

Example

p = 5, q = 7, n = 35, φ(n) = 24, e = 5.

• By the extended Euclidean algorithm

24 = 5× 4 + 4, 5 = 4 + 1 =⇒ 1 = 5− (24− 5× 4) = 24× (−1) + 5× 5,

we have d = e−1 mod 24 = 5.

• To sign message m = 10, Alice computes

s = md mod n =?

• Alice sends both the message and signature to Bob.

• Bob verifies the signature
se mod n =?
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RSA signatures – Example

Example

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5

• To sign message m = 10, Alice computes

s = md mod n = 105 mod 35 = 5.

• Alice sends both the message m = 10 and signature s = 5 to Bob.

• Bob verifies the signature

se mod n = 55 mod 35 = 10 = m.
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Forgery attack on RSA signatures

• The most common attack for a digital signature is to create a valid signature for a
message without knowing the secret key.

• Such an attack is called forgery

• Suppose the attacker, Eve, knows messages m1,m2 and their corresponding
signatures s1 and s2.

• Eve computes s = s1s2 mod n and m = m1m2 mod n.

• Since
s = md

1m
d
2 mod n = (m1m2)

d mod n = md mod n,

s is a valid signature for m.

• RSA signatures are commonly used together with a fast public hash function h
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Hash functions

• Hash functions map data of arbitrary length to a binary array of some fixed length
called hash values or message digests

• The following are the properties that should be met in a properly designed
cryptographic hash function:

(a) it is quick to compute a hash-value for any given input;
(b) it is computationally infeasible to generate an input that yields a given hash value (a

preimage);
(c) it is computationally infeasible to find a second input that maps to the same hash

value when one input is already known (a second preimage);
(d) it is computationally infeasible to find any pair of different messages that produce

the same hash value (a collision).
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RSA signature with hash function

• To sign a message m, Alice computes the signature

s = h(m)d mod n.

• Then she sends both m and s to Bob.

• Bob computes se mod n and h(m).

• If se mod n = h(m), then Bob concludes the signature is valid.
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Forgery attack

• Suppose the attacker, Eve, knows messages m1,m2 and their corresponding
signatures s1 and s2.

Without hash function

• Eve computes s = s1s2 mod n and m = m1m2 mod n.

• Since
s = md

1m
d
2 mod n = (m1m2)

d mod n = md mod n,

s is a valid signature for m.

With hash function

• She can compute h(m1) and h(m2) as h is public.

• However, to repeat the forgery attack, she needs to find m such that
h(m) = h(m1)h(m2), which is computationally infeasible according to property
(b) of hash functions
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RSA, RSA signatures, and their implementations

• Introduction

• RSA

• RSA Signatures

• Implementations of Modular Exponentiation

• Implementations of Modular Multiplication

60 / 115



Modular exponentiation

• To implement RSA or RSA signatures, we need to compute ad mod n for some
integer a ∈ Zn,

• n = pq is a product of two distinct primes and d ∈ Z∗
φ(n).

• We can compute d− 1 modular multiplications.
• inefficient for large d
• impossible for practical values of d – bit length more than 1000

• Two methods
• square and multiply algorithm
• CRT-based RSA implementation
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Square and multiply algorithm
• Let n ≥ 2 be an integer, d ∈ Zφ(n), a ∈ Zn

• Binary representation of d = dℓd−1 . . . d2d1d0, where di = 0, 1 and

d =

ℓd−1∑
i=0

di2
i.

• We have

ad = a
∑ℓd−1

i=0 di2
i
=

ℓd−1∏
i=0

(a2
i
)di =

∏
0≤i<ℓd,di=1

a2
i
.

