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Course Outline

• Abstract algebra and number theory

• Introduction to cryptography

• Symmetric block ciphers and their implementations

• RSA, RSA signatures, and their implementations

• Probability theory and introduction to SCA

• SPA and non-profiled DPA

• Profiled DPA

• SCA countermeasures

• FA on RSA and countermeasures

• FA on symmetric block ciphers

• FA countermeasures for symmetric block cipher
• Practical aspects of physical attacks

• Invited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH
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Recommended reading

• Textbook
• Sections 3.1, 3.2
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Lecture Outline

• Introduction

• DES

• AES

• PRESENT

• Bitsliced implementations

• Implementation of round functions
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Symmetric block ciphers and their implementations

• Introduction

• DES

• AES

• PRESENT

• Bitsliced implementations

• Implementation of round functions
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Cryptosystem

Definition

A cryptosystem is a tuple (P,C,K,E,D) with the following properties:

• P is a finite set of plaintexts, called plaintext space.

• C is a finite set of ciphertexts, called ciphertext space.

• K is a finite set of keys, called key space.

• E = { Ek : k ∈ K }, where Ek : P → C is an encryption function.

• D = {Dk : k ∈ K }, where Dk : C → P is a decryption function.

• For each e ∈ K, there exists d ∈ K such that Dd(Ee(p)) = p for all p ∈ P.

If e = d, the cryptosystem is called a symmetric key cryptosystem. Otherwise, it is
called a public-key/asymmetric cryptosystem.

• In general, symmetric key ciphers are faster, but they require key exchange before
communication.
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Modern symmetric block cipher

• P = C = Fn
2 for a positive integer n, which is called the block length of the cipher.

• The key space is also a vector space over F2 and its dimension is called the key
length of the cipher.

• Each key k ∈ K is called a master key.
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Key length

• We have seen that exhaustive key search can be used to break shift cipher and
affine cipher

• key space should be big enough so that the attacker cannot brute force

• Determined by the current computation power
• The 56-bit secret key of DES was successfully cracked in 1998
• The U.S. National Institute for Standards and Technology (NIST) issues

recommendations for key sizes for government institutions in the USA. According to
those recommendations

• 80-bit keys were “retired” in 2010
• lesser than 112-bit keys were considered insufficient from 2015 onward

• National Security Agency (NSA) currently requires AES-256 for Top Secret
classification since 2015 due to the emergence of quantum computing
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Confusion and diffusion

• For the construction of symmetric block ciphers, two important principles are
followed by modern cryptographers – confusion and diffusion.

• Shannon first introduced them in his famous paper1

• Confusion obscures the relationship between the ciphertext and the key. To
achieve this, each part of the ciphertext should depend on several parts of the key.

• Diffusion obscures the statistical relationship between the plaintext and the
ciphertext. Each change in the plaintext is spread over the ciphertext, with the
redundancies being dissipated.

• For example, affine cipher has very low diffusion – the distributions of letters in
plaintext correspond directly to those in the ciphertext.

• That is also why frequency analysis can be applied to break those ciphers.

1Claude E Shannon. A mathematical theory of cryptography. Mathematical Theory of
Cryptography, 1945
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Block cipher design specifications

• A symmetric block cipher design specifies a round function and a key schedule.

• Encryption of a plaintext block consists of a few rounds of round functions,
possibly with minor differences.

• Each round function takes the cipher’s current state as an input and outputs the
next state.

• The key schedule takes the master key k and outputs the keys for each round,
which are called round keys.

• In most cases, the key schedule is an invertible function.
• Given one or more round keys, the master keys can be calculated.
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Physical attacks

• By Kerckhoffs’ principle
• round functions and key schedule specifications are public
• master key (hence also the round keys) are secret

• We will only consider ciphers whose key schedules are invertible functions

• In physical attacks that we will discuss in the later parts of the book, the attacker
normally aims to recover some round key(s) and then use the inverse key schedule
to find the master key.
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Encryption of a block cipher
• F : round function

• Nr: total number of rounds

• Ki: round key for round i

• Si: the cipher state at the end of round i

• For a plaintext p ∈ Fn
2 , the ciphertext c ∈ Fn

2 can be computed as follows1

S0 = p,

S1 = F (S0,K1),

S2 = F (S1,K2),
...

SNr = F (SNr−1,KNr),

c = SNr.

1The round function for the last round might be a bit different, as for the case of AES
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Decryption of a block cipher

• To perform decryption, we require that for any given round key Ki, F (x,Ki) has
an inverse, i.e.

F−1(F (x,Ki),Ki) = x, ∀x ∈ Fn
2 .

• In this case, given ciphertext c, plaintext p can be computed as follows:

SNr = c,

SNr-1 = F−1(SNr,KNr),
...

S1 = F−1(S2,K2),

S0 = F−1(S1,K1),

p = S0.
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XOR with the round key

• We recall for a vector space over F2, vector addition is given by bitwise XOR,
denoted ⊕

• XOR with the round key is a common operation in round functions of symmetric
block ciphers.

Example

Take 111, 101 ∈ F3
2,

111⊕ 101 = 010
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Sbox

• Another common function is a substitution function called Sbox, denoted SB

• SB: Fω1
2 → Fω2

2 .

• Normally ω1 or/and ω2 is a divisor of the block length n and a few Sboxes are
applied in one round function.

• When ω1 = ω2, SB is a permutation on Fω1
2 and we say that the Sbox is an

ω1−bit Sbox.
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Feistel cipher and SPN cipher

• There are mainly two types of symmetric block ciphers – Feistel cipher and
Substitution–permutation network (SPN) cipher.

• Feistel: DES

• SPN: AES, PRESENT
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Symmetric block ciphers and their implementations

• Introduction

• DES

• AES

• PRESENT

• Bitsliced implementations

• Implementation of round functions
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Feistel cipher
• The cipher state at the beginning/end of each round is divided into two halves of
equal length.

• The cipher state at the end of round i is denoted as Li and Ri, L – left, R – right.

• The round function F is defined as

(Li, Ri) = F (Li−1, Ri−1,Ki), where Li = Ri−1, Ri = Li−1 ⊕ f(Ri−1,Ki).

• We note that f is a function that does not need to have an inverse since the
function F is always invertible

Li−1 = Ri ⊕ f(Li,Ki), Ri−1 = Li.

• The ciphertext is normally given by RNr||LNr (i.e. swapping the left and right side
of the cipher state at the end of the last round).

