# Cryptography and Embedded System Security CRAESS\_I

Xiaolu Hou

### FIIT, STU xiaolu.hou @ stuba.sk

< □ > < ⑦ > < ≧ > < ≧ > < ≧ > ≥ の < ⊘ 1/115

# Course Outline

- Abstract algebra and number theory
- Introduction to cryptography
- Symmetric block ciphers and their implementations
- RSA, RSA signatures, and their implementations
- Probability theory and introduction to SCA
- SPA and non-profiled DPA
- Profiled DPA
- SCA countermeasures
- FA on RSA and countermeasures
- FA on symmetric block ciphers
- FA countermeasures for symmetric block cipher
- Practical aspects of physical attacks
  - Invited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH

# Recommended reading

- Textbook
  - Sections 3.3, 3.4, 3.5



## Lecture Outline

- Introduction
- RSA
- RSA Signatures
- Implementations of Modular Exponentiation
- Implementations of Modular Multiplication

# RSA, RSA signatures, and their implementations

#### • Introduction

- RSA
- RSA Signatures
- Implementations of Modular Exponentiation
- Implementations of Modular Multiplication

# Insecure communication channel



src: https://pngtree.com/

Bob

src: https://alicebobstory.com/

Alice



src: https://www.pngwing.com/en/free-png-zhbsy

# Cryptosystem

#### Definition

A cryptosystem is a tuple  $(\mathfrak{P}, \mathfrak{C}, \mathfrak{K}, \mathfrak{E}, \mathfrak{D})$  with the following properties.

- $\mathcal{P}$  is a finite set of plaintexts, called *plaintext space*.
- C is a finite set of ciphertexts, called *ciphertext space*.
- $\mathcal K$  is a finite set of keys, called *key space*.
- $\mathcal{E} = \{ E_k : k \in \mathcal{K} \}$ , where  $E_k : \mathcal{P} \to \mathcal{C}$  is an *encryption function*.
- $\mathcal{D} = \{ D_k : k \in \mathcal{K} \}$ , where  $D_k : \mathcal{C} \to \mathcal{P}$  is a *decryption function*.
- For each  $e \in \mathcal{K}$ , there exists  $d \in \mathcal{K}$  such that  $D_d(E_e(p)) = p$  for all  $p \in \mathcal{P}$ .

If e = d, the cryptosystem is called a *symmetric key cryptosystem*. Otherwise, it is called a *public-key/asymmetric cryptosystem*.

# Key exchange

- For symmetric key cipher, a prior communication of the master key (*key* exchange) is required before any ciphertext is transmitted.
- With only a symmetric key cipher, the key exchange may be difficult to achieve due to, e.g. far distance, and too many parties involved.
- In practice, this is where asymmetric key cryptosystem comes into use.
- For example, Alice would like to communicate with Bob using AES.
  - To exchange the master key, k, for AES, she will encrypt k by a public key cryptosystem using Bob's public key e,  $c = E_e(k)$ .
  - The resulting ciphertext c will be sent to Bob, and Bob can decrypt it with his secret private key d,  $k = D_d(c)$ .
  - Then Alice and Bob can communicate with key k using AES.

# Security of public key cryptosystem

- Clearly, we require that it is computationally infeasible to find the private key d given the public key e.
- In practice, this is guaranteed by some intractable problem
  - A problem is intractable if there does not exist an efficient algorithm to solve it.
- However, the cipher might not be secure in the future.
  - For example, if a quantum computer with enough bits is manufactured, it can break many public key cryptosystems
- A public key cipher is not perfectly secure
  - perfectly secure: in a ciphertext-only attack setting, the attacker cannot obtain any information about the plaintext no matter how much computing power they have.
  - the attacker can brute force the key

# Greatest common divisor

### Definition

Take  $m, n \in \mathbb{Z}$ ,  $m \neq 0$  or  $n \neq 0$ , the greatest common divisor of m and n, denoted gcd(m, n), is given by  $d \in \mathbb{Z}$  such that

- d > 0,
- d|m, d|n, and
- if c|m and c|n, then c|d.

### Example

- All positive divisors of 4 and 6 are 1,2,4 and 1,2,3,6 respectively. So  $\gcd(4,6)=2.$
- All the positive divisors of 2 are 1 and 2. All the positive divisors of 3 are 1 and 3. So gcd(2,3) = 1.

# Bézout's identity

### Theorem (Bézout's identity)

For any  $m, n \in \mathbb{Z}$ , such that  $m \neq 0$  or  $n \neq 0$ . gcd(m, n) exists and is unique. Moreover,  $\exists s, t \in \mathbb{Z}$  such that gcd(m, n) = sm + tn.

#### Example

$$gcd(4,6) = 2 = (-1) \times 4 + 1 \times 6.$$
  

$$gcd(2,3) = 1 = (-4) \times 2 + 3 \times 3.$$

# Euclidean algorithm

### Theorem (Euclid's division)

```
Given m, n \in \mathbb{Z}, take q, r such that n = qm + r, then gcd(m, n) = gcd(m, r).
```

Thus, to find  $\gcd(m,n),$  we can compute Euclid's division repeatedly until we get r=0.

### Example

We can calculate gcd(120, 35) as follows:

$$\begin{array}{ll} 120 = 35 \times 3 + 15 & \gcd(120, 35) = \gcd(35, 15), \\ 35 = 15 \times 2 + 5 & \gcd(35, 15) = \gcd(15, 5), \\ 15 = 5 \times 3 & \gcd(15, 5) = 5 \Longrightarrow \gcd(120, 35) = 5 \end{array}$$

# Euclidean algorithm

### Example

We can calculate  $\gcd(160,21)$  using the Euclidean algorithm

$$\begin{array}{ll} 160 = 21 \times 7 + 13 & \gcd(160, 21) = \gcd(21, 13), \\ 21 = 13 \times 1 + 8 & \gcd(21, 13) = \gcd(13, 8), \\ 13 = 8 \times 1 + 5 & \gcd(13, 8) = \gcd(8, 5), \\ 8 = 5 \times 1 + 3 & \gcd(8, 5) = \gcd(5, 3), \\ 5 = 3 \times 1 + 2 & \gcd(5, 3) = \gcd(3, 2), \\ 3 = 2 \times 1 + 1 & \gcd(3, 2) = \gcd(2, 1), \\ 2 = 1 \times 2 & \gcd(2, 1) = 1 \Longrightarrow \gcd(160, 21) = 1 \end{array}$$

э

・ロト ・四ト ・ヨト ・ヨト

# Extended Euclidean algorithm

### Note

With the intermediate results we have from the Euclidean algorithm, we can also find s, t such that gcd(m, n) = sm + tn (Bézout's identity).

### Example

We have calculated gcd(120, 35) as follows:

$$\begin{array}{ll} 120 = 35 \times 3 + 15 & \gcd(120, 35) = \gcd(35, 15), \\ 35 = 15 \times 2 + 5 & \gcd(35, 15) = \gcd(15, 5), \\ 15 = 5 \times 3 & \gcd(15, 5) = 5 \Longrightarrow \gcd(120, 35) = 5. \end{array}$$

Then

$$\begin{split} 5 &= 35 - 15 \times 2, \\ 15 &= 120 - 35 \times 3, \\ 5 &= 35 - (120 - 35 \times 3) \times 2 = 120 \times (-2) + 35 \times 7. \end{split}$$

イロン 不通 とく ヨン イヨン

### Extended Euclidean algorithm

#### Example

We have calculated  $\gcd(160,21)$  using the Euclidean algorithm

$$\begin{array}{ll} 160 = 21 \times 7 + 13 & \gcd(160, 21) = \gcd(21, 13), \\ 21 = 13 \times 1 + 8 & \gcd(21, 13) = \gcd(13, 8), \\ 13 = 8 \times 1 + 5 & \gcd(13, 8) = \gcd(8, 5), \\ 8 = 5 \times 1 + 3 & \gcd(8, 5) = \gcd(6, 5), \\ 5 = 3 \times 1 + 2 & \gcd(5, 3) = \gcd(3, 2), \\ 3 = 2 \times 1 + 1 & \gcd(3, 2) = \gcd(2, 1), \\ 2 = 1 \times 2 & \gcd(2, 1) = 1 \Longrightarrow \gcd(160, 21) = 1 \end{array}$$

Using the extended Euclidean algorithm, find integers s,t such that  $\gcd(160,21)=s160+t35$ 

# Extended Euclidean algorithm

### Example

By the extended Euclidean algorithm,

$$\begin{array}{ll} 1 = 3 - 2, & 2 = 5 - 3, \\ 3 = 8 - 5, & 5 = 13 - 8, \\ 8 = 21 - 13, & 13 = 160 - 21 \times 7. \end{array}$$

We have

$$1 = 3 - (5 - 3) = 3 \times 2 - 5 = 8 \times 2 - 5 \times 3 = 8 \times 2 - (13 - 8) \times 3$$
  
= 8 \times 5 - 13 \times 3 = 21 \times 5 - 13 \times 8 = 21 \times 5 - (160 - 21 \times 7) \times 8  
= (-8) \times 160 + 61 \times 21.