• Thus, to compute ad mod n, we can
• First compute a2

i

for 0 ≤ i < ℓd
• Then ad is a product of a2

i

for which di = 1

• Compared to d− 1 modular multiplications, this requires at most 2 log2 d
multiplications
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Square and multiply algorithm

Algorithm 1: Right-to-left square and multiply algorithm for computing modular
exponentiation

Input: n, a, d// n ∈ Z, n ≥ 2; a ∈ Zn; d ∈ Zφ(n) has bit length ℓd

Output: ad mod n
1 result = 1, t = a
2 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

3 if di = 1 then
// mutiply by a2i

4 result = result ∗ t mod n// ad =
∏

0≤i<ℓd,di=1

a2i

// t = a2i+1

5 t = t ∗ t mod n

6 return result
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Right-to-left square and multiply algorithm

1 result = 1, t = a
2 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

3 if di = 1 then
// mutiply by a2i

4 result = result∗t mod n

// t = a2i+1

5 t = t ∗ t mod n

6 return result

Example

Let n = 15, d = 3 = 112, a = 2. Then

ad mod n = 23 mod 15 = 8 mod 15 = 8

i di t result

0 ? ? ?
1 ? ? ?
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Right-to-left square and multiply algorithm

1 result = 1, t = a
2 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

3 if di = 1 then
// mutiply by a2i

4 result = result∗t mod n

// t = a2i+1

5 t = t ∗ t mod n

6 return result

Example

Let n = 15, d = 3 = 112, a = 2. Then

ad mod n = 23 mod 15 = 8 mod 15 = 8

i di t result

0 1 4 2
1 1 1 8
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Right-to-left square and multiply algorithm

1 result = 1, t = a
2 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

3 if di = 1 then
// mutiply by a2i

4 result = result∗t mod n

// t = a2i+1

5 t = t ∗ t mod n

6 return result

Example

Let n = 23, d = 4 = 1002, a = 5. Then

ad mod n = 54 mod 23 = 625 mod 23 = 4

i di t result

0 ? ? ?
1 ? ? ?
2 ? ? ?
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Right-to-left square and multiply algorithm

1 result = 1, t = a
2 for i = 0, i < ℓd, i++ do

// ith bit of d is 1

3 if di = 1 then
// mutiply by a2i

4 result = result∗t mod n

// t = a2i+1

5 t = t ∗ t mod n

6 return result

Example

Let n = 23, d = 4 = 1002, a = 5. Then

ad mod n = 54 mod 23 = 625 mod 23 = 4

i di t result

0 0 2 1
1 0 4 1
2 1 16 4
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Left-to-right square and multiply algorithm

Algorithm 2: Left-to-right square and multiply algorithm for computing modular
exponentiation.

Input: n, a, d// n ∈ Z, n ≥ 2; a ∈ Zn; d ∈ Zφ(n)

Output: ad mod n
1 t = 1
2 for i = ℓd − 1, i ≥ 0, i−− do
3 t = t ∗ t mod n

// ith bit of d is 1

4 if di = 1 then
5 t = a ∗ t mod n

6 return t
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Left-to-right square and multiply algorithm

1 t = 1
2 for i = ℓd − 1, i ≥ 0, i−− do
3 t = t ∗ t mod n

// ith bit of d is 1

4 if di = 1 then
5 t = a ∗ t mod n

6 return t

Example

Let n = 15, d = 3 = 112, a = 2. Then

ad mod n = 23 mod 15 = 8 mod 15 = 8

i di t

1 ? ?
0 ? ?
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Left-to-right square and multiply algorithm

1 t = 1
2 for i = ℓd − 1, i ≥ 0, i−− do
3 t = t ∗ t mod n

// ith bit of d is 1

4 if di = 1 then
5 t = a ∗ t mod n

6 return t

Example

Let n = 15, d = 3 = 112, a = 2. Then

ad mod n = 23 mod 15 = 8 mod 15 = 8

i di t

1 1 2
0 1 8
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Left-to-right square and multiply algorithm