• In this case, if we let Ri and Li denote the right and left part of the cipher state
at the end of round i in the decryption, then the decryption computation is the
same as for encryption, with round keys in reverse order

18 / 122



Feistel cipher
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Figure: An illustration of Feistel cipher encryption algorithm. 19 / 122



Data Encryption Standard (DES)

• Developed at IBM by a team led by Horst Feistel and the design was based on
Lucifer cipher.

• It was used as the NIST standard from 1977 to 2005.

• Even though the key length is too small for the current standard, some variants
are still in use today (invited talk)

• It has a significant influence on the development of cipher design.
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DES

• The block length of DES is n = 64, i.e. P = C = F64
2 .

• Li, Ri ∈ F32
2 .

• The master key length is 56, i.e. K = F56
2 .

• The round key length is 48.

• The total number of rounds Nr = 16.
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DES – Initial permutation

• Before the first round function, the encryption starts with an initial permutation
(IP).

• The inverse of IP, called the final permutation (IP−1) is applied to the cipher
state after the last round before outputting the ciphertext.

• Initial and final permutations are included for the ease of loading
plaintext/ciphertext.

Remark

For DES specification, we consider the 1st bit of a value as the leftmost bit in its
binary representation. For example, the 1st bit of 3 = 0112 is 0, the 2nd bit is 1 and
the last bit is 1.
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DES – initial permutation

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

• 1st bit of output is from 58th bit of
input

• 2nd bit of output is from 50th bit of
input

src: https://academic.csuohio.edu/yuc/security/
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DES – final permutation

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

• 1st bit of output is from 40th bit of
input

• 2nd bit of output is from 8th bit of
input

src: https://academic.csuohio.edu/yuc/security/
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DES – function f
• At the ith round, the function f in the round function of DES takes input

Ri−1 ∈ F32
2 and round key Ki ∈ F48

2 , then outputs a 32−bit intermediate value:

f(Ri−1,Ki) = PDES(Sboxes(EDES(Ri−1)⊕Ki)).

Ri−1 Ki

Expansion (EDES)

/ 32 / 48

/ 48

SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8

Permutation (PDES)
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DES – function f – expansion function

• Expansion function: F32
2 → F48

2

• 16 bits of the input are repeated and
affect two bits of the output, which
influence two Sboxes.

• Such a design makes the dependency
of the output bits on the input bits
spread faster and achieves higher
diffusion.

• Recall: construction principle –
diffusion obscures the statistical
relationship between the plaintext and
the ciphertext. Each change in the
plaintext is spread over the ciphertext,
with the redundancies being
dissipated.

32 1 2 3 4 5 4 5
6 7 8 9 8 9 10 11
12 13 12 13 14 15 16 17
16 17 18 19 20 21 20 21
22 23 24 25 24 25 26 27
28 29 28 29 30 31 32 1
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DES – function f – Sboxes
• 48−bit value is divided into eight 6−bit subblocks
• 8 distinct Sboxes, SBj

DES : F6
2 → F4

2 (1 ≤ j ≤ 8), are applied to each of the 6 bits.

Ri−1 Ki

Expansion (EDES)

/ 32 / 48

/ 48

SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8

Permutation (PDES)
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DES – function f – Sboxes

• 6 bit input: b1b2b3b4b5b6
• b1b6, row number
• b2b3b4b5, column number

• Each row is a permutation of integers 0, 1, . . . , 15

SB1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Example

• b1b2b3b4b5b6 = 100110

• SB1
DES(100110) =?
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DES – function f – Sboxes
• 6 bit input: b1b2b3b4b5b6

• b1b6, row number
• b2b3b4b5, column number

• Each row is a permutation of integers 0, 1, . . . , 15

SB1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Example

• b1b2b3b4b5b6 = 100110

• row number is given by b1b6 = 2, column number is given by b2b3b4b5 = 0011 = 3

• SB1
DES(100110) = 8 = 1000
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DES – function f – Sboxes
SB2

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

SB3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Example

• b1b2b3b4b5b6 = 100110, b1b6 = 2, b2b3b4b5 = 0011 = 3

• SB3
DES(100110) =?
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DES – function f – Sboxes
SB2

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

SB3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Example

• b1b2b3b4b5b6 = 100110, b1b6 = 2, b2b3b4b5 = 0011 = 3

• SB3
DES(100110) = 9 = 1001
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DES – function f – permutation

• Permutation: F32
2 → F32

2

• 1st bit of output comes from the 16th
bit of input

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25
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DES – key schedule

• Input: 64−bit master key. Outputs round keys
of length 48.

• PC: permuted choice

• Master key: each 8th bit is a parity-check bit –
XOR of the previous 7 bits

• PC1: 64 bits are reduced to 56 bits

• 56 bits are divided into two 28−bit halves

• Each half rotates left by one or two bits,
depending on the round

• PC2: selects 48 bits out of 56 bits, permutes
them

Remark

Knowledge of any round key → 48 bits of the
master key

Master key

/ 64

PC1

≪ ≪

PC2K1 /
48

≪ ≪

PC2K2 /
48

≪ ≪

PC2K15 /
48

≪ ≪

PC2K16 /
48
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DES – key schedule – PC1

Left

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36

Right

63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

Master key

/ 64

PC1

≪ ≪

PC2K1 /
48

≪ ≪

PC2K2 /
48

≪ ≪

PC2K15 /
48

≪ ≪

PC2K16 /
48
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DES – key schedule – left rotate

1 2 3 4 5 6 7 8
1 1 2 2 2 2 2 2

9 10 11 12 13 14 15 16
1 2 2 2 2 2 2 1

Number of key bits rotated per round

Master key

/ 64

PC1

≪ ≪

PC2K1 /
48

≪ ≪

PC2K2 /
48

≪ ≪

PC2K15 /
48

≪ ≪

PC2K16 /
48
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DES – key schedule – PC2

14 17 11 24 1 5 3 28
15 6 21 10 23 19 12 4
26 8 16 7 27 20 13 2
41 52 31 37 47 55 30 40
51 45 33 48 44 49 39 56
34 53 46 42 50 36 29 32

Master key

/ 64

PC1

≪ ≪

PC2K1 /
48

≪ ≪

PC2K2 /
48

≪ ≪

PC2K15 /
48

≪ ≪

PC2K16 /
48
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Data Encryption Standard (DES)

• Encryption
• Same algorithm for decryption

• Round keys in reverse order

• Weak keys: master keys that give the same
round keys in more than one round

• 01010101 01010101
• FEFEFEFE FEFEFEFE
• E0E0E0E0 F1F1F1F1
• 1F1F1F1F 0E0E0E0E

f

f

f

f

IP

L0 R0

IP−1

Ciphertext

K1

K2

K15

K16
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Symmetric block ciphers and their implementations

• Introduction

• DES

• AES

• PRESENT

• Bitsliced implementations

• Implementation of round functions
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SPN cipher

• Let ω be a divisor of n, the block length, and let ℓ = n/ω.
• In most cases, ω = 4, 8.