<ロ>・(日)・(日)・(王)・(王)・(王)の(ペ 16/115

## Prime numbers

### Definition

- For  $m, n \in \mathbb{Z}$  such that  $m \neq 0$  or  $n \neq 0$ , m and n are said to be *relatively prime/coprime* if gcd(m, n) = 1.
- Given  $p \in \mathbb{Z}$ , p > 1. p is said to be *prime* (or a *prime number*) if for any  $m \in \mathbb{Z}$ , either m is a multiple of p (i.e. p|m) or m and p are coprime (i.e. gcd(p,m) = 1).

### Example

- 4 and 9 are relatively prime
- 8 and 6 are not relatively prime
- 2, 3, 5, 7 are prime numbers
- 6, 9, 21 are not prime numbers

### The Fundamental Theorem of Arithmetic

Theorem (The Fundamental Theorem of Arithmetic) For any  $n \in \mathbb{Z}$ , n > 1, n can be written in the form

$$n = \prod_{i=1}^{k} p_i^{e_i},$$

where the exponents  $e_i$  are positive, the prime numbers  $p_1, p_2, \ldots, p_k$  are pairwise distinct and unique up to permutation.

#### Example

$$20 = 2^2 \times 5$$
,  $135 = 3^3 \times 5$ .

# Congruence class

### Definition

For any  $a \in \mathbb{Z}$ , the congruence class of a modulo n, denoted  $\overline{a}$ , is given by

$$\overline{a} := \{ b \mid b \in \mathbb{Z}, b \equiv a \mod n \}.$$

#### Lemma

Let  $\mathbb{Z}_n$  denote the set of all congruence classes of  $a \in \mathbb{Z}$  modulo n. Then  $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}.$ 

#### Example

Let n = 5. We have  $\overline{1} = \overline{6} = \overline{-4}$ .  $\mathbb{Z}_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}.$ 

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q @ 19/115

### Addition and multiplication in $\mathbb{Z}_n$

Define addition on the set  $\mathbb{Z}_n$  as follows:

$$\overline{a} + \overline{b} = \overline{a+b}.$$

### Example

- Let n = 7,  $\overline{3} + \overline{2} = \overline{5}$ .
- Let n = 4,  $\overline{2} + \overline{2} = \overline{4} = \overline{0}$ .

Define multiplication on  $\mathbb{Z}_n$  as follows

$$\overline{a} \cdot \overline{b} = \overline{ab}.$$

#### Example

Let n = 5,

$$\overline{-2} \cdot \overline{13} = \overline{3} \cdot \overline{3} = \overline{9} = \overline{4}$$

20/115

イロン イヨン イヨン

#### Theorem

 $(\mathbb{Z}_n, +, \cdot)$ , the set  $\mathbb{Z}_n$  together with addition multiplication defined just now is a commutative ring.

#### Remark

For simplicity, we write a instead of  $\overline{a}$  and to make sure there is no confusion we would first say  $a \in \mathbb{Z}_n$ . In particular,  $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ . Furthermore, to emphasize that multiplication or addition is done in  $\mathbb{Z}_n$ , we write  $ab \mod n$  or  $a + b \mod n$ .

#### Example

Let n = 5, we write

$$4 \times 2 \mod 5 = 8 \mod 5 = 3$$
, or  $4 \times 2 \equiv 8 \equiv 3 \mod 5$ .

#### Lemma

For any  $a \in \mathbb{Z}_n$ ,  $a \neq 0$ , a has a multiplicative inverse, denoted  $a^{-1} \mod n$ , if and only if gcd(a, n) = 1.

#### Corollary

 $\mathbb{Z}_n$  is a field if and only if n is prime.

# Find multiplicative inverse in $\mathbb{Z}_n$

• Recall that by the extended Euclidean algorithm, we can find integers  $\boldsymbol{s}, \boldsymbol{t}$  such that

$$gcd(a,n) = sa + tn$$

for any  $a, n \in \mathbb{Z}$ .

- In particular, when gcd(a, n) = 1, we can find s, t such that 1 = as + tn, which gives  $as \mod n = 1$ .
- Thus, we can find  $a^{-1} \mod n = s \mod n$  by the extended Euclidean algorithm.

# Example – Find multiplicative inverse in $\mathbb{Z}_n$

### Example

We have calculated  $\gcd(160,21)=1$  using the Euclidean algorithm. By the extended Euclidean algorithm,

$$1 = 3 - 2, \qquad 2 = 5 - 3, \\3 = 8 - 5, \qquad 5 = 13 - 8, \\8 = 21 - 13, \qquad 13 = 160 - 21 \times 7.$$

We have

$$1 = 3 - (5 - 3) = 3 \times 2 - 5 = 8 \times 2 - 5 \times 3 = 8 \times 2 - (13 - 8) \times 3$$
  
= 8 \times 5 - 13 \times 3 = 21 \times 5 - 13 \times 8 = 21 \times 5 - (160 - 21 \times 7) \times 8  
= (-8) \times 160 + 61 \times 21.

Thus

$$21^{-1} \mod 160 = 61.$$

3

### Definition

Let  $\mathbb{Z}_n^*$  denote the set of congruence classes in  $\mathbb{Z}_n$  which have multiplicative inverses:

$$\mathbb{Z}_n^* := \{ a \mid a \in \mathbb{Z}_n, \ \gcd(a, n) = 1 \}.$$

Let  $\varphi(n)$  denote the cardinality of  $\mathbb{Z}_n^*$ 

$$\varphi(n) = |\mathbb{Z}_n^*|.$$

 $\varphi$  is called the Euler's totient function.

### Example

• Let n = 3,  $\mathbb{Z}_3^* = \{ 1, 2 \}$ ,  $\varphi(3) = 2$ .

• Let 
$$n = 4$$
,  $\mathbb{Z}_4^* = \{ 1, 3 \}$ ,  $\varphi(4) = 2$ .

• Let n = p be a prime number,  $\mathbb{Z}_p^* = \mathbb{Z}_p - \{0\} = \{1, 2, \dots, p-1\}, \varphi(p) = p-1.$ 

# Euler's totient function

#### Theorem

For any  $n \in \mathbb{Z}$ , n > 1,

if 
$$n = \prod_{i=1}^{k} p_i^{e_i}$$
, then  $\varphi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right)$ , (1)

where  $p_i$  are distinct primes.

### Example

• Let n = 10.  $10 = 2 \times 5$ . We can count the elements in  $\mathbb{Z}_{10}$  that are coprime to 10 (there are 4 of them):  $\mathbb{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ . By the above theorem we also have

$$\varphi(10) = 10 \times \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{5}\right) = 4.$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (~ 26 / 115

## Euler's totient function

#### Theorem

For any  $n \in \mathbb{Z}$ , n > 1,

$$\textit{if} \quad n = \prod_{i=1}^k p_i^{e_i}, \quad \textit{then} \quad \varphi(n) = n \prod_{i=1}^k \left(1 - \frac{1}{p_i}\right),$$

where  $p_i$  are distinct primes.

### Example

• Let n = 120.  $120 = 2^3 \times 3 \times 5$ .

 $\varphi(120) = ?$ 

• Let n = pq, where p and q are two distinct primes. Then

 $\varphi(n) = ?$ 

(2)

## Euler's totient function

### Example

• Let 
$$n = 120$$
.  $120 = 2^3 \times 3 \times 5$ .

$$\varphi(120) = 120 \times \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{3}\right) \times \left(1 - \frac{1}{5}\right) = 32.$$

• Let n = pq, where p and q are two distinct primes. Then

$$\varphi(n) = pq\left(1 - \frac{1}{p}\right)\left(1 - \frac{1}{q}\right) = (p-1)(q-1).$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 28 / 115

# RSA, RSA signatures, and their implementations

- Introduction
- RSA
- RSA Signatures
- Implementations of Modular Exponentiation
- Implementations of Modular Multiplication

### RSA

- Published in 1977
- Named after its inventors Ron Rivest, Adi Shamir, and Leonard Adleman.
- RSA is the first public key cryptosystem, and still in use today.
- The security relies on the difficulty of finding the factorization of a composite positive integer.

# Definition

### Definition (RSA)

Let n = pq, where p, q are distinct prime numbers. Let  $\mathcal{P} = \mathcal{C} = \mathbb{Z}_n$ ,  $\mathcal{K} = \mathbb{Z}_{\varphi(n)}^* - \{1\}$ . For any  $e \in \mathcal{K}$ , define encryption

$$E_e: \mathbb{Z}_n \to \mathbb{Z}_n, \quad m \mapsto m^e \mod n,$$

and the corresponding decryption

$$D_d: \mathbb{Z}_n \to \mathbb{Z}_n, \quad c \mapsto c^d \mod n,$$

where  $d = e^{-1} \mod \varphi(n)$ . The cryptosystem  $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ , where  $\mathcal{E} = \{ E_e : e \in \mathcal{K} \}, \mathcal{D} = \{ D_d : d \in \mathcal{K} \}$ , is called *RSA*.