1 t = 1
2 for i = ℓd − 1, i ≥ 0, i−− do
3 t = t ∗ t mod n

// ith bit of d is 1

4 if di = 1 then
5 t = a ∗ t mod n

6 return t

Example

Let n = 23, d = 4 = 1002, a = 5. Then

ad mod n = 54 mod 23 = 625 mod 23 = 4

i di t

2 ? ?
1 ? ?
0 ? ?
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Left-to-right square and multiply algorithm

1 t = 1
2 for i = ℓd − 1, i ≥ 0, i−− do
3 t = t ∗ t mod n

// ith bit of d is 1

4 if di = 1 then
5 t = a ∗ t mod n

6 return t

Example

Let n = 23, d = 4 = 1002, a = 5. Then

ad mod n = 54 mod 23 = 625 mod 23 = 4

i di t

2 1 5
1 0 2
0 0 4
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CRT-based

• p, q: distinct primes

• n = pq is the RSA modulus

• d ∈ Z∗
φ(n) is the private key for RSA or RSA signatures.
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m1,m2, . . . ,mk be pairwise coprime integers. For any a1, a2, . . . , ak ∈ Z, the
system of simultaneous congruences

x ≡ a1 mod m1, x ≡ a2 mod m2, . . . x ≡ ak mod mk

has a unique solution modulo m =
∏k

i=1mi.

Example

Take two distinct primes p, q, and let n = pq. By CRT, for any a ∈ Z, there is a
unique solution x ∈ Zn such that

x ≡ a mod p, x ≡ a mod q.

=⇒ to find solution for x ≡ ad mod n is equivalent to solving

x ≡ ad mod p, x ≡ ad mod q. 74 / 115



A useful lemma

Lemma

Let p be a prime. Then for any a, b, c ∈ Z such that b ≡ c mod (p− 1), we have

ab ≡ ac mod p.

In particular,
ab ≡ ab mod (p−1) mod p.

Example

Let p = 5, a = 2, b = 6. Then

26 ≡ 26 mod 4 ≡ 22 ≡ 4 mod 5.

We can verify that indeed
26 ≡ 64 ≡ 4 mod 5.
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CRT-based

By the Chinese Remainder Theorem, finding the solution for x ≡ ad mod n is
equivalent to solving

x ≡ ad mod p, x ≡ ad mod q.

By the lemma, we can compute

xp := ad mod (p−1) mod p, xq := ad mod (q−1) mod q,

and solve for
x ≡ xp mod p, x ≡ xq mod q.

An implementation that computes ad mod n by solving the above equation is called
CRT-based RSA.
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Gauss’s algorithm

We have discussed in week 1 that, we can compute

Mq = q, Mp = p, yq = M−1
q mod p = q−1 mod p, yp = M−1

p mod q = p−1 mod q,

and
x = xpyqq + xqypp mod n

gives us the solution to

x ≡ xp mod p, x ≡ xq mod q.

Calculating x by with this method is called the Gauss’s algorithm.
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Garner’s algorithm

Garner’s algorithm calculates

x = xp + ((xq − xp)yp mod q)p.

This indeed gives the solution to

x ≡ xp mod p, x ≡ xq mod q.

Firstly, it is straightforward to see x ≡ xp mod p. Furthermore,

x ≡ xp + (xq − xp) ≡ xq mod q.

Since xp ∈ Zp, xp < p. Similarly, (xq − xp)yp mod q ≤ q − 1. And

x = xp + ((xq − xp)yp mod q)p < p+ (q − 1)p = n,

thus x ∈ Zn.
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CRT-based RSA implementation – Example

CRT-based RSA implementation

xp := ad mod (p−1) mod p, xq := ad mod (q−1) mod q,

Mq = q, Mp = p

yq = M−1
q mod p = q−1 mod p, yp = M−1

p mod q = p−1 mod q.

Example

p = 3, q = 5, n = 15, φ(n) = 8, e = 3, d = 3, m = 2, c = 8

After receiving the ciphertext c, Bob computes the plaintext using his private key

m = cd mod n = 83 mod 15 = 512 mod 15 = 2 mod 15.

