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Course Outline

• Abstract algebra and number theory

• Introduction to cryptography

• Symmetric block ciphers and their implementations

• RSA, RSA signatures, and their implementations

• Probability theory and introduction to SCA

• SPA and non-profiled DPA

• Profiled DPA

• SCA countermeasures

• FA on RSA and countermeasures

• FA on symmetric block ciphers

• FA countermeasures for symmetric block cipher
• Practical aspects of physical attacks

• Invited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH
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Recommended reading

• Textbook
• Sections

• 2.1;
• 2.2.1, 2.2.2, 2.2.6, 2.2.7;
• 2.3.
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Lecture Outline

• Cryptography

• Cryptographic Primitives

• Cryptosystems

• Classical Ciphers

• Encryption Modes

• Some exercises
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Introduction to cryptography

• Cryptography

• Cryptographic Primitives

• Cryptosystems

• Classical Ciphers

• Encryption Modes

• Some exercises
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Definition

Definition

Cryptography studies techniques that allow secure communication in the presence of
adversarial behavior. These techniques are related to information security attributes
such as confidentiality, integrity, authentication, and non-repudiation.

Next, we look at information security attributes that can be achieved by using
cryptography
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Confidentiality

• Confidentiality aims at preventing unauthorized disclosure of information.

• There are various technical, administrative, physical, and legal means to enforce
confidentiality.

• In the context of cryptography, we are mostly interested in utilizing various
encryption techniques to keep information private.
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Confidentiality

Alice

src: https://www.pngwing.com/en/free-png-zhbsy

Bob

src: https://alicebobstory.com/

Eve

src: https://pngtree.com/

Eavesdropping
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Integrity

• Integrity aims at preventing unauthorized alteration of data to keep them correct,
authentic, and reliable.

• Similarly to confidentiality, while there are many means of ensuring data integrity,
in cryptography we are looking at hash functions and message authentication
codes.
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Confidentiality

Alice

src: https://www.pngwing.com/en/free-png-zhbsy

Bob

src: https://alicebobstory.com/

Eve

src: https://pngtree.com/

Trying to change the message

10 / 104

https://www.pngwing.com/en/free-png-zhbsy
https://alicebobstory.com/
https://pngtree.com/


Authentication

• Authentication aims at determining whether something or someone is who they
claim they are.

• In communication, the entities should be able to identify each other.

• Similarly, the properties of the exchanged information, such as origin, content,
and timestamp, should be authenticated.

• In cryptography, we are mostly interested in two aspects: entity authentication
and data origin authentication.

• For these purposes, signatures, and identification primitives are used.
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Authentication

Alice

src: https://www.pngwing.com/en/free-png-zhbsy

Eve is evil

Bob

It is not me!

src: https://alicebobstory.com/

Eve

src: https://pngtree.com/
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Non-repudiation

• Non-repudiation aims at assuring that the sender of the information is provided
with proof of delivery, and the recipient is provided with proof of the sender’s
identity so that neither party can later deny the actions taken.

• Similarly to authentication, signatures, and identification primitives are
cryptographic means of supporting non-repudiation.
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Remark

• CIA Triad is a widely utilized information security model, where the abbreviation
stands for confidentiality, integrity, and availability.

• Why we did not mention the availability?

• The answer is rather simple – there are no techniques within cryptography that
could contribute in one way or another to ensure availability.

• Availability attribute ensures that information is consistently and readily accessible
for authorized entities.

• One needs to look into other means of supporting this attribute.
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Introduction to cryptography

• Cryptography

• Cryptographic Primitives

• Cryptosystems

• Classical Ciphers

• Encryption Modes

• Some exercises

15 / 104



Categorization of cryptographic primitives
Cryptographic primitives are the tools that can be used to achieve the goals listed
above

Cryptographic
primitives

Unkeyed Public key Symmetric key

Hash functions Block ciphers

Stream ciphers

Message
authentica-
tion codes

Public-
key ciphers

Signatures

Figure: Categorization of cryptographic primitives. The ones highlighted in blue color will be
discussed in this course.
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Hash functions

• Hash functions map data of arbitrary length to a binary array of some fixed length
called hash values or message digests

• The following are the properties that should be met in a properly designed
cryptographic hash function:

(a) it is quick to compute a hash-value for any given input;
(b) it is computationally infeasible to generate an input that yields a given hash value (a

preimage);
(c) it is computationally infeasible to find a second input that maps to the same hash

value when one input is already known (a second preimage);
(d) it is computationally infeasible to find any pair of different messages that produce

the same hash value (a collision).
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Hash functions

• Cryptographic hash functions are mostly used for integrity and digital signatures.
• Message integrity use case of hash functions works as follows.