• 
$$\varphi(n) = (p-1)(q-1)$$

- Public key: n, e, RSA modulus, encryption exponent
- Private key: d, decryption exponent

# Key generation

- Generate randomly and independently two large prime numbers  $p \mbox{ and } q.$
- Compute n = pq.
  - Normally p and q are supposed to have equal lengths.
  - For example, take p and q to be 512-bit primes, and n will be a 1024-bit modulus.
- Choose  $e \in \mathbb{Z}^*_{\varphi(n)}$ 
  - Note that e is odd since  $\varphi(n)$  is even
  - In practice, e is chosen to be small to make the encryption efficient.
  - However, e cannot be too small. It has been shown that only the n/4 least significant bits of d suffice to recover d in the case of a small e
- Compute  $d = e^{-1} \mod \varphi(n)$  (extended Euclidean algorithm)
  - d cannot be too small, it was proven that if  $d < n^{0.292}$ , then RSA can be broken

### Example

- As a toy example, suppose Bob would like to generate his private and public keys for RSA.
- Bob randomly generates p = 3 and q = 5.
- Then he computes n = 15 and

$$\varphi(n) = 1$$
$$\mathbb{Z}^*_{\varphi(n)} = 1$$

### Example

- As a toy example, suppose Bob would like to generate his private and public keys for RSA.
- Bob randomly generates p = 3 and q = 5.
- Then he computes n = 15 and

$$\varphi(n) = 2 \times 4 = 8.$$

$$\mathbb{Z}_{\varphi(n)}^* = \{ 1, 3, 5, 7 \}$$

- From  $\mathbb{Z}_8^*$ , Bob chooses e = 3.
- Then by the extended Euclidean algorithm, he computes

$$d = 3^{-1} \mod 8 = ?$$

### Example

- p = 3, q = 5, n = 15 and  $\varphi(n) = 2 \times 4 = 8$ .
- From  $\mathbb{Z}_8^* = \{ 1, 3, 5, 7 \}$ , Bob chooses e = 3.
- Then by the extended Euclidean algorithm, he computes

 $8 = 3 \times 2 + 2, \ 3 = 2 \times 1 + 1 \Longrightarrow 1 = 3 - 2 \times 1 = 3 - (8 - 3 \times 2) = -8 + 3 \times 3.$ 

- Hence his private key  $d = 3^{-1} \mod 8 = 3$ .
- Suppose Alice would like to send plaintext m=2 to Bob, using Bob's public key n=15, e=3.
- Alice computes

$$c = m^e \mod n = ?$$

• After receiving the ciphertext  $\boldsymbol{c}$  from Alice, Bob computes the plaintext using his private key

$$m = c^d \mod n = ?$$

#### Example

$$p = 3$$
,  $q = 5$ ,  $n = 15$ ,  $\varphi(n) = 2 \times 4 = 8$ ,  $e = 3$ ,  $d = 3^{-1} \mod 8 = 3$ .

- Suppose Alice would like to send plaintext m = 2 to Bob, using Bob's public key n = 15, e = 3.
- Alice computes

$$c = m^e \mod n = 2^3 \mod 15 = 8.$$

• After receiving the ciphertext c from Alice, Bob computes the plaintext using his private key

$$m = c^d \mod n = 8^3 \mod 15 = 512 \mod 15 = 2.$$


## Example

$$p = 29, \quad q = 41, \quad n = 1189$$
  
 $\varphi(n) = ?$ 

<ロト < 回 ト < 言 ト < 言 ト ミ シ へ ? 37/115

### Example

$$p = 29, \quad q = 41, \quad n = 1189.$$
  
 $\varphi(n) = 28 \times 40 = 1120.$ 

It is easy to verify that  $3 \nmid \varphi(n).$  And we choose e=3. By the extended Euclidean algorithm

$$d = e^{-1} \mod \varphi(n) = ?.$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の へ () 38 / 115

### Example

$$p = 29, \quad q = 41, \quad n = 1189, \quad \varphi(n) = 28 \times 40 = 1120, \quad e = 3.$$

By the extended Euclidean algorithm

$$1120 = 3 \times 373 + 1 \Longrightarrow 1 = 1120 - 3 \times 373.$$

 $d = -373 \mod 1120 = 747.$ 

To send plaintext m = 2 to Bob. Alice computes

 $c = m^e \mod n = ?$ 

<ロ > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > へ () 39/115

### Example

$$p = 29, \quad q = 41, \quad n = 1189, \quad \varphi(n) = 1120, \quad e = 3, \quad d = -373 \mod 1120 = 747.$$

### To send plaintext m = 2 to Bob. Alice computes

$$c = m^e \mod n = 2^3 \mod 1189 = 8 \mod 1189.$$

To decrypt, Bob computes

$$m = c^d \mod n = 8^{747} \mod 1189$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト シ 巨 の Q (~ 40 / 115

#### Example

To decrypt, Bob computes  $m = c^d \mod n = 8^{747} \mod 1189$ . Since 747 = 512 + 128 + 64 + 32 + 8 + 2 + 1,

 $\begin{array}{ll} 8^4 \mod 1189 = 4096 \mod 1189 = 529, \\ 8^{16} \mod 1189 = 426^2 \mod 1189 = 748, \\ 8^{64} \mod 1189 = 674^2 \mod 1189 = 78, \\ 8^{256} \mod 1189 = 139^2 \mod 1189 = 297, \\ \end{array} \\ \begin{array}{ll} 8^8 \mod 1189 = 529^2 \mod 1189 = 426, \\ 8^{32} \mod 1189 = 748^2 \mod 1189 = 674, \\ 8^{128} \mod 1189 = 78^2 \mod 1189 = 139, \\ 8^{512} \mod 1189 = 297^2 \mod 1189 = 223. \end{array}$ 

$$\begin{split} 8^{512+128} \mod 1189 &= 223 \times 139 \mod 1189 = 83, \\ 8^{64+32} \mod 1189 &= 78 \times 674 \mod 1189 = 256 \\ 8^{8+2+1} \mod 1189 &= 426 \times 64 \times 8 \mod 1189 = 525, \\ 8^{747} \mod 1189 &= 83 \times 256 \times 525 \mod 1189 = 2. \end{split}$$

## A useful lemma

To understand why the decryption works, let us first look at a lemma:

#### Lemma

Let p be a prime. Then for any  $a, b, c \in \mathbb{Z}$  such that  $b \equiv c \mod (p-1)$ , we have

$$a^b \equiv a^c \mod p$$

In particular,

$$a^b \equiv a^b \mod (p-1) \mod p.$$

### Example

Let 
$$p = 5$$
,  $a = 2$ ,  $b = 6$ . Then  $2^6 \equiv ? \mod 5$ .

## A useful lemma

#### Lemma

Let p be a prime. Then for any  $a, b, c \in \mathbb{Z}$  such that  $b \equiv c \mod (p-1)$ , we have

 $a^b \equiv a^c \mod p.$ 

In particular,

$$a^b \equiv a^b \mod (p-1) \mod p.$$

#### Example

Let p = 5, a = 2, b = 6. Then

$$2^6 \equiv 2^6 \mod 4 \equiv 2^2 \equiv 4 \mod 5.$$

We can verify that indeed

 $2^6 \equiv 64 \equiv 4 \mod 5.$ 

・ロト ・回ト ・ヨト ・ヨト ・ヨ

## Why decryption works

By the choice of e and d,

$$ed \equiv 1 \mod \varphi(n) \Longrightarrow ed = \varphi(n)a + 1$$
 for some  $a \in \mathbb{Z}$ .

Then

$$c^{d} = (m^{e})^{d} = m^{\varphi(n)a+1} = m^{(p-1)(q-1)a}m.$$

By the lemma above:

$$c^d \equiv m \mod p, \quad c^d \equiv m \mod q.$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 44 / 115

# Chinese Remainder Theorem

## Theorem (Chinese Remainder Theorem)

Let  $m_1, m_2, \ldots, m_k$  be pairwise coprime integers. For any  $a_1, a_2, \ldots, a_k \in \mathbb{Z}$ , the system of simultaneous congruences

 $x \equiv a_1 \mod m_1, \quad x \equiv a_2 \mod m_2, \quad \dots \quad x \equiv a_k \mod m_k$ 

has a unique solution modulo  $m = \prod_{i=1}^{k} m_i$ .

### Example

Take two distinct primes p, q, and let n = pq. By CRT, for any  $a \in \mathbb{Z}_n$ , there is a unique solution  $x \in \mathbb{Z}_n$  such that

$$x \equiv a \mod p, \quad x \equiv a \mod q.$$

Since  $a \equiv a \mod p$  and  $a \equiv a \mod q$ , the unique solution is given by  $x = a \in \mathbb{Z}_n$ .