With CRT-based RSA implementation, Bob computes

mp =? mq =? yp =? yq =?
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CRT-based RSA implementation – Example

Example

p = 3, q = 5, n = 15, φ(n) = 8, e = 3, d = 3, m = 2, c = 8

After receiving the ciphertext c, with CRT-based RSA implementation, Bob computes

mp = cd mod (p−1) mod p = 83 mod 2 mod 3 = 8 mod 3 = 2,

mq = cd mod (q−1) mod q = 83 mod 4 mod 5 = 512 mod 5 = 2.

By the extended Euclidean algorithm,

5 = 3× 1 + 2, 3 = 2 + 1 =⇒ 1 = 3− (5− 3) = 3× 2− 5.

Thus

yp = p−1 mod q = 3−1 mod 5 = 2 mod 5,

yq = q−1 mod p = 5−1 mod 3 = −1 mod 3 = 2 mod 3.
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CRT-based RSA implementation – Example

Gauss’s algorithm

x = xpyqq + xqypp mod n

Example

p = 3, q = 5, n = 15, φ(n) = 8, e = 3, d = 3, c = 8

With CRT-based RSA implementation, Bob computes

mp = 2 mq = 2 yp = 2 yq = 2.

By Gauss’s algorithm
m =?
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CRT-based RSA implementation – Example

Gauss’s algorithm

x = xpyqq + xqypp mod n

Example

p = 3, q = 5, n = 15, φ(n) = 8, e = 3, d = 3, m = 2, c = 8

With CRT-based RSA implementation, Bob computes

mp = 2 mq = 2 yp = 2 yq = 2.

By Gauss’s algorithm

m = mpyqq +mqypp mod n = 2× 2× 5 + 2× 2× 3 mod 15 = 32 mod 15 = 2.
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CRT-based RSA implementation – Example

Garner’s algorithm

x = xp + ((xq − xp)yp mod q)p.

Example

p = 3, q = 5, n = 15, φ(n) = 8, e = 3, d = 3, c = 8

With CRT-based RSA implementation, Bob computes

mp = 2 mq = 2 yp = 2 yq = 2.

By Garner’s algorithm
m =?
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CRT-based RSA implementation – Example

Garner’s algorithm

x = xp + ((xq − xp)yp mod q)p.

Example

p = 3, q = 5, n = 15, φ(n) = 8, e = 3, d = 3, c = 8

With CRT-based RSA implementation, Bob computes

mp = 2 mq = 2 yp = 2 yq = 2.

By Garner’s algorithm

m = mp + ((mq −mp)yp mod q)p = 2 + 0 = 2.
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CRT-based RSA implementation – Example

CRT-based RSA implementation

xp := ad mod (p−1) mod p, xq := ad mod (q−1) mod q,

Mq = q, Mp = p,

yq = M−1
q mod p = q−1 mod p, yp = M−1

p mod q = p−1 mod q,

Example (RSA signature computation)

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

To sign message m = 10, with CRT-based RSA implementation, Alice computes

sp =? sq =? yp =? yq =?
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CRT-based RSA implementation – Example

Example (RSA signature computation)

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

To sign message m = 10, with CRT-based RSA implementation, Alice computes

sp = md mod (p−1) mod p = 105 mod 4 mod 5 = 0,

sq = md mod (q−1) mod q = 105 mod 6 mod 7 = 5.

By the extended Euclidean algorithm

7 = 5 + 2, 5 = 2× 2 + 1 =⇒ 1 = 5− 2× (7− 5) = 5× 3− 2× 7

We have

yp = p−1 mod q = 3 mod 7,

yq = q−1 mod p = −2 mod 5 = 3.
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CRT-based RSA implementation – Example

Gauss’s algorithm

x = xpyqq + xqypp mod n

Example (RSA signature computation)

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

With CRT-based RSA implementation, Alice computes

sp = 0 sq = 5 yp = 3 yq = 3.