• The user creates a message digest of the original message at some point in time.
• At a later time (e.g., after a transmission), the digest is calculated again to check

whether there have been any changes to the original message.

• In digital signatures, it is common to first create a message digest that is
afterwards digitally signed, rather than signing the entire message which can be
slow in case the message is large.
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Public-key ciphers

• Public-key (or asymmetric) ciphers use a pair of related keys.

• This pair consists of a private key and a public key.

• These keys are generated by cryptographic algorithms that are based on
mathematical problems called one-way functions.

• A one-way function is a function that is easy to compute on every input, but it is
hard to compute its inverse1.

1It is worth noting that the existence of one-way functions is an open conjecture and depends on
P ̸= NP inequality.
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Signatures

• Digital signatures provide means for an entity to bind its identity to a message.

• This normally means that the sender uses their private key to sign the (hashed)
message.

• Whoever has access to the public key can then verify the origin of the message.
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Symmetric block ciphers

• Block ciphers are cryptographic algorithms operating on blocks of data of a fixed
size (generally multiples of bytes for modern cipher designs).

• They use the same secret key for the encryption and decryption of data.

• One of the main focus of this course

• We will see three block ciphers: DES, AES, PRESENT
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Stream ciphers

• Stream ciphers are symmetric key ciphers that combine plaintext digits (usually
bits) with the keystream, which is a stream of pseudo-random digits generated by
the cipher.

• The combination is normally done by a bitwise XOR operation.

• The idea of stream ciphers comes from the one-time pad.
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Message authentication codes (MACs)

• A message authentication code is a piece of information that is used to
authenticate the origin of the message and to protect its integrity.

• MAC algorithms are commonly constructed from other cryptographic primitives,
such as hash functions and block ciphers.
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Insecure communication

• We have mentioned three types of ciphers: public-key ciphers, block ciphers, and
stream ciphers.

• Ciphers are also called cryptosystems.

• When we use ciphers, we normally assume insecure communication.

• A popular example setting is that Alice would like to send messages to Bob but
Eve is also listening to the communication.
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Physical attacks on cryptographic primitives

We will be focusing on physical attacks on

• Symmetric block ciphers

• Public key ciphers

Physical attacks also apply to other cryptographic primitives

• Hemme, Ludger, and Lars Hoffmann. “Differential fault analysis on the SHA1
compression function.” 2011 Workshop on Fault Diagnosis and Tolerance in
Cryptography. IEEE, 2011.

• Hao, Ronglin, et al. “Algebraic fault attack on the SHA-256 compression
function.” International Journal of Research in Computer Science 4.2 (2014): 1-9.

• Kahri, Fatma, et al. “Fault Attacks Resistant Architecture for KECCAK Hash
Function.” Journal of Advanced Computer Science and Applications 5.8 (2017):
237-243.

• . . .
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Insecure communication channel

Alice

src: https://www.pngwing.com/en/free-png-zhbsy

Bob

src: https://alicebobstory.com/

Eve

src: https://pngtree.com/
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Encryption and decryption
• When we use ciphers, we normally assume insecure communication.

• A popular example setting is that Alice would like to send messages to Bob but
Eve is also listening to the communication.

• The goal of Alice is to make sure that even if Eve can intercept what was sent,
she will not be able to find the original message.

• To do so, Alice will first encrypt the message, or the plaintext, and send the
ciphertext to Bob, instead of the original message.

• Bob will then decrypt the ciphertext to get the plaintext.

• For this communication to work, there must be a key for encryption and
decryption.

• It is clear that the decryption key