ヘロン 人間 とくほ とくほ とうほ

## Why decryption works

By the choice of e and d,

$$ed \equiv 1 \mod \varphi(n) \Longrightarrow ed = \varphi(n)a + 1$$
 for some  $a \in \mathbb{Z}$ .

Then

$$c^{d} = (m^{e})^{d} = m^{\varphi(n)a+1} = m^{(p-1)(q-1)a}m.$$

By the lemma above:

$$c^d \equiv m \mod p, \quad c^d \equiv m \mod q.$$

By Chinese Remainder Theorem,

 $c^d \equiv m \mod n.$ 

# Security of RSA

- If p or q is known to the attacker
  - can factorize n and compute  $\varphi(n)$
  - with e, d can be computed using the extended Euclidean algorithm
- All  $p, q, \varphi(n)$  should be kept secret
- Of course, if the attacker can factorize n with an efficient algorithm, then RSA is broken.
  - Up to now, the best-known algorithm for integer factorization has been used to factorize RSA modulus of bit length 768
  - In practice, the most commonly used RSA modulus n is 1024, 2048, or 4096 bit.
  - On the other hand, there is no proof that factorizing an integer n is infeasible.
- It is not proven that RSA is secure if factoring is computationally infeasible there might be other ways to attack RSA.

# RSA, RSA signatures, and their implementations

- Introduction
- RSA
- RSA Signatures
- Implementations of Modular Exponentiation
- Implementations of Modular Multiplication

# Digital signatures

- Digital signatures provide means for an entity to bind its identity to a message.
- This normally means that the sender uses their private key to sign the (hashed) message.
- Whoever has access to the public key can then verify the origin of the message.
- For example, the message can be electronic contracts or electronic bank transactions.
- Suppose Alice signs a message m with a private key d and generates signature s.
- Bob receives the message and the signature, he can then verify *s* with public key *e* and a *verification algorithm*.
- Given m and s, the verification algorithm returns true to indicate a valid signature and false otherwise.

# **RSA** signatures

- To use RSA for digital signature, we again let p and q be two distinct primes.
- n = pq, choose  $e \in \mathbb{Z}^*_{\varphi(n)}$ , compute  $d = e^{-1} \mod \varphi(n)$ .
- The public key consists of e and n.
- *d* is the private key.
- p, q and  $\varphi(n)$  should be kept secret.

# **RSA** signatures

To sign a message m, Alice computes the signature

 $s = m^d \mod n.$ 

Then Alice sends both m and s to Bob. To verify the signature, Bob computes

 $s^e \mod n$ .

If  $s \equiv m \mod n$ , then the verification algorithm outputs true, and false otherwise.

• Up to now, the only method known to compute s from  $m \mod n$  is using d, so if the verification algorithm outputs true, Bob can conclude that Alice is the owner of d.

### Example

Alice chooses p = 5 and q = 7. Then n = 35 and

 $\varphi(n) = ?.$ 

### Example

- Alice chooses p = 5 and q = 7.
- Then

$$n = 35, \quad \varphi(n) = 24$$

- Suppose Alice chooses e = 5, which is coprime to 24.
- By the extended Euclidean algorithm

$$d = e^{-1} \mod \varphi(n) = ?$$

## Example

$$p = 5, \quad q = 7, \quad n = 35, \quad \varphi(n) = 24, \quad e = 5.$$

• By the extended Euclidean algorithm

$$24 = 5 \times 4 + 4, \ 5 = 4 + 1 \Longrightarrow 1 = 5 - (24 - 5 \times 4) = 24 \times (-1) + 5 \times 5,$$

we have  $d = e^{-1} \mod 24 = 5$ .

• To sign message m = 10, Alice computes

$$s = m^d \mod n = ?$$

- Alice sends both the message and signature to Bob.
- Bob verifies the signature

$$s^e \mod n = ?$$

### Example

$$p = 5, \quad q = 7, \quad n = 35, \quad \varphi(n) = 24, \quad e = 5, \quad d = 5$$

#### • To sign message m = 10, Alice computes

$$s = m^d \mod n = 10^5 \mod 35 = 5.$$

- Alice sends both the message m = 10 and signature s = 5 to Bob.
- Bob verifies the signature

$$s^e \mod n = 5^5 \mod 35 = 10 = m.$$

# Forgery attack on RSA signatures

- The most common attack for a digital signature is to create a valid signature for a message without knowing the secret key.
- Such an attack is called *forgery*
- Suppose the attacker, Eve, knows messages  $m_1, m_2$  and their corresponding signatures  $s_1$  and  $s_2$ .
- Eve computes  $s = s_1 s_2 \mod n$  and  $m = m_1 m_2 \mod n$ .
- Since

$$s = m_1^d m_2^d \mod n = (m_1 m_2)^d \mod n = m^d \mod n,$$

s is a valid signature for m.

• RSA signatures are commonly used together with a fast public hash function h

# Hash functions

- Hash functions map data of arbitrary length to a binary array of some fixed length called *hash values* or *message digests*
- The following are the properties that should be met in a properly designed cryptographic hash function:
  - (a) it is quick to compute a hash-value for any given input;
  - (b) it is computationally infeasible to generate an input that yields a given hash value (a preimage);
  - (c) it is computationally infeasible to find a second input that maps to the same hash value when one input is already known (a second preimage);
  - (d) it is computationally infeasible to find any pair of different messages that produce the same hash value (a collision).

## RSA signature with hash function

• To sign a message *m*, Alice computes the signature

 $s = h(m)^d \mod n.$ 

- Then she sends both m and s to Bob.
- Bob computes  $s^e \mod n$  and h(m).
- If  $s^e \mod n = h(m)$ , then Bob concludes the signature is valid.

# Forgery attack

• Suppose the attacker, Eve, knows messages  $m_1, m_2$  and their corresponding signatures  $s_1$  and  $s_2$ .

Without hash function

• Eve computes  $s = s_1 s_2 \mod n$  and  $m = m_1 m_2 \mod n$ .

Since

$$s = m_1^d m_2^d \mod n = (m_1 m_2)^d \mod n = m^d \mod n,$$

s is a valid signature for m.

With hash function

- She can compute  $h(m_1)$  and  $h(m_2)$  as h is public.
- However, to repeat the forgery attack, she needs to find m such that  $h(m) = h(m_1)h(m_2)$ , which is computationally infeasible according to property (b) of hash functions

# RSA, RSA signatures, and their implementations

- Introduction
- RSA
- RSA Signatures
- Implementations of Modular Exponentiation
- Implementations of Modular Multiplication

## Modular exponentiation

- To implement RSA or RSA signatures, we need to compute  $a^d \mod n$  for some integer  $a \in \mathbb{Z}_n$ ,
- n = pq is a product of two distinct primes and d ∈ Z<sup>\*</sup><sub>φ(n)</sub>.
- We can compute d-1 modular multiplications.
  - inefficient for large  $\boldsymbol{d}$
  - impossible for practical values of d bit length more than 1000
- Two methods
  - square and multiply algorithm
  - CRT-based RSA implementation

## Square and multiply algorithm

- Let  $n \geq 2$  be an integer,  $d \in \mathbb{Z}_{\varphi(n)}$ ,  $a \in \mathbb{Z}_n$
- Binary representation of  $d = d_{\ell_d-1} \dots d_2 d_1 d_0$ , where  $d_i = 0, 1$  and

$$d = \sum_{i=0}^{\ell_d - 1} d_i 2^i.$$

• We have  $a^d = a^{\sum_{i=0}^{\ell_d - 1} d_i 2^i} = \prod_{i=0}^{\ell_d - 1} (a^{2^i})^{d_i} = \prod_{0 \leq i < \ell_d, d_i = 1} a^{2^i}.$ 

- Thus, to compute  $a^d \mod n$ , we can
  - First compute  $a^{2^i}$  for  $0 \le i < \ell_d$
  - Then  $a^d$  is a product of  $a^{2^i}$  for which  $d_i = 1$
- Compared to d-1 modular multiplications, this requires at most  $2\log_2 d$  multiplications

# Square and multiply algorithm

**Algorithm 1:** Right-to-left square and multiply algorithm for computing modular exponentiation

**Input:**  $n, a, d// n \in \mathbb{Z}, n \geq 2; a \in \mathbb{Z}_n; d \in \mathbb{Z}_{\omega(n)}$  has bit length  $\ell_d$ **Output:**  $a^d \mod n$ 1 result = 1. t = a2 for i = 0,  $i < \ell_d$ , i + i// ith bit of d is 1 3 if  $d_i = 1$  then 4 if  $d_i = 1$  then // mutiply by  $a^{2^i}$ result = result \*  $t \mod n//a^d = \prod$  $0 \le i \le \ell_d \cdot d_i = 1$ 5  $t = t * t \mod n$ 