By Gauss’s algorithm
s =?
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CRT-based RSA implementation – Example

Gauss’s algorithm

x = xpyqq + xqypp mod n

Example (RSA signature computation)

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

With CRT-based RSA implementation, Alice computes

sp = 0 sq = 5 yp = 3 yq = 3.

By Gauss’s algorithm

s = spyqq + sqypp mod n = 5× 3× 5 mod 35 = 5.
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CRT-based RSA implementation – Example

Garner’s algorithm

x = xp + ((xq − xp)yp mod q)p.

Example (RSA signature computation)

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

With CRT-based RSA implementation, Alice computes

sp = 0 sq = 5 yp = 3 yq = 3.

By Garner’s algorithm
s =?
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CRT-based RSA implementation – Example

Garner’s algorithm

x = xp + ((xq − xp)yp mod q)p.

Example (RSA signature computation)

p = 5, q = 7, n = 35, φ(n) = 24, e = 5, d = 5.

With CRT-based RSA implementation, Alice computes

sp = 0 sq = 5 yp = 3 yq = 3.

By Garner’s algorithm

s = sp + ((sq − sp)yp mod q)p = 0 + (5× 3 mod 7)× 5 = 1× 5 = 5.
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CRT-based RSA implementation – Example

CRT-based RSA implementation

xp := ad mod (p−1) mod p, xq := ad mod (q−1) mod q,

Mq = q, Mp = p,

yq = M−1
q mod p = q−1 mod p, yp = M−1

p mod q = p−1 mod q,

Example

p = 29, q = 41, n = 1189, φ(n) = 1120, e = 3, d = 747, c = 8

With CRT-based RSA implementation, Bob computes

mp =? mq =? yp =? yq =?
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CRT-based RSA implementation – Example

Example

p = 29, q = 41, n = 1189, φ(n) = 1120, e = 3, d = 747, c = 8

With CRT-based RSA implementation, Bob computes

mp = cd mod (p−1) mod p = 8747 mod 28 mod 29 = 819 mod 29 = 2,

mq = cd mod (q−1) mod q = 8747 mod 40 mod 41 = 827 mod 41 = 2.

By the extended Euclidean algorithm

41 = 29 + 12, 29 = 12× 2 + 5, 12 = 5× 2 + 2, 5 = 2× 2 + 1,

1 = 5− 2× (12− 5× 2) = −2× 12 + (29− 12× 2)× 5

= 29× 5− 12× (41− 29) = −41× 12 + 29× 17.

yp = p−1 mod q = 29−1 mod 41 = 17 mod 41,

yq = q−1 mod p = 41−1 mod 29 = −12 mod 29 = 17 mod 29.
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CRT-based RSA implementation – Example

Gauss’s algorithm

x = xpyqq + xqypp mod n

Example

p = 29, q = 41, n = 1189, φ(n) = 1120, e = 3, d = 747, c = 8

With CRT-based RSA implementation, Bob computes

mp = 2 mq = 2 yp = 17 yq = 17

By Gauss’s algorithm
m =?
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CRT-based RSA implementation – Example

Gauss’s algorithm

x = xpyqq + xqypp mod n

Example

p = 29, q = 41, n = 1189, φ(n) = 1120, e = 3, d = 747, c = 8

With CRT-based RSA implementation, Bob computes

mp = 2 mq = 2 yp = 17 yq = 17

By Gauss’s algorithm

m = mpyqq+mqypp mod n = 2×17×41+2×17×29 mod 1189 = 2380 mod 1189 = 2.
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CRT-based RSA implementation – Example

Garner’s algorithm

x = xp + ((xq − xp)yp mod q)p.