• Each round of an SPN cipher normally consists of
• bitwise XOR with the round key
• application of ℓ parallel ω−bit Sboxes
• a permutation on Fn

2

• The encryption starts with XOR with a round key, also ends with XOR with a round
key before outputting the ciphertext, otherwise, the cipher states in the second (or
the last) round are all known to the attacker.

• Those two operations are called whitening.

• For decryption, the inverse of Sbox and permutation are computed, and round
keys are XOR-ed with the cipher state in reverse order compared to that for
encryption.
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Plaintext Master key

KS

SB1
1 SB1

2 · · · SB1
ℓ

SB2
1 SB2

2 · · · SB2
ℓ

SBn
1 SBn

2 · · · SBn
ℓ

Ciphertext

K0

K1

K2

Kn−1

Kn

Permutation

Permutation

Permutation

1

41 / 122



AES

• NIST, 1997, Call for algorithms, replacement for DES

• Advanced Encryption Standard

• October 2000, Rijndael was selected

• Invented by Belgian cryptographers Joan Daemen and Vincent Rijmen

• Optimized for software efficiency on 8 and 32 bit processors
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AES and Rijndael
• n = 128, ω = 8

• Number of rounds Nr= 10, 12, 14

• Corresponding key length = 128, 192, 256

• The original design of Rijndael also allows for different key lengths and block
lengths.

key length
block length

128 160 192 224 256

128 10 11 12 13 14
160 11 11 12 13 14
192 12 12 12 13 14
224 13 13 13 13 14
256 14 14 14 14 14

Table: Specifications of Rijndael design, where blue-colored values are adopted by AES.
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AES encryption
• An initial AddRoundKey
• Round function for Nr−1 rounds: SubBytes, ShiftRows, MixColumns,

AddRoundKey
• Last round, round Nr: SubBytes, ShiftRows, AddRoundKey
• AddRoundKey is bitwise XOR with the round key
• SubBytes is the application of 8−bit Sboxes.
• ShiftRows permutes the bytes
• MixColumns is a function on 32−bit values (four bytes).

SB

SBAES

✧
✧
✧
✧

SR

column ×




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




✧
✧

✧
✧

MC AK
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AES – decryption

• The inverse of SubBytes, ShiftRows, and MixColumns are denoted as
InvSubBytes, InvShiftRows, and InvMixColumns respectively.

• The first round of AES decryption computes AddRoundKey, InvShiftRows, and
InvSubBytes.

• Then the round function for the next Nr−1 rounds consists of AddRoundKey,
InvMixColumns, InvShiftRows, and InvSubBytes.

• Finally, an additional AddRoundKey is computed

• Round keys for decryption are in reverse order as those for encryption.
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AES – state
• base−16 representation, base−10 representation, base−2 representation

016 = 00002 = 010, . . . , 916 = 1001 = 910, A16 = 10102 = 1010, F16 = 11112 = 1510

• One byte is a vector in F8
2 and can be represented as a hexadecimal number

between 00 and FF e.g. 5716 = 010101112
• Cipher state - four by four matrix of bytes



s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33




SB

SBAES

✧
✧
✧
✧

SR

column ×




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




✧
✧

✧
✧

MC AK
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AES – ShiftRows

• As the name suggests, the ShiftRows operation shifts the bytes in the rows of the
cipher state.




s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33


→




s00 s01 s02 s03
s11 s12 s13 s10
s22 s23 s20 s21
s33 s30 s31 s32


 .

• In another representation, let the output of ShiftRows be a matrix B with entries
bij , then 



b0j
b1j
b2j
b3j


 =




s0j
s1(j+1 mod 4)

s2(j+2 mod 4)

s3(j+3 mod 4)


 , 0 ≤ j < 4.

• For decryption, the inverse of ShiftRows, InvShiftRows, can be easily deduced.
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AES – SubBytes
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

SBAES(12) = C9
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AES – Sbox

• Different from the eight Sboxes in DES, AES Sbox can also be defined
algebraically

• Let us first recall what we have learned about bytes and polynomial rings from the
first week

• Will also be useful for understanding MixColumns
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Polynomials

• (F,+, ·): a field,

F [x] :=

{
n∑

i=0

aix
i

∣∣∣∣∣ ai ∈ F, n ≥ 0

}
.

• A polynomial f(x) ∈ F [x] of positive degree is said to be reducible (over F ) if
there exist g(x), h(x) ∈ F [x] such that

deg(g(x)) < deg(f(x)), deg(h(x)) < deg(f(x)), and f(x) = g(x)h(x).
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Congruence classes modulo f(x)

• For any g(x), h(x) ∈ F [x], if f(x)|(g(x)− h(x)), we say h(x) is congruent to
g(x) modulo f(x), written g(x) ≡ h(x) mod f(x).

• Congruence class of g(x) modulo f(x) is given by

{ h(x) | h(x) ≡ g(x) mod f(x) } .

• Suppose f(x) has degree n, where n ≥ 1. Let F [x]/(f(x)) denote the set of all
congruence classes of g(x) ∈ F [x] modulo f(x). Then

F [x]/(f(x)) =

{
n−1∑

i=0

aix
i

∣∣∣∣∣ ai ∈ F for 0 ≤ i < n

}
.

• For any g(x), h(x) ∈ F [x]/(f(x)), same as in for Zn, addition and multiplication
in F [x]/(f(x)) are computed modulo f(x).
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F28

• f(x) = x8 + x4 + x3 + x+ 1 ∈ F2[x].

• It can be shown that f(x) is irreducible over F2

• Then the set of congruence classes of g(x) ∈ F2[x] modulo f(x) is

F2[x]/(f(x)) =

{
7∑

i=0

bix
i

∣∣∣∣∣ bi ∈ F2 ∀i
}
,

• We have also learned that
F2[x]/(f(x)) ∼= F28 .

52 / 122



Bytes
• Any

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 ∈ F2[x]/(f(x))

can be stored as a byte b7b6b5b4b3b2b1b0 ∈ F8
2

• A byte represents an integer between 0 (0016) and 255 (FF16)
• There are 256 different values for a byte, and |F28 | = 28 = 256.
• Define φ:

φ : F2[x]/(f(x)) → F8
2

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 7→ b7b6b5b4b3b2b1b0

• φ is bijective

Example

• x6 + x4 + x2 + x+ 1 ∈ F2[x]/(f(x)) corresponds to 010101112 = 5716

• x7 + x+ 1 ∈ F2[x]/(f(x)) corresponds to 100000112 = 8316.