6 return result

1 result = 1, t = a2 for i = 0,  $i < \ell_d$ , i + + do 3  $| \begin{array}{c} // ith bit of d is 1 \\ if d_i = 1$  then 4  $| \begin{array}{c} // mutiply by a^{2^i} \\ result = result * t \mod n \\ // t = a^{2^{i+1}} \\ t = t * t \mod n \end{array}$ 

6 return result

#### Example

Let  $n = 15, d = 3 = 11_2, a = 2$ . Then

 $a^d \mod n = 2^3 \mod 15 = 8 \mod 15 = 8$ 

| i | $d_i$ | t | result |
|---|-------|---|--------|
| 0 | ?     | ? | ?      |
| 1 | ?     | ? | ?      |

1 result = 1, t = a2 for i = 0,  $i < \ell_d$ , i + + do | // ith bit of d is 1 $| if d_i = 1$  then  $| // mutiply by a^{2^i}$  $| // t = a^{2^{i+1}}$  $t = t * t \mod n$ 

6 return result

#### Example

Let  $n = 15, d = 3 = 11_2, a = 2$ . Then

 $a^d \mod n = 2^3 \mod 15 = 8 \mod 15 = 8$ 

| i | $d_i$ | t | result |
|---|-------|---|--------|
| 0 | 1     | 4 | 2      |
| 1 | 1     | 1 | 8      |

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q () 65 / 115

1 result = 1, t = a2 for i = 0,  $i < \ell_d$ , i + + do 3  $| \begin{array}{c} // ith bit of d is 1 \\ if d_i = 1$  then 4  $| \begin{array}{c} // mutiply by a^{2^i} \\ result = result * t mod n \\ // t = a^{2^{i+1}} \\ 5 & t = t * t mod n \end{array}$ 

#### 6 return result

#### Example

Let n = 23,  $d = 4 = 100_2$ , a = 5. Then

 $a^d \mod n = 5^4 \mod 23 = 625 \mod 23 = 4$ 

| i | $d_i$ | t | result |
|---|-------|---|--------|
| 0 | ?     | ? | ?      |
| 1 | ?     | ? | ?      |
| 2 | ?     | ? | ?      |

1 result = 1, t = a2 for i = 0,  $i < \ell_d$ , i + + do 3  $| \begin{array}{c} // ith bit of d is 1 \\ if d_i = 1$  then 4  $| \begin{array}{c} // mutiply by a^{2^i} \\ result = result * t mod n \\ // t = a^{2^{i+1}} \\ 5 & t = t * t mod n \end{array}$ 

6 return result

#### Example

Let n = 23,  $d = 4 = 100_2$ , a = 5. Then

 $a^d \mod n = 5^4 \mod 23 = 625 \mod 23 = 4$ 

| i | $d_i$ | t  | result |
|---|-------|----|--------|
| 0 | 0     | 2  | 1      |
| 1 | 0     | 4  | 1      |
| 2 | 1     | 16 | 4      |

**Algorithm 2:** Left-to-right square and multiply algorithm for computing modular exponentiation.

```
\begin{array}{c|c} \text{Input: } n, \ a, \ d// \ n \in \mathbb{Z}, n \ge 2; \ a \in \mathbb{Z}_n; \ d \in \mathbb{Z}_{\varphi(n)} \\ \textbf{Output: } a^d \mod n \\ 1 \ t = 1 \\ 2 \ \text{for } i = \ell_d - 1, \ i \ge 0, \ i - - \ \text{do} \\ 3 & t = t * t \mod n \\ 1 & t = t * t \mod n \\ 1 & t = t + t \mod n \\ 1 & t = 1 \\ 1
```

6 return t

1 
$$\overline{t = 1}$$
  
2 for  $i = \ell_d - 1$ ,  $i \ge 0$ ,  $i - -do$   
3  $t = t * t \mod n$   
4  $if d_i = 1$  then  
5  $t = a * t \mod n$   
6 return t

### Example

Let  $n = 15, d = 3 = 11_2, a = 2$ . Then

 $a^d \mod n = 2^3 \mod 15 = 8 \mod 15 = 8$ 

| i | $d_i$ | t |
|---|-------|---|
| 1 | ?     | ? |
| 0 | ?     | ? |

1 
$$\overline{t = 1}$$
  
2 for  $i = \ell_d - 1$ ,  $i \ge 0$ ,  $i - -do$   
3  $t = t * t \mod n$   
4  $if d_i = 1$  then  
5  $t = a * t \mod n$   
6 return t

### Example

Let  $n = 15, d = 3 = 11_2, a = 2$ . Then

 $a^d \mod n = 2^3 \mod 15 = 8 \mod 15 = 8$ 

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≥ の < ⊙ 70/115

1 
$$\overline{t = 1}$$
  
2 for  $i = \ell_d - 1$ ,  $i \ge 0$ ,  $i - -do$   
3  $t = t * t \mod n$   
4  $if d_i = 1$  then  
5  $t = a * t \mod n$   
6 roturn t

Example Let n = 23,  $d = 4 = 100_2$ , a = 5. Then  $a^d \mod n = 5^4 \mod 23 = 625 \mod 23 = 4$ 

1 
$$\overline{t = 1}$$
  
2 for  $i = \ell_d - 1$ ,  $i \ge 0$ ,  $i - -do$   
3  $t = t * t \mod n$   
4  $if d_i = 1$  then  
5  $t = a * t \mod n$   
6 roturn t

6 return t

Example Let n = 23,  $d = 4 = 100_2$ , a = 5. Then  $a^d \mod n = 5^4 \mod 23 = 625 \mod 23 = 4$  $\frac{i \quad d_i \quad t}{2 \quad 1 \quad 5}$  $\frac{1 \quad 0 \quad 2}{0 \quad 0 \quad 4}$
# **CRT-based**

- p, q: distinct primes
- n = pq is the RSA modulus
- $d\in\mathbb{Z}^*_{arphi(n)}$  is the private key for RSA or RSA signatures.

# Chinese Remainder Theorem

## Theorem (Chinese Remainder Theorem)

Let  $m_1, m_2, \ldots, m_k$  be pairwise coprime integers. For any  $a_1, a_2, \ldots, a_k \in \mathbb{Z}$ , the system of simultaneous congruences

 $x \equiv a_1 \mod m_1, \quad x \equiv a_2 \mod m_2, \quad \dots \quad x \equiv a_k \mod m_k$ 

has a unique solution modulo  $m = \prod_{i=1}^{k} m_i$ .

### Example

Take two distinct primes p, q, and let n = pq. By CRT, for any  $a \in \mathbb{Z}$ , there is a unique solution  $x \in \mathbb{Z}_n$  such that

 $x \equiv a \mod p, \quad x \equiv a \mod q.$ 

 $\implies$  to find solution for  $x \equiv a^d \mod n$  is equivalent to solving

$$x \equiv a^d \mod p, \quad x \equiv a^d \mod q.$$

# A useful lemma

#### Lemma

Let p be a prime. Then for any  $a, b, c \in \mathbb{Z}$  such that  $b \equiv c \mod (p-1)$ , we have

 $a^b \equiv a^c \mod p.$ 

In particular,

$$a^b \equiv a^b \mod (p-1) \mod p.$$

#### Example

Let p = 5, a = 2, b = 6. Then

$$2^6 \equiv 2^6 \mod 4 \equiv 2^2 \equiv 4 \mod 5.$$

We can verify that indeed

 $2^6 \equiv 64 \equiv 4 \mod 5.$ 

# CRT-based

By the Chinese Remainder Theorem, finding the solution for  $x\equiv a^d \mod n$  is equivalent to solving

$$x \equiv a^d \mod p, \quad x \equiv a^d \mod q.$$

By the lemma, we can compute

$$x_p := a^{d \mod (p-1)} \mod p, \quad x_q := a^{d \mod (q-1)} \mod q,$$

and solve for

$$x \equiv x_p \mod p, \quad x \equiv x_q \mod q.$$

An implementation that computes  $a^d \mod n$  by solving the above equation is called *CRT-based RSA*.

# Gauss's algorithm

We have discussed in week 1 that, we can compute

$$M_q = q, \ M_p = p, \ y_q = M_q^{-1} \mod p = q^{-1} \mod p, \ y_p = M_p^{-1} \mod q = p^{-1} \mod q,$$
  
and

$$x = x_p y_q q + x_q y_p p \mod n$$

gives us the solution to

$$x \equiv x_p \mod p, \quad x \equiv x_q \mod q.$$

Calculating x by with this method is called the *Gauss's algorithm*.

# Garner's algorithm

Garner's algorithm calculates

$$x = x_p + ((x_q - x_p)y_p \mod q)p.$$

This indeed gives the solution to

$$x \equiv x_p \mod p, \quad x \equiv x_q \mod q.$$

Firstly, it is straightforward to see  $x \equiv x_p \mod p$ . Furthermore,

$$x \equiv x_p + (x_q - x_p) \equiv x_q \mod q.$$

Since  $x_p \in \mathbb{Z}_p$ ,  $x_p < p$ . Similarly,  $(x_q - x_p)y_p \mod q \le q - 1$ . And  $x = x_p + ((x_q - x_p)y_p \mod q)p ,$ 

thus  $x \in \mathbb{Z}_n$ .