Example

p = 29, q = 41, n = 1189, φ(n) = 1120, e = 3, d = 747, c = 8

With CRT-based RSA implementation, Bob computes

mp = 2 mq = 2 yp = 17 yq = 17

By Garner’s algorithm
m =?
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CRT-based RSA implementation – Example

Garner’s algorithm

x = xp + ((xq − xp)yp mod q)p.

Example

p = 29, q = 41, n = 1189, φ(n) = 1120, e = 3, d = 747, c = 8

With CRT-based RSA implementation, Bob computes

mp = 2 mq = 2 yp = 17 yq = 17

By Garner’s algorithm

m = mp + ((mq −mp)yp mod q)p = 2 + 0 = 2.
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CRT-based RSA implementation

• yp and yq can be precomputed, which saves time during communication.

• The intermediate values during the computation are only half as big compared to
computations of ad mod n since they are in Zp or Zq rather than Zn.

• xp = ad mod (p−1) mod p and xq = ad mod (q−1) mod q can be calculated by
square and multiply algorithm to further improve the efficiency.

• d mod (p− 1) and d mod (q − 1) are much smaller than d, computing xp or xq
requires fewer multiplications than computing ad mod p and ad mod q.

• Compared to Gauss’s algorithm, Garner’s algorithm does not require the final
modulo n reduction.
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RSA, RSA signatures, and their implementations

• Introduction

• RSA

• RSA Signatures

• Implementations of Modular Exponentiation

• Implementations of Modular Multiplication
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Modular operations

• To have more efficient modular exponentiation implementations, we need to
compute modular addition, subtraction, inverse, and multiplications.

• For modular addition and subtraction, we can just compute the corresponding
integer operation and then perform a single reduction modulo the modulus.

• For inverse modulo an integer, as has been mentioned a few times, we can utilize
the extended Euclidean algorithm.

• We will look at one method for computing modular multiplication
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Notations
• n: an integer of bit length ℓn,

2ℓn−1 ≤ n < 2ℓn .

• a, b ∈ Zn, in particular, 0 ≤ a, b < n.
• ω: the computer’s word size

• for a 64-bit processor, the word size is 64

• Let κ = ⌈ℓn/ω⌉, i.e. (κ− 1)ω < ℓn ≤ κω.

• Then (|| indicates concatenation, 0 ≤ ai < 2ω)

a = aκ−1||aκ−2|| . . . ||a0,

• Note that some ai might be 0 if the bit length of a is less than ℓn. We have

a =

κ−1∑
i=0

ai(2
ω)i.
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Notations
• n: an integer of bit length ℓn
• a, b ∈ Zn, in particular, 0 ≤ a, b < n.
• ω: the computer’s word size
• Let κ = ⌈ℓn/ω⌉, i.e. (κ− 1)ω < ℓn ≤ κω.
• Then (|| indicates concatenation, 0 ≤ ai < 2ω)

a = aκ−1||aκ−2|| . . . ||a0,
• Note that some ai might be 0 if the bit length of a is less than ℓn. We have

a =

κ−1∑
i=0

ai(2
ω)i.

Example

ω = 2, a = 13 = 11012, n = 15. Then

ℓn = 4, κ = ⌈ℓn/ω⌉ = ⌈4/2⌉ = 2.
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Notations – Example
• n: an integer of bit length ℓn
• a, b ∈ Zn, in particular, 0 ≤ a, b < n.
• Let κ = ⌈ℓn/ω⌉
• Then (|| indicates concatenation, 0 ≤ ai < 2ω)

a = aκ−1||aκ−2|| . . . ||a0,

• Note that some ai might be 0 if the bit length of a is less than ℓn. We have

a =

κ−1∑
i=0

ai(2
ω)i.