53 / 122



Addition and multiplication between bytes
With addition and multiplication modulo f(x) in F2[x]/(f(x)), we can define the
corresponding addition and multiplication between bytes.

Definition

For any two bytes v = v7v6 . . . v1v0 and w = w7w6 . . . w1w0, let
gv(x) = v7x

7 + v6x
6 + · · ·+ v1x+ v0 and gw(x) = w7x

7 +w6x
6 + · · ·+w1x+w0 be

the corresponding polynomials in F2[x]/(f(x)). We define

v +w = gv(x) + gw(x) mod f(x), v ×w = gv(x)gw(x) mod f(x).

Example

f(x) = x8 + x4 + x3 + x+ 1. Compute the sum and product between

x6 + x4 + x2 + x+ 1 ∈ F2[x]/(f(x)) i.e. 010101112 = 5716

and
x7 + x+ 1 ∈ F2[x]/(f(x)) i.e. 100000112 = 8316
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Addition and multiplication between bytes

Example

f(x) = x8 + x4 + x3 + x+ 1.

5716 + 8316 = (x6 + x4 + x2 + x+ 1) + (x7 + x+ 1) mod f(x)

= x7 + x6 + x4 + x2 mod f(x) = 110101002 = D416.

(x6 + x4 + x2 + x+ 1)(x7 + x+ 1) = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1,

x8 = x4 + x3 + x+ 1 mod f(x)

x9 = x5 + x4 + x2 + x mod f(x)

x11 = x7 + x6 + x4 + x3 mod f(x)

x13 = x9 + x8 + x6 + x5 mod f(x).

x13+x11+x9+x8+x6+x5+x4+x3+1 = x11+x4+x3+1 = x7+x6+1 mod f(x).

And 5716 × 8316 = 110000012 = C116. 55 / 122



Addition between bytes

For any

g(x) =

n−1∑

i=0

aix
i, h(x) =

n−1∑

i=0

bix
i

from F2[x]/(f(x)), we have

g(x) + h(x) mod f(x) =

n−1∑

i=0

cix
i, where ci = ai + bi mod 2.

Recall that a byte is also a vector in F8
2, we have defined vector addition as bitwise

XOR, and
v +F8

2
w = u = u7u6 . . . u1u0, where ui = vi ⊕ wi.

We note that a+ b mod 2 = a⊕ b for a, b ∈ F2. Thus, our definition of addition
between two bytes agrees with the vector addition between two vectors in F8

2.
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Multiplication by 02

f(x) = x8 + x4 + x3 + x+ 1.

We will compute the formula for a byte multiplied by 0216 = x. Take any
g(x) = b7x

7 + b6x
6 + · · ·+ b1x+ b0 ∈ F2[x]/(f(x))

g(x)x mod f(x)

= (b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0)x mod f(x)

= b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x mod f(x)

= b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x+ b7x
4 + b7x

3 + b7x+ b7 mod f(x)

= b6x
7 + b5x

6 + b4x
5 + (b3 + b7)x

4 + (b2 + b7)x
3 + b1x

2 + (b0 + b7)x+ b7 mod f(x).

Thus, for any byte b7b6 . . . b1b0, multiplication by 0216 is equivalent to left shift by 1
and XOR with 000110112 = 1B16 if b7 = 1.
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Multiplication by 02

For any byte b7b6 . . . b1b0, multiplication by 0216 is equivalent to left shift by 1 and
XOR with 000110112 = 1B16 if b7 = 1.

Example
• 5716 = 010101112, 0216 × 5716 = 10101110 = AE16.

• 8316 = 100000112, 0216 × 8316 = 000001102 ⊕ 000110112 = 000111012 = 1D16.

• D416 = 110101002, 0216 × D416 = 101010002 ⊕ 000110112 = 101100112 = B316.
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Multiplication by 03
Let us compute the multiplication of a byte by 0316 = x+ 1. Take any
h(x) = b7x

7 + b6x
6 + · · ·+ b1x+ b0 ∈ F2[x]/(f(x)), then

h(x)(x+ 1) mod f(x) = h(x)x+ h(x) mod f(x).

Thus, for any byte b7b6 . . . b1b0, multiplication by 0316 is equivalent to first multiply by
0216 (left shift by 1 and XOR with 000110112 = 1B16 if b7 = 1) then XOR with the byte
itself (b7b6 . . . b1b0).

Example

We have computed

0216 × 5716 = AE16, 0216 × 8316 = 1D16, 0216 × D416 = B316.

We have

• 0316 × 5716 = AE16 ⊕ 5716 = F916.

• 0316 × 8316 = 1D16 ⊕ 8316 = 9E16.

• 0316 × D416 = B316 ⊕ D416 = 6716. 59 / 122



Inverse of a byte as an element in F2[x]/(f(x)).

f(x) = x8 + x4 + x3 + x+ 1.

As mentioned before, multiplicative inverse of g(x) ∈ F2[x]/(f(x)) can be found using
the extended Euclidean algorithm

Example

0316 = 000000112 = x+ 1. By the Euclidean algorithm,

f(x) = (x+ 1)(x7 + x6 + x5 + x4 + x2 + x) + 1 =⇒ gcd(f(x), (x+ 1)) = 1.
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Long division

In primary school, we learned to do long division for calculating the quotient and
remainder of dividing one integer by another integer. For example, to compute

1346 = 25× q + r,

we can write

25 1346
53

125

96
75

21

and we get q = 53, r = 21.
Similarly, let us take two polynomials f(x), g(x) ∈ F [x], where F is a field. We can
also compute f(x) divided by g(x) using long division.
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Long division

x7 + x6 + x5 + x4 + x2 + x + 1

x+ 1))x8 + x4 + x3 + x + 1

x8 + x7

x7 + x4 + x3 + x + 1

x7 + x6

x6 + x4 + x3 + x + 1

x6 + x5

x5 + x4 + x3 + x+ 1

x5 + x4

x3 + x + 1

x3 + x2

x2 + x+ 1

x2 + x

1

f(x) = (x+1)(x7+x6+x5+x4+x2+x+1)+1.
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Inverse of a byte as an element in F2[x]/(f(x))

f(x) = x8 + x4 + x3 + x+ 1.