## CRT-based RSA implementation

$$\begin{aligned} x_p &:= a^{d \mod (p-1)} \mod p, \quad x_q := a^{d \mod (q-1)} \mod q, \\ M_q &= q, \quad M_p = p \\ y_q &= M_q^{-1} \mod p = q^{-1} \mod p, \quad y_p = M_p^{-1} \mod q = p^{-1} \mod q. \end{aligned}$$

## Example

$$p = 3, \quad q = 5, \quad n = 15, \quad \varphi(n) = 8, \quad e = 3, \quad d = 3, \quad m = 2, \quad c = 8$$

After receiving the ciphertext c, Bob computes the plaintext using his private key

$$m = c^d \mod n = 8^3 \mod 15 = 512 \mod 15 = 2 \mod 15$$

With CRT-based RSA implementation, Bob computes

$$m_p = ? \quad m_q = ? \quad y_p = ? \quad y_q = ?$$

Example

$$p = 3, \quad q = 5, \quad n = 15, \quad \varphi(n) = 8, \quad e = 3, \quad d = 3, \quad m = 2, \quad c = 8$$

After receiving the ciphertext c, with CRT-based RSA implementation, Bob computes

$$m_p = c^{d \mod (p-1)} \mod p = 8^{3 \mod 2} \mod 3 = 8 \mod 3 = 2,$$
  
$$m_q = c^{d \mod (q-1)} \mod q = 8^{3 \mod 4} \mod 5 = 512 \mod 5 = 2.$$

By the extended Euclidean algorithm,

$$5 = 3 \times 1 + 2, \ 3 = 2 + 1 \Longrightarrow 1 = 3 - (5 - 3) = 3 \times 2 - 5.$$

Thus

$$y_p = p^{-1} \mod q = 3^{-1} \mod 5 = 2 \mod 5,$$
  

$$y_q = q^{-1} \mod p = 5^{-1} \mod 3 = -1 \mod 3 = 2 \mod 3.$$

80 / 115

#### Gauss's algorithm

 $x = x_p y_q q + x_q y_p p \mod n$ 

#### Example

$$p = 3, \quad q = 5, \quad n = 15, \quad \varphi(n) = 8, \quad e = 3, \quad d = 3, \quad c = 8$$

With CRT-based RSA implementation, Bob computes

$$m_p = 2 \quad m_q = 2 \quad y_p = 2 \quad y_q = 2.$$

By Gauss's algorithm

$$m = ?$$

Gauss's algorithm

 $x = x_p y_q q + x_q y_p p \mod n$ 

#### Example

$$p = 3, \quad q = 5, \quad n = 15, \quad \varphi(n) = 8, \quad e = 3, \quad d = 3, \quad m = 2, \quad c = 8$$

With CRT-based RSA implementation, Bob computes

$$m_p = 2 \quad m_q = 2 \quad y_p = 2 \quad y_q = 2.$$

By Gauss's algorithm

 $m = m_p y_q q + m_q y_p p \mod n = 2 \times 2 \times 5 + 2 \times 2 \times 3 \mod 15 = 32 \mod 15 = 2.$ 

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 82 / 115

## Garner's algorithm

$$x = x_p + ((x_q - x_p)y_p \mod q)p.$$

#### Example

$$p = 3, \quad q = 5, \quad n = 15, \quad \varphi(n) = 8, \quad e = 3, \quad d = 3, \quad c = 8$$

With CRT-based RSA implementation, Bob computes

$$m_p = 2 \quad m_q = 2 \quad y_p = 2 \quad y_q = 2.$$

By Garner's algorithm

$$m = ?$$

Garner's algorithm

$$x = x_p + ((x_q - x_p)y_p \mod q)p.$$

### Example

$$p = 3, \quad q = 5, \quad n = 15, \quad \varphi(n) = 8, \quad e = 3, \quad d = 3, \quad c = 8$$

With CRT-based RSA implementation, Bob computes

$$m_p = 2 \quad m_q = 2 \quad y_p = 2 \quad y_q = 2.$$

By Garner's algorithm

$$m = m_p + ((m_q - m_p)y_p \mod q)p = 2 + 0 = 2.$$

## CRT-based RSA implementation

$$\begin{aligned} x_p &:= a^{d \mod (p-1)} \mod p, \qquad x_q := a^{d \mod (q-1)} \mod q, \\ M_q &= q, \quad M_p = p, \\ y_q &= M_q^{-1} \mod p = q^{-1} \mod p, \quad y_p = M_p^{-1} \mod q = p^{-1} \mod q, \end{aligned}$$

Example (RSA signature computation)

$$p = 5, \quad q = 7, \quad n = 35, \quad \varphi(n) = 24, \quad e = 5, \quad d = 5.$$

To sign message m = 10, with CRT-based RSA implementation, Alice computes

$$s_p =?$$
  $s_q =?$   $y_p =?$   $y_q =?$ 

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 85 / 115

## Example (RSA signature computation)

$$p = 5, \quad q = 7, \quad n = 35, \quad \varphi(n) = 24, \quad e = 5, \quad d = 5.$$

To sign message m = 10, with CRT-based RSA implementation, Alice computes

$$s_p = m^{d \mod (p-1)} \mod p = 10^{5 \mod 4} \mod 5 = 0,$$
  
$$s_q = m^{d \mod (q-1)} \mod q = 10^{5 \mod 6} \mod 7 = 5.$$

By the extended Euclidean algorithm

$$7 = 5 + 2, \ 5 = 2 \times 2 + 1 \Longrightarrow 1 = 5 - 2 \times (7 - 5) = 5 \times 3 - 2 \times 7$$

We have

$$y_p = p^{-1} \mod q = 3 \mod 7,$$
  
 $y_q = q^{-1} \mod p = -2 \mod 5 = 3.$ 

∽ ९ (~ 86 / 115

Gauss's algorithm

 $x = x_p y_q q + x_q y_p p \mod n$ 

Example (RSA signature computation)

$$p = 5, \quad q = 7, \quad n = 35, \quad \varphi(n) = 24, \quad e = 5, \quad d = 5.$$

With CRT-based RSA implementation, Alice computes

$$s_p = 0$$
  $s_q = 5$   $y_p = 3$   $y_q = 3$ .

By Gauss's algorithm

$$s = ?$$

Gauss's algorithm

 $x = x_p y_q q + x_q y_p p \mod n$ 

Example (RSA signature computation)

 $p = 5, \quad q = 7, \quad n = 35, \quad \varphi(n) = 24, \quad e = 5, \quad d = 5.$ 

With CRT-based RSA implementation, Alice computes

 $s_p = 0$   $s_q = 5$   $y_p = 3$   $y_q = 3$ .

By Gauss's algorithm

$$s = s_p y_q q + s_q y_p p \mod n = 5 \times 3 \times 5 \mod 35 = 5.$$

#### Garner's algorithm

$$x = x_p + ((x_q - x_p)y_p \mod q)p.$$

Example (RSA signature computation)

$$p = 5, \quad q = 7, \quad n = 35, \quad \varphi(n) = 24, \quad e = 5, \quad d = 5.$$

With CRT-based RSA implementation, Alice computes

$$s_p = 0$$
  $s_q = 5$   $y_p = 3$   $y_q = 3.$ 

By Garner's algorithm

$$s = ?$$

89/115

Garner's algorithm

$$x = x_p + ((x_q - x_p)y_p \mod q)p.$$

Example (RSA signature computation)

$$p = 5, \quad q = 7, \quad n = 35, \quad \varphi(n) = 24, \quad e = 5, \quad d = 5.$$

With CRT-based RSA implementation, Alice computes

$$s_p = 0$$
  $s_q = 5$   $y_p = 3$   $y_q = 3$ .