Example

ω = 2, a = 13 = 11012, n = 15. Then ℓn = 4, κ = 2.

a0 = 012 = 1, a1 = 112 = 3, a = a0(2
ω)0 + a1(2

ω)1 = 1 + 3× 4 = 13
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Notations – Example
• n: an integer of bit length ℓn
• a, b ∈ Zn, in particular, 0 ≤ a, b < n.
• Let κ = ⌈ℓn/ω⌉
• Then (|| indicates concatenation, 0 ≤ ai < 2ω)

a = aκ−1||aκ−2|| . . . ||a0,

• Note that some ai might be 0 if the bit length of a is less than ℓn. We have

a =

κ−1∑
i=0

ai(2
ω)i.

Example

a = 55 = 1101112, n = 69, ω = 2.

ℓn =? κ = ⌈ℓn/ω⌉ =?
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Notations – Example
• n: an integer of bit length ℓn
• a, b ∈ Zn, in particular, 0 ≤ a, b < n.
• Let κ = ⌈ℓn/ω⌉
• Then (|| indicates concatenation, 0 ≤ ai < 2ω)

a = aκ−1||aκ−2|| . . . ||a0,
• Note that some ai might be 0 if the bit length of a is less than ℓn. We have

a =

κ−1∑
i=0

ai(2
ω)i.

Example

a = 55 = 1101112, n = 69, and ω = 2.

ℓn = 7, κ = ⌈ℓn/ω⌉ = ⌈7/2⌉ = 4.

a0 =? a1 =? a2 =? a3 =?
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Notations – Example
• n: an integer of bit length ℓn, i.e.
• a, b ∈ Zn, in particular, 0 ≤ a, b < n.
• Let κ = ⌈ℓn/ω⌉
• Then (|| indicates concatenation, 0 ≤ ai < 2ω)

a = aκ−1||aκ−2|| . . . ||a0,
• Note that some ai might be 0 if the bit length of a is less than ℓn. We have

a =

κ−1∑
i=0

ai(2
ω)i.

Example

a = 55 = 1101112, n = 69, ω = 2. ℓn = 7, κ = ⌈ℓn/ω⌉ = ⌈7/2⌉ = 4.

a0 = 11 = 3, a1 = 01 = 1, a2 = 11 = 3, a3 = 0.

a = 3× (22)0 + 1× (22)1 + 3× (22)2 + 0× (22)3 = 3 + 4 + 48 + 0 = 55.
105 / 115



Blakley’s method

• We would like to compute

R := ab mod n, a, b ∈ Zn.

• We have discussed that

a =

κ−1∑
i=0

ai(2
ω)i,

where 0 ≤ ai < 2ω.

• The product ab can be computed as follows

t = ab =

(
κ−1∑
i=0

ai(2
ω)i

)
b =

κ−1∑
i=0

(2ω)iaib,
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Algorithm 3: Blakely’s method for computing modular multiplication.

Input: n, a, b// n ∈ Z, n ≥ 2 has bit length ℓn; a, b ∈ Zn

Output: R = ab mod n
1 R = 0

// κ = ⌈ℓn/ω⌉, where ω is the word size of the computer

2 for i = κ− 1, i ≥ 0, i−− do
3 R = 2ωR+ aib
4 R = R mod n

5 return R
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Blakely’s method

Input: n, a, b
Output: R = ab mod n

1 R = 0
2 for i = κ− 1, i ≥ 0, i−− do
3 R = 2ωR+ aib
4 R = R mod n

5 return R

Line 3,

R ≤ 2ω(n−1)+(2ω−1)(n−1) = (2ω+1−1)n−(2ω+1−1) < (2ω+1−1)n.

Line 4 can be replaced by comparing R with n for
2ω+1 − 2 times and subtract n from R in case
R ≥ n:

1 for j = 0, 1, 2 . . . , 2ω+1 − 2 do
2 if R ≥ n then R = R− n
3 else break

in this way, we can avoid dividing by n
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Blakely’s method – Example

Input: n, a, b
Output: R = ab mod n

1 R = 0
2 for i = κ− 1, i ≥ 0, i−− do
3 R = 2ωR+ aib
4 R = R mod n

5 return R

Example

ω = 2, a = 13 = 11012, b = 5, n = 15 (ℓn = 4),
κ = 2.

a0 = 012 = 1, a1 = 112 = 3.