Multiplicative inverse of g(x) ∈ F2[x]/(f(x)) can be found using the extended
Euclidean algorithm

Example

0316 = 000000112 = x+ 1. By the Euclidean algorithm,

f(x) = (x+ 1)(x7 + x6 + x5 + x4 + x2 + x) + 1 =⇒ gcd(f(x), (x+ 1)) = 1.

By the extended Euclidean algorithm,

1 = f(x)− (x+ 1)(x7 + x6 + x5 + x4 + x2 + x).

We have

03−1
16 = (x+ 1)−1 mod f(x) = x7 + x6 + x5 + x4 + x2 + x = 111101102 = F616.
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Inverse of a byte as an element in F2[x]/(f(x))

f(x) = x8 + x4 + x3 + x+ 1.

Example

Find inverse of 5B16 = 010110112 as an element in F2[x]/(f(x)).
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Inverse of a byte as an element in F2[x]/(f(x))

f(x) = x8 + x4 + x3 + x+ 1.

Example

5B16 = 010110112 → x6 + x4 + x3 + x+ 1 ∈ F2[x]/(f(x)).

f(x) = (x2 + 1)(x6 + x4 + x3 + x+ 1) + (x5 + x3 + x2),

x6 + x4 + x3 + x+ 1 = x(x5 + x3 + x2) + (x+ 1),

x5 + x3 + x2 = (x4 + x3 + x+ 1)(x+ 1) + 1,

1 = (x5 + x3 + x2) + (x4 + x3 + x+ 1)(x+ 1)

= (x5 + x3 + x2) + (x4 + x3 + x+ 1)((x6 + x4 + x3 + x+ 1) + x(x5 + x3 + x2))

= (x4 + x3 + x+ 1)(x6 + x4 + x3 + x+ 1) + (x5 + x4 + x2 + x+ 1)(x5 + x3 + x2)

= (x4 + x3 + x+ 1)(x6 + x4 + x3 + x+ 1)

+(x5 + x4 + x2 + x+ 1)(f(x) + (x2 + 1)(x6 + x4 + x3 + x+ 1))

= (x5 + x4 + x2 + x+ 1)f(x) + (x7 + x6 + x5 + x4)(x6 + x4 + x3 + x+ 1).
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Inverse of a byte as an element in F2[x]/(f(x))

f(x) = x8 + x4 + x3 + x+ 1.

Example

5B16 = 010110112 → x6 + x4 + x3 + x+ 1 ∈ F2[x]/(f(x)).

1 = (x5 + x3 + x2) + (x4 + x3 + x+ 1)(x+ 1)

= (x5 + x3 + x2) + (x4 + x3 + x+ 1)((x6 + x4 + x3 + x+ 1) + x(x5 + x3 + x2))

= (x4 + x3 + x+ 1)(x6 + x4 + x3 + x+ 1) + (x5 + x4 + x2 + x+ 1)(x5 + x3 + x2)

= (x4 + x3 + x+ 1)(x6 + x4 + x3 + x+ 1)

+(x5 + x4 + x2 + x+ 1)(f(x) + (x2 + 1)(x6 + x4 + x3 + x+ 1))

= (x5 + x4 + x2 + x+ 1)f(x) + (x7 + x6 + x5 + x4)(x6 + x4 + x3 + x+ 1).

(x6 + x4 + x3 + x+ 1)−1 mod f(x) = x7 + x6 + x5 + x4 = 111100002 = F0
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AES – SubBytes
Let

A =




1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1




, a =




1
1
0
0
0
1
1
0




,

then

SBAES(z) =

{
Az−1 + a z ̸= 0

a z = 0

where z−1 is the inverse of z as an element in F2[x]/(f(x))

Example

What is SBAES(03)?
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AES – SubBytes

Example

We have see that 03−1 = 111101102. And we have

A




1
1
1
1
0
1
1
0




+ a =




1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1







1
1
1
1
0
1
1
0




+




0
1
1
0
0
0
1
1




=




0
0
0
1
1
0
0
0




+




0
1
1
0
0
0
1
1




=




0
1
1
1
1
0
1
1




.

So SBAES(03) = 011110112 = 7B, which agrees with the AES Sbox table.
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AES – InvSubBytes
• Recall SubBytes:

SBAES(z) =

{
Az−1 + a z ̸= 0

a z = 0

• Let g denote the function g(z) = Az + a.
• Then InvSubBytes computes

SB−1
AES(z) =

{
(g−1(z))−1 g−1(z) ̸= 0

0 g−1(z) = 0
.

g−1(z) =




0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0




z +




0
0
0
0
0
1
0
1
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AES – InvSubBytes
InvSubBytes computes

SB−1
AES(z) =

{
(g−1(z))−1 g−1(z) ̸= 0

0 g−1(z) = 0
.

g−1(z) =




0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0




z +




0
0
0
0
0
1
0
1




Example

Let z = 8C = 100011002. What is SB−1
AES(8C)?
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AES – InvSubBytes

Example

Let z = 8C = 100011002. Then

g−1(z) =




0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0







1
0
0
0
1
1
0
0




+




0
0
0
0
0
1
0
1




=




0
1
0
1
1
1
1
0




+




0
0
0
0
0
1
0
1




=




0
1
0
1
1
0
1
1




= 5B16.

We have seen that

(x6 + x4 + x3 + x+ 1)−1 mod f(x) = x7 + x6 + x5 + x4 = 111100002 = F0,

which gives SB−1
AES(8C) = F0
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AES – InvSubBytes
InvSubBytes can also be described using a table

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

E A0 E0 3B 4D AE 2A F5 B0 C8 BE BB 3C 83 53 99 61

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D
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AES – MixColumns

• Recall AES state 


s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33




• The MixColumns function takes each of the four columns of the cipher state as
input

• Multiplies the input column by a matrix:




d0
d1
d2
d3


 =




02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02







s0j
s1j
s2j
s3j


 , j = 0, 1, 2, 3. (1)
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AES – MixColumns

Example

Suppose (
s0j s1j s2j s3j

)
=
(
D4 BF 5D 30

)
.

Then 


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02







D4

BF

5D

30


 =




?
66

81

E5
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AES – MixColumns

Example



02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02







D4

BF

5D

30


 =




04

66

81

E5




We have calculated that
02× D4 = 101100112.

We can compute

0316 × BF16 = 011111102 ⊕ 000110112 ⊕ 101111112 = 110110102 = DA16.

Then we have

B3+ DA+ 5D+ 30 = 10110011⊕ 11011010⊕ 01011101⊕ 00110000 = 00000100 = 04.
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AES – InvMixColumns

Multiply each column by the following matrix




0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E


 .
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AES-128 – key schedule

• The round keys are represented as four-by-four
grids and each box corresponds to one byte

• The rotation << rotates the right-most column by
one byte 



y0
y1
y2
y3


 7→




y1
y2
y3
y0


 .