By Garner's algorithm

$$s = s_p + ((s_q - s_p)y_p \mod q)p = 0 + (5 \times 3 \mod 7) \times 5 = 1 \times 5 = 5.$$

## CRT-based RSA implementation

$$\begin{aligned} x_p &:= a^{d \mod (p-1)} \mod p, \qquad x_q := a^{d \mod (q-1)} \mod q, \\ M_q &= q, \quad M_p = p, \\ y_q &= M_q^{-1} \mod p = q^{-1} \mod p, \quad y_p = M_p^{-1} \mod q = p^{-1} \mod q, \end{aligned}$$

### Example

$$p = 29, \quad q = 41, \quad n = 1189, \quad \varphi(n) = 1120, \quad e = 3, \quad d = 747, \quad c = 8$$

With CRT-based RSA implementation, Bob computes

$$m_p =?$$
  $m_q =?$   $y_p =?$   $y_q =?$ 

<ロ > < 回 > < 目 > < 目 > < 目 > < 目 > < 目 > の Q (~ 91/115

Example

 $p = 29, \quad q = 41, \quad n = 1189, \quad \varphi(n) = 1120, \quad e = 3, \quad d = 747, \quad c = 8$ 

With CRT-based RSA implementation, Bob computes

$$\begin{array}{rcl} m_p &=& c^{d \mod (p-1)} \mod p = 8^{747 \mod 28} \mod 29 = 8^{19} \mod 29 = 2, \\ m_q &=& c^{d \mod (q-1)} \mod q = 8^{747 \mod 40} \mod 41 = 8^{27} \mod 41 = 2. \end{array}$$

By the extended Euclidean algorithm

 $\begin{array}{rcl} 41 = 29 + 12, \ 29 = 12 \times 2 + 5, \ 12 = 5 \times 2 + 2, \ 5 = 2 \times 2 + 1, \\ 1 & = & 5 - 2 \times (12 - 5 \times 2) = -2 \times 12 + (29 - 12 \times 2) \times 5 \\ & = & 29 \times 5 - 12 \times (41 - 29) = -41 \times 12 + 29 \times 17. \\ y_p & = & p^{-1} \bmod q = 29^{-1} \bmod 41 = 17 \bmod 41, \\ y_q & = & q^{-1} \bmod p = 41^{-1} \bmod 29 = -12 \bmod 29 = 17 \bmod 29. \end{array}$ 

#### Gauss's algorithm

 $x = x_p y_q q + x_q y_p p \mod n$ 

#### Example

$$p = 29, \quad q = 41, \quad n = 1189, \quad \varphi(n) = 1120, \quad e = 3, \quad d = 747, \quad c = 8$$

With CRT-based RSA implementation, Bob computes

$$m_p = 2$$
  $m_q = 2$   $y_p = 17$   $y_q = 17$ 

By Gauss's algorithm

$$m = ?$$

Gauss's algorithm

 $x = x_p y_q q + x_q y_p p \mod n$ 

#### Example

 $p = 29, \quad q = 41, \quad n = 1189, \quad \varphi(n) = 1120, \quad e = 3, \quad d = 747, \quad c = 8$ 

With CRT-based RSA implementation, Bob computes

$$m_p = 2 \quad m_q = 2 \quad y_p = 17 \quad y_q = 17$$

By Gauss's algorithm

 $m = m_p y_q q + m_q y_p p \mod n = 2 \times 17 \times 41 + 2 \times 17 \times 29 \mod 1189 = 2380 \mod 1189 = 2.$ 

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 94 / 115

## Garner's algorithm

$$x = x_p + ((x_q - x_p)y_p \mod q)p.$$

## Example

$$p = 29, \quad q = 41, \quad n = 1189, \quad \varphi(n) = 1120, \quad e = 3, \quad d = 747, \quad c = 8$$

With CRT-based RSA implementation, Bob computes

$$m_p = 2$$
  $m_q = 2$   $y_p = 17$   $y_q = 17$ 

By Garner's algorithm

$$m = ?$$

95 / 115

イロト 不得 トイヨト イヨト

Garner's algorithm

$$x = x_p + ((x_q - x_p)y_p \mod q)p.$$

## Example

$$p = 29, \quad q = 41, \quad n = 1189, \quad \varphi(n) = 1120, \quad e = 3, \quad d = 747, \quad c = 8$$

With CRT-based RSA implementation, Bob computes

$$m_p = 2$$
  $m_q = 2$   $y_p = 17$   $y_q = 17$ 

By Garner's algorithm

$$m = m_p + ((m_q - m_p)y_p \mod q)p = 2 + 0 = 2.$$

# CRT-based RSA implementation

- $y_p$  and  $y_q$  can be precomputed, which saves time during communication.
- The intermediate values during the computation are only half as big compared to computations of  $a^d \mod n$  since they are in  $\mathbb{Z}_p$  or  $\mathbb{Z}_q$  rather than  $\mathbb{Z}_n$ .
- $x_p = a^{d \mod (p-1)} \mod p$  and  $x_q = a^{d \mod (q-1)} \mod q$  can be calculated by square and multiply algorithm to further improve the efficiency.
- $d \mod (p-1)$  and  $d \mod (q-1)$  are much smaller than d, computing  $x_p$  or  $x_q$  requires fewer multiplications than computing  $a^d \mod p$  and  $a^d \mod q$ .
- Compared to Gauss's algorithm, Garner's algorithm does not require the final modulo n reduction.

# RSA, RSA signatures, and their implementations

- Introduction
- RSA
- RSA Signatures
- Implementations of Modular Exponentiation
- Implementations of Modular Multiplication

# Modular operations

- To have more efficient modular exponentiation implementations, we need to compute modular addition, subtraction, inverse, and multiplications.
- For modular addition and subtraction, we can just compute the corresponding integer operation and then perform a single reduction modulo the modulus.
- For inverse modulo an integer, as has been mentioned a few times, we can utilize the extended Euclidean algorithm.
- We will look at one method for computing modular multiplication

# Notations

• n: an integer of bit length  $\ell_n$ ,

$$2^{\ell_n - 1} \le n < 2^{\ell_n}.$$

- $a, b \in \mathbb{Z}_n$ , in particular,  $0 \le a, b < n$ .
- $\omega$ : the computer's word size
  - for a 64-bit processor, the word size is 64
- Let  $\kappa = \lceil \ell_n / \omega \rceil$ , i.e.  $(\kappa 1)\omega < \ell_n \le \kappa \omega$ .
- Then (|| indicates concatenation,  $0 \le a_i < 2^\omega$ )

$$a = a_{\kappa-1} ||a_{\kappa-2}|| \dots ||a_0,$$

• Note that some  $a_i$  might be 0 if the bit length of a is less than  $\ell_n$ . We have

$$a = \sum_{i=0}^{\kappa-1} a_i (2^{\omega})^i.$$

<ロト < 団ト < 団ト < 臣ト < 臣ト 差 の < で 100/115

# Notations

- n: an integer of bit length  $\ell_n$
- $a, b \in \mathbb{Z}_n$ , in particular,  $0 \le a, b < n$ .
- $\omega$ : the computer's word size
- Let  $\kappa = \lceil \ell_n / \omega \rceil$ , i.e.  $(\kappa 1)\omega < \ell_n \le \kappa \omega$ .
- Then (|| indicates concatenation,  $0 \le a_i < 2^{\omega}$ )

$$a = a_{\kappa-1} ||a_{\kappa-2}|| \dots ||a_0,$$

• Note that some  $a_i$  might be 0 if the bit length of a is less than  $\ell_n$ . We have

$$a = \sum_{i=0}^{\kappa-1} a_i (2^{\omega})^i.$$

#### Example

 $\omega = 2$ ,  $a = 13 = 1101_2$ , n = 15. Then

$$\ell_n = 4, \quad \kappa = \lceil \ell_n / \omega \rceil = \lceil 4/2 \rceil = 2.$$

# Notations - Example

- n: an integer of bit length  $\ell_n$
- $a, b \in \mathbb{Z}_n$ , in particular,  $0 \le a, b < n$ .
- Let  $\kappa = \lceil \ell_n / \omega \rceil$
- Then (|| indicates concatenation,  $0 \le a_i < 2^\omega$ )

$$a = a_{\kappa-1} ||a_{\kappa-2}|| \dots ||a_0,$$

• Note that some  $a_i$  might be 0 if the bit length of a is less than  $\ell_n$ . We have

$$a = \sum_{i=0}^{\kappa-1} a_i (2^\omega)^i.$$

#### Example

 $\omega=2\text{, }a=13=1101_2\text{, }n=15.$  Then  $\ell_n=4\text{, }\kappa=2.$ 

 $a_0 = 01_2 = 1$ ,  $a_1 = 11_2 = 3$ ,  $a = a_0(2^{\omega})^0 + a_1(2^{\omega})^1 = 1 + 3 \times 4 = 13$ 

# Notations – Example

- n: an integer of bit length  $\ell_n$
- $a, b \in \mathbb{Z}_n$ , in particular,  $0 \le a, b < n$ .
- Let  $\kappa = \lceil \ell_n / \omega \rceil$
- Then (|| indicates concatenation,  $0 \le a_i < 2^{\omega}$ )

$$a = a_{\kappa-1} ||a_{\kappa-2}|| \dots ||a_0,$$

• Note that some  $a_i$  might be 0 if the bit length of a is less than  $\ell_n$ . We have

$$a = \sum_{i=0}^{\kappa-1} a_i (2^{\omega})^i.$$

#### Example

$$a = 55 = 110111_2$$
,  $n = 69$ ,  $\omega = 2$ .

$$\ell_n = ? \quad \kappa = \lceil \ell_n / \omega \rceil = ?$$

# Notations – Example

- n: an integer of bit length  $\ell_n$
- $a, b \in \mathbb{Z}_n$ , in particular,  $0 \le a, b < n$ .
- Let  $\kappa = \lceil \ell_n / \omega \rceil$
- Then (|| indicates concatenation,  $0 \le a_i < 2^{\omega}$ )

$$a = a_{\kappa-1} ||a_{\kappa-2}|| \dots ||a_0,$$

• Note that some  $a_i$  might be 0 if the bit length of a is less than  $\ell_n$ . We have

$$a = \sum_{i=0}^{\kappa-1} a_i (2^{\omega})^i.$$

#### Example

 $a = 55 = 110111_2$ , n = 69, and  $\omega = 2$ .