For i = 1,

R = 0 + 3× 5 mod 15 = 0 mod 15.

For i = 0,
R =?
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Blakely’s method – Example

Input: n, a, b
Output: R = ab mod n

1 R = 0
2 for i = κ− 1, i ≥ 0, i−− do
3 R = 2ωR+ aib
4 R = R mod n

5 return R

Example

ω = 2, a = 13 = 11012, b = 5, n = 15 (ℓn = 4),
κ = 2.

a0 = 012 = 1, a1 = 112 = 3.

For i = 1,

R = 0 + 3× 5 mod 15 = 0 mod 15.

For i = 0,

R = 0 + 1× 5 mod 15 = 5 mod 15

We have the final result 13× 5 mod 15 = 5.
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Blakely’s method – Example

Input: n, a, b
Output: R = ab mod n

1 R = 0
2 for i = κ− 1, i ≥ 0, i−− do
3 R = 2ωR+ aib
4 R = R mod n

5 return R

Example

a = 55 = 1101112, b = 46, n = 69, ω = 2, ℓn = 7,
κ = 4, a0 = 11 = 3, a1 = 01 = 1, a2 = 11 = 3,
a3 = 0

i = 3 line 3, R =?

line 4, R =?
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Blakely’s method – Example

Input: n, a, b
Output: R = ab mod n

1 R = 0
2 for i = κ− 1, i ≥ 0, i−− do
3 R = 2ωR+ aib
4 R = R mod n

5 return R

Example

a = 55 = 1101112, b = 46, n = 69, ω = 2, ℓn = 7,
κ = 4, a0 = 11 = 3, a1 = 01 = 1, a2 = 11 = 3,
a3 = 0

i = 3 line 3, R = 0,

line 4, R = 0,

i = 2 line 3, R =?

line 4, R =?
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Blakely’s method – Example

Input: n, a, b
Output: R = ab mod n

1 R = 0
2 for i = κ− 1, i ≥ 0, i−− do
3 R = 2ωR+ aib
4 R = R mod n

5 return R

Example

a = 55 = 1101112, b = 46, n = 69, ω = 2, ℓn = 7,
κ = 4, a0 = 11 = 3, a1 = 01 = 1, a2 = 11 = 3,
a3 = 0

i = 3 line 3, R = 0,

line 4, R = 0,

i = 2 line 3, R = 3× 46 = 138,

line 4, R = 138 mod 69 = 0,

i = 1 line 3, R =?

line 4, R =?

i = 0 line 3, R =?

line 4, R =?
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Blakely’s method – Example

Input: n, a, b
Output: R = ab mod n

1 R = 0
2 for i = κ− 1, i ≥ 0, i−− do
3 R = 2ωR+ aib
4 R = R mod n

5 return R

Example

a = 55 = 1101112, b = 46, n = 69, ω = 2, ℓn = 7,
κ = 4, a0 = 11 = 3, a1 = 01 = 1, a2 = 11 = 3,
a3 = 0

i = 3 line 3, R = 0,

line 4, R = 0,

i = 2 line 3, R = 3× 46 = 138,

line 4, R = 138 mod 69 = 0,

i = 1 line 3, R = 1× 46 = 46,

line 4, R = 46 mod 69 = 46,

i = 0 line 3, R = 22 × 46 + 3× 46 = 322,

line 4, R = 322 mod 69 = 46.
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Final remarks

• Currently, a few hundred qubits (a quantum counterpart to the classical bit) are
possible for a quantum computer

• To break RSA, thousands of qubits are required.

• Post-quantum public key cryptosystems are being proposed to protect
communications after a sufficiently strong quantum computer is built.

• Various public key cryptosystems based on different problems

• Various digital signature designs

• Provable secure signature, similarity to one-time pad
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