• Round constants:

Rcon = { 01, 02, 04, 08, 10, 20, 40, 80, 1B, 36 } .

Remark

Knowledge of any round key of AES-128 → master key

Rcon ≪SB
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Symmetric block ciphers and their implementations

• Introduction

• DES

• AES

• PRESENT

• Bitsliced implementations

• Implementation of round functions
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PRESENT

• Proposed in 2007 as a symmetric block cipher optimized for hardware
implementation.

• Block length: n = 64

• Number of rounds: Nr= 31

• Key length: either 80 or 128.

• When the key length is 80, the algorithm is called PRESENT-80.
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PRESENT – encryption

• Round function: addRoundKey, sBoxLayer,
and pLayer.

• After 31 rounds, addRoundKey is applied
again before the ciphertext output

Remark

As opposed to DES specification, for PRESENT
specification, we consider the 0th bit of a value
as the rightmost bit in its binary representation.
For example, the 0th bit of 3 = 0112 is 1, the
1st bit is 1 and the 2nd bit is 0.

Plaintext

addRoundKey

sBoxLayer

pLayer

31×

addRoundKey

Ciphertext 80 / 122



PRESENT – addRoundKey

• Round key Ki = κi63 . . . κ
i
0, (1 ≤ i ≤ 32)

• Current state b63b62 . . . b0

• For 0 ≤ j ≤ 63

bj = bj ⊕ κij
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PRESENT – sBoxLayer
• sBoxLayer applies sixteen 4−bit Sboxes to each nibble of the current cipher state.
• For example, if the input is 0, the output is C.

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

Ki

Ki+1
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PRESENT – pLayer

pLayer permutes the 64 bits using the following formula:

pLayer(j) =

⌊
j

4

⌋
+ (j mod 4)× 16,

where j denotes the bit position.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
? ? ? ? 1 17 33 49 2 18 34 50 3 19 35 51

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63
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PRESENT – pLayer

pLayer permutes the 64 bits using the following formula:

pLayer(j) =

⌊
j

4

⌋
+ (j mod 4)× 16,

where j denotes the bit position.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63
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PRESENT-80 – key schedule

• k79k78 . . . k0: the variable storing the key

• At round i, the round key is given by Ki = κi63κ
i
62 . . . κ

i
0 = k79k78 . . . k16.

• After extracting the round key, the variable k79k78 . . . k0 is updated using the
following steps:

• Left rotate of 61 bits, k79k78 . . . k1k0 = k18k17 . . . k20k19;
• k79k78k77k76 = SBPRESENT(k79k78k77k76);
• k19k18k17k16k15 = k19k18k17k16k15⊕ round counter;

• round counter = 1, 2, . . . , 31
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PRESENT-80 – key schedule

79 39 38 33 32 19 18 15 14 0

79 76 75 61 60 20 19 15 14 0

round counterSB

Ki

Ki+1

Remark

Knowledge of any round key for PRESENT-80 → 64 bits of the master key. The other
16 bits can be recovered by brute force/knowledge of another round key
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Other symmetric block ciphers

• GIFT

• PRINCE

• LED

• . . .
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Symmetric block ciphers and their implementations

• Introduction

• DES

• AES

• PRESENT

• Bitsliced implementations

• Implementation of round functions
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Boolean function
Let n be a positive integer.

Definition

A Boolean function is a function φ : Fn
2 → F2.

• A Boolean function has 2n possible input values.
• For each input value, there are 2 possible output values.
• Thus, in total, we have 22

n
possible Boolean functions defined for Fn

2 → F2.
• A Boolean function can be specified by giving the output values for all inputs,
such a table is called a truth table.

Example

The parity-check bit defined for 3 bits is a Boolean function

φ : F3
2 → F2

x2x1x0 7→ x0 + x1 + x2.

What is the truth table for φ?
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Boolean function

Example

The parity-check bit defined for 3 bits is a Boolean function

φ : F3
2 → F2

x2x1x0 7→ x0 + x1 + x2.

Its truth table is then given below:

x2 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1
x0 0 1 0 1 0 1 0 1

φ(x) 0 1 1 0 1 0 0 1

90 / 122



Boolean function

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Example

Now let use consider the Boolean function defined as follows:

φ0 : F4
2 → F2

x 7→ SBPRESENT(x)0

where SBPRESENT(x)0 is the 0th bit of SBPRESENT(x), the PRESENT Sbox output
corresponding to x. For example, if the input is 0, the Sbox output is C= 1100. Hence
φ0(0) = 0. What is the truth table for φ0?
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Boolean function

Example

φ0 : F4
2 → F2

x 7→ SBPRESENT(x)0

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

SBPRESENT(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

φ0(x) 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0
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Algebraic normal form

Theorem

Every Boolean function φ : Fn
2 → F2 has a unique algebraic normal form representation

φ(x) =
∑

v∈Fn
2

(
λv

n−1∏

i=0

xvii

)
.

The coefficients λv ∈ F2 are given by

λv =
∑

w≤v

φ(w),

where w ≤ v means that wi ≤ vi for all 0 ≤ i ≤ n− 1.

Remark

There are 22
n
Boolean functions defined for Fn

2 → F2. There are 22
n
choices for the

coefficients λv (λv = 0, 1 and there are 2n distinct v).
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Algebraic normal form

φ(x) =
∑

v∈Fn
2

(
λv

n−1∏

i=0

xvii

)
,

λv =
∑

w≤v

φ(w),

where w ≤ v means that wi ≤ vi for all 0 ≤ i ≤ n− 1.

Example

The parity-check bit defined for 3 bits is a Boolean function. Its truth table is given by:

x2 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1
x0 0 1 0 1 0 1 0 1

φ(x) 0 1 1 0 1 0 0 1

What is the algebraic normal form for φ?
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Algebraic normal form

Example

x2 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1
x0 0 1 0 1 0 1 0 1

φ(x) 0 1 1 0 1 0 0 1

λ110 = φ(000) + φ(100) + φ(010) + φ(110) = 0 + 1 + 1 + 0 = 0.

λ000 = 0, λ001 = 1, λ010 = 1, λ011 = 1 + 1 = 0,
λ100 = 1, λ101 = 0, λ110 = 0, λ111 = 0.