$$a_n = 7, \quad \kappa = \lceil \ell_n / \omega \rceil = \lceil 7/2 \rceil = 4.$$
  
 $a_0 = ? \quad a_1 = ? \quad a_2 = ? \quad a_3 = ?$ 

# Notations – Example

- n: an integer of bit length  $\ell_n$ , i.e.
- $a, b \in \mathbb{Z}_n$ , in particular,  $0 \le a, b < n$ .
- Let  $\kappa = \lceil \ell_n / \omega \rceil$
- Then (|| indicates concatenation,  $0 \le a_i < 2^{\omega}$ )

$$a = a_{\kappa-1} ||a_{\kappa-2}|| \dots ||a_0,$$

• Note that some  $a_i$  might be 0 if the bit length of a is less than  $\ell_n$ . We have

$$a = \sum_{i=0}^{\kappa-1} a_i (2^{\omega})^i.$$

### Example

$$a = 55 = 110111_2$$
,  $n = 69$ ,  $\omega = 2$ .  $\ell_n = 7$ ,  $\kappa = \lceil \ell_n / \omega \rceil = \lceil 7/2 \rceil = 4$ .

$$a_0 = 11 = 3, \quad a_1 = 01 = 1, \quad a_2 = 11 = 3, \quad a_3 = 0.$$
  
 $a = 3 \times (2^2)^0 + 1 \times (2^2)^1 + 3 \times (2^2)^2 + 0 \times (2^2)^3 = 3 + 4 + 48 + 0 = 55.$ 

105 / 115

# Blakley's method

• We would like to compute

$$R := ab \mod n, \quad a, b \in \mathbb{Z}_n.$$

• We have discussed that

$$a = \sum_{i=0}^{\kappa-1} a_i (2^{\omega})^i,$$

where  $0 \leq a_i < 2^{\omega}$ .

• The product *ab* can be computed as follows

$$t = ab = \left(\sum_{i=0}^{\kappa-1} a_i (2^{\omega})^i\right) b = \sum_{i=0}^{\kappa-1} (2^{\omega})^i a_i b,$$

**Algorithm 3:** Blakely's method for computing modular multiplication.

**Input:**  $n, a, b// n \in \mathbb{Z}, n \geq 2$  has bit length  $\ell_n$ ;  $a, b \in \mathbb{Z}_n$ **Output:**  $R = ab \mod n$ 

**1** R = 0

//  $\kappa = \lceil \ell_n / \omega \rceil$ , where  $\omega$  is the word size of the computer

- **2** for  $i = \kappa 1$ ,  $i \ge 0$ , i - do
- $\begin{array}{c|c} \mathbf{3} & R = 2^{\omega}R + a_i b \\ \mathbf{4} & R = R \mod n \end{array}$

5 return R

# Blakely's method

Input: n, a, bOutput:  $R = ab \mod n$ 1 R = 02 for  $i = \kappa - 1, i \ge 0, i - - do$ 3  $\begin{vmatrix} R = 2^{\omega}R + a_ib \\ R = R \mod n \end{vmatrix}$ 5 return R Line 3,

 $R \le 2^{\omega}(n-1) + (2^{\omega}-1)(n-1) = (2^{\omega+1}-1)n - (2^{\omega+1}-1)n - (2^{\omega+1}-1)n - (2^{\omega+1}-1)n - (2^{\omega}-1)n -$ 

Line 4 can be replaced by comparing R with n for  $2^{\omega+1}-2$  times and subtract n from R in case  $R\geq n$ :

ι for 
$$j=0,1,2\ldots,2^{\omega+1}-2$$
 do

2 | if 
$$R \ge n$$
 then  $R = R - n$ 

3 else break

in this way, we can avoid dividing by n
Input: n, a, b Output:  $R = ab \mod n$ 1 R = 02 for  $i = \kappa - 1$ ,  $i \ge 0$ , i - -do3  $\begin{vmatrix} R = 2^{\omega}R + a_ib \\ R = R \mod n \end{vmatrix}$ 5 return R

### Example

 $\omega = 2, a = 13 = 1101_2, b = 5, n = 15 \ (\ell_n = 4), \kappa = 2.$ 

$$a_0 = 01_2 = 1, \quad a_1 = 11_2 = 3$$

For i = 1,

 $R = 0 + 3 \times 5 \mod 15 = 0 \mod 15.$ 

For 
$$i = 0$$
,  $R = ?$ 

<□> < □> < □> < ⊇> < ⊇> < ⊇> < ⊇ > < ⊇ < 109/115

# Input: n, a, b Output: $R = ab \mod n$ 1 R = 02 for $i = \kappa - 1$ , $i \ge 0$ , i - -do3 $\begin{bmatrix} R = 2^{\omega}R + a_ib \\ R = R \mod n \end{bmatrix}$ 5 return R

Example  

$$\omega = 2, a = 13 = 1101_2, b = 5, n = 15 \ (\ell_n = 4)$$
  
 $\kappa = 2.$   
 $a_0 = 01_2 = 1, a_1 = 11_2 = 3.$   
For  $i = 1$ ,  
 $R = 0 + 3 \times 5 \mod 15 = 0 \mod 15.$   
For  $i = 0$ ,  
 $R = 0 + 1 \times 5 \mod 15 = 5 \mod 15$   
We have the final result  $13 \times 5 \mod 15 = 5.$ 

Input: n, a, b Output:  $R = ab \mod n$ 1 R = 02 for  $i = \kappa - 1$ ,  $i \ge 0$ , i - -do3  $\begin{bmatrix} R = 2^{\omega}R + a_ib \\ R = R \mod n \end{bmatrix}$ 5 return R

#### Example

Input: n, a, b Output:  $R = ab \mod n$ 1 R = 02 for  $i = \kappa - 1$ ,  $i \ge 0$ , i - -do3  $\begin{vmatrix} R = 2^{\omega}R + a_ib \\ R = R \mod n \end{vmatrix}$ 5 return R

#### Example

$$a = 55 = 110111_2, b = 46, n = 69, \omega = 2, \ell_n = 7, \\ \kappa = 4, a_0 = 11 = 3, a_1 = 01 = 1, a_2 = 11 = 3, \\ a_3 = 0$$

i = 3 line 3, R = 0, line 4, R = 0, i = 2 line 3, R = ?line 4, R = ?

# Input: n, a, bOutput: $R = ab \mod n$ 1 R = 02 for $i = \kappa - 1, i \ge 0, i - - do$ 3 $\begin{vmatrix} R = 2^{\omega}R + a_ib \\ R = R \mod n \end{vmatrix}$ 5 return R

#### Example

- $\begin{array}{l} a=55=110111_2,\,b=46,\,n=69,\,\omega=2,\,\ell_n=7,\\ \kappa=4,\,a_0=11=3,\,a_1=01=1,\,a_2=11=3,\\ a_3=0 \end{array}$ 
  - i = 3 line 3, R = 0, line 4. R = 0. i = 2 line 3.  $R = 3 \times 46 = 138$ . line 4,  $R = 138 \mod 69 = 0$ , i = 1line 3. R = ?line 4. R = ?i=0 line 3. R=?line 4. R = ?

# Input: n, a, b Output: $R = ab \mod n$ 1 R = 02 for $i = \kappa - 1$ , $i \ge 0$ , i - -do3 $\begin{vmatrix} R = 2^{\omega}R + a_ib \\ R = R \mod n \end{vmatrix}$ 5 return R

#### Example

- $a = 55 = 110111_2, b = 46, n = 69, \omega = 2, \ell_n = 7, \\ \kappa = 4, a_0 = 11 = 3, a_1 = 01 = 1, a_2 = 11 = 3, \\ a_3 = 0$ 
  - i=3 line 3, R=0,
    - line 4, R = 0,

$$i = 2$$
 line 3,  $R = 3 \times 46 = 138$ ,

line 4, 
$$R = 138 \mod 69 = 0$$
,

$$i = 1$$
 line 3,  $R = 1 \times 46 = 46$ ,

ine 4, 
$$R = 46 \mod 69 = 46$$
,

$$i = 0$$
 line 3,  $R = 2^2 \times 46 + 3 \times 46 = 322$ ,

line 4,  $R = 322 \mod 69 = 46$ .

### Final remarks

- Currently, a few hundred qubits (a quantum counterpart to the classical bit) are possible for a quantum computer
- To break RSA, thousands of qubits are required.
- Post-quantum public key cryptosystems are being proposed to protect communications after a sufficiently strong quantum computer is built.
- Various public key cryptosystems based on different problems
- Various digital signature designs
- Provable secure signature, similarity to one-time pad