φ(x) =
∑

v∈Fn
2

(
λv

n−1∏

i=0

xvii

)
= λ001x0 + λ010x1 + λ100x2 = x0 + x1 + x2
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Algebraic normal form

Example

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

SBPRESENT(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

φ0(x) 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0

λx 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0

φ0(x) =
∑

v∈Fn
2

(
λv

n−1∏

i=0

xvii

)
= λ0001x0 + λ0100x2 + λ0110x1x2 + λ1000x3

= x0 + x2 + x1x2 + x3.

96 / 122



Algebraic normal form

Example

• Define φi(x) = SBPRESENT(x)i for i = 1, 2, 3, where SBPRESENT(x)i is the ith bit
of PRESENT Sbox output for x.

• We can calculate the algebraic normal form for each of φi in a similar way

φ1(x) = x1 + x3 + x1x3 + x2x3 + x0x1x2 + x0x1x3 + x0x2x3,

φ2(x) = 1 + x2 + x3 + x0x1 + x0x3 + x1x3 + x0x1x3 + x0x2x3,

φ3(x) = 1 + x0 + x1 + x3 + x1x2 + x0x1x2 + x0x1x3 + x0x2x3.
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Bitsliced implementation

• The goal of a bitsliced implementation is to simulate a hardware implementation
in software so that several plaintext blocks can be encrypted in parallel.

• The operations in symmetric block ciphers will be represented as a sequence of
logical operations.

• Naturally the implementations should be adjusted based on the specific underlying
hardware, more specifically, the word length of the architecture.

• We will see that with word length ω, we can encrypt ω blocks of plaintext in
parallel.
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Bitsliced format

• First, we discuss how to transform the plaintext blocks into bitsliced format.

• A cipher with block length 3

• 4−bit architecture, which allows us to encrypt 4 blocks of plaintext simultaneously.

• Take 4 plaintext blocks p1 = 010, p2 = 110, p3 = 001, p4 = 100.

• The bitsliced format of pjs is given by a 3× 4 array, denoted S, where each
column is given by one block of plaintext.

S =



0 0 1 0
1 1 0 0
0 1 0 1


 .

• S[x]: xth row of S, then
• S[0] – 0th bits of pj .
• S[1] – 1st bits of pj .
• S[2] – 2nd bits of pj .
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Bitsliced implementation of PRESENT

• Encrypt 8 plaintext blocks in parallel with PRESENT assuming an 8−bit
architecture.

• Let p1, p2, . . . p8 be eight plaintext blocks, each of length 64.
• We convert them into bitsliced format and store them in a 64× 8 array S0

• S0[y] contains the yth bits of each plaintext block.

• For each round key Ki, we construct a 64× 8 array Keyi whose columns are
given by Ki, i.e.

Keyi[y][z] = Ki[y] ∀0 ≤ z < 8.
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Algebraic normal form

φ0(x) = x0 + x2 + x1x2 + x3

= x0 ⊕ x2 ⊕ (x1&x2)⊕ x3)

φ1(x) = x1 + x3 + x1x3 + x2x3 + x0x1x2 + x0x1x3 + x0x2x3,

= x1 ⊕ x3 ⊕ (x1&x3)⊕ (x2&x3)⊕ (x0&x1&x2)⊕ (x0&x1&x3)⊕ (x0&x2&x3)

φ2(x) = 1 + x2 + x3 + x0x1 + x0x3 + x1x3 + x0x1x3 + x0x2x3,

= 1⊕ x2 ⊕ x3 ⊕ (x0&x1)⊕ (x0&x3)⊕ (x1&x3)⊕ (x0&x1&x3)⊕ (x0&x2&x3)

φ3(x) = 1 + x0 + x1 + x3 + x1x2 + x0x1x2 + x0x1x3 + x0x2x3

= 1⊕ x0 ⊕ x1 ⊕ x3 ⊕ (x1&x2)⊕ (x0&x1&x2)⊕ (x0&x1&x3)⊕ (x0&x2&x3)
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Algorithm 1: Bitsliced implementation of round i of PRESENT, 1 ≤ i ≤ 31.

Input: Si−1, Keyi// Si−1 is the output of round i− 1. When i = 1, S0 contains

the plaintext blocks in bitsliced format.

// Keyi is the ith round key Ki in bitsliced format

Output: Si: output of round i
// addRoundKey-----

1 Si−1 = Si−1 ⊕ Keyi// bitwise XOR

// sBoxLayer-------

2 for b = 0, b < 16, b++ do
// Bits of Sbox inputs

3 x0 = Si−1[4b], x1 = Si−1[4b+ 1], x2 = Si−1[4b+ 2], x3 = Si−1[4b+ 3]
// 0th bit of Sbox output

4 state[4b] = x0 ⊕ x2 ⊕ (x1 & x2)⊕ x3
5 . . .

// pLayer------

6 Si[0] = state[0]
7 Si[16] = state[1]
8 . . .
9 return Si
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Remarks

• It is easy to see that with 32−bit (resp. 64−bit) architecture we can encrypt 32
(resp. 64) plaintext blocks in parallel.

• We note that bitsliced implementations are mostly used for bit-oriented ciphers
(e.g. DES, PRESENT).

• For byte-oriented ciphers (e.g. AES), table-based implementation will likely give
better performance.
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Symmetric block ciphers and their implementations

• Introduction

• DES

• AES

• PRESENT

• Bitsliced implementations

• Implementation of round functions
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Building blocks

• Building blocks for a symmetric block cipher: bitwise XOR with round key, Sbox,
and permutation.

• It is easy in both software and hardware to implement bitwise XOR with a round
key.

• In hardware, there is an XOR gate
• almost every processor has a dedicated XOR instruction
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Implementing Sboxes

• In software, a näıve way to implement Sbox is to use a lookup table.

• The table is stored as an array in random access memory or flash memory.

• The storage space required for an Sbox SB: Fω1
2 → Fω2

2 is at least ω2 × 2ω1 .

• For example, PRESENT has a 4−bit Sbox and the storage required is at least
24 × 4 = 64 bits, or 8 bytes.

• Actual memory consumption depends on the architecture
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AES – T-tables

• Implementation method that combines SubBytes, ShiftRows, and MixColumns for
AES round function.

• SB: the AES Sbox.

• Let us denote the input of SubBytes by a matrix S

S =




s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33




• A,B,D: outputs of SubBytes, ShiftRows, MixColumns

• aij = SB(sij), 0 ≤ i, j < 4.
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AES – T-tables

• SB: AES Sbox.

• S: input of SubBytes

• A,B,D: outputs of SubBytes, ShiftRows, MixColumns

• aij = SB(sij), 0 ≤ i, j < 4.

• For j = 0, 1, 2, 3


b0j
b1j
b2j
b3j


 =




a0j
a1(j+1 mod 4)

a2(j+2 mod 4)

a3(j+3 mod 4)


 ,




d0j
d1j
d2j
d3j


 =




02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02







b0j
b1j
b2j
b3j
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AES – T-tables




d0j
d1j
d2j
d3j


 =




02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02







SB(s0j)
SB(s1(j+1 mod 4))

SB(s2(j+2 mod 4))

SB(s3(j+3 mod 4))




=




02

01

01

03


SB(s0j)⊕




03

02

01

01


SB(s1(j+1 mod 4))

⊕




01

03

02

01


SB(s2(j+2 mod 4))⊕




01

01

03

02


SB(s3(j+3 mod 4))
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AES – T-tables
For a ∈ F8

2, define

T0(a) :=




02

01

01

03


SB(a), T1(a) :=




03

02

01

01


 SB(a),

T2(a) :=




01

03

02

01


SB(a), T3(a) :=




01

01

03

02


 SB(a).

Then



d0j
d1j
d2j
d3j


 = T0(s0j)⊕ T1(s1(j+1 mod 4))⊕ T2(s2(j+2 mod 4))T3(s3(j+3 mod 4))
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AES – T-tables

• The four tables T0, T1, T2, T3 of size 8× 32 can be used to implement SubBytes,
ShiftRows, and MixColumns

• Those four tables are called T-tables for AES.

• To store the T-tables we need processors with a word length of 32 or above.

• They cannot be used for the last round of AES as there is no Mixcolumns
operation.
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PRESENT Sbox – lookup table

PRESENT Sbox:

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Algorithm 2: A lookup table implementation of PRESENT Sbox in pseudocode.

1 integer array [1..16] Sbox = {C, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2}
2 s = Sbox[s] // Table lookup

• As current computer architectures normally use word sizes of at least one byte
(generally multiple bytes), it is not efficient to implement Sbox nibble-wise. To
optimize the execution time, we can merge two PRESENT Sbox lookup tables
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PRESENT Sbox – lookup table

• To optimize the execution time, we can merge two PRESENT Sbox lookup tables

Algorithm 3: A more efficient lookup table implementation of PRESENT Sbox in
pseudocode.

1 integer array [1..16] Sbox ={C, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2}
2 integer big s = Sbox[s & 0x0F] // Lower nibble; &: bitwise AND

3 big s = big s ∨ (Sbox[(s≫4) & 0x0F] ≪4) // Upper nibble; ∨: bitwise OR

4 s = big s // State update
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PRESENT Sbox – lookup table
• To avoid the bit shifts and boolean operations, it is better to combine two 4× 4

Sbox tables into one bigger 8× 8 table

SB(0)|SB(0) SB(0)|SB(1) . . . SB(0)|SB(F)
SB(1)|SB(0) SB(1)|SB(1) . . . SB(1)|SB(F)

...
...

...
...

SB(F)|SB(0) SB(F)|SB(1) . . . SB(F)|SB(F)

Algorithm 4: A lookup table implementation combining two PRESENT Sboxes in
parallel in pseudocode.

1 integer array [1..256] Sbox = {CC, C5, . . . , C1, C2, 5C, 55, . . . , 51, 52, . . . 2C,
25, . . . , 21, 22}

2 s = Sbox[s] // Table lookup of two nibbles in parallel

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
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Implementing permutations

• The efficiency of the implementation is highly dependent on the design of the
permutation.

• For AES ShiftRows, the bytes are permuted, making it easier to implement.

• For PRESENT pLayer, the bit level permutations are “free” in hardware as we just
need to reorder the wires, no new gates are required.

• However, in software, extracting each bit and putting it in the right position is
time-consuming.
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PRESENT – combine sBoxLayer and pLayer

• Construct sixteen 4× 64 lookup tables, TB1, TB2, . . . , TB16.

• The input of TBi is given by the ith nibble of the cipher state at the input of
sBoxLayer.

• The outputs are 64−bit values with mostly 0s except for 4 bits that correspond to
the input nibble.

Remark

For PRESENT specification, we consider the 0th bit of a value as the rightmost bit in
its binary representation. For example, the 0th bit of 3 = 0112 is 1, the 1st bit is 1 and
the 2nd bit is 0.
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PRESENT – combine sBoxLayer and pLayer
• TB1: input is the first nibble of the cipher state at the input of sBoxLayer.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

• The Sbox output corresponding to this nibble should go to bits 0, 16, 32 and 48 of
the output of pLayer.

• Each entry of TB1 is a 64−bit value with bits in positions 0, 16, 32 and 48 given
by the Sbox output, and the other bits are all 0.

Example

If the input is A, the Sbox output should be F = 11112 and

TB1[A] = 0 . . . 010 . . . 010 . . . 010 . . . 1,

where the 0th, 16th, 32nd and 48th bits are 1. How about TB1[B] =?

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
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PRESENT – combine sBoxLayer and pLayer

• TB1: input is the first nibble of the cipher state at the input of sBoxLayer.

• The Sbox output corresponding to this nibble should go to bits 0, 16, 32 and 48 of
the output of pLayer.

• Each entry of TB1 is a 64−bit value with bits in positions 0, 16, 32 and 48 given
by the Sbox output, and the other bits are all 0.

Example

PRESENT Sbox output for input B is 10002, and

TB1[B] = 0 . . . 010 . . . 0,

where the 48th bit is 1.
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PRESENT – combine sBoxLayer and pLayer

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

Example

TB2 takes the second nibble of the cipher state as input. The output bits should be
positioned at ? And

TB2[B] =?
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PRESENT – combine sBoxLayer and pLayer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

Example

TB2 takes the second nibble of the cipher state as input. The output bits should be
positioned at 1, 17, 33 and 49. Thus

TB2[B] = 0 . . . 010 . . . 0,

where only the 49th bit is 1.
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PRESENT – combine sBoxLayer and pLayer

• A 4× 64 table takes 64× 24 bits and those sixteen tables take 16384 bits of
memory.

• Compared to one Sbox table, which is 64 bits, this is much bigger, but these
tables also implement pLayer of PRESENT.

• The speed can be further improved by merging two Sbox computations and
constructing eight 8× 64 lookup tables.

• The memory consumption will be the same, 16384 bits.
• But the speed will be much faster.
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Assignment 3

• Implementation should use algebraic normal form

• Bring computer next week

• Be prepared to answer questions

122 / 122


	Introduction
	DES
	AES
	PRESENT
	Bitsliced implementations
	Implementation of round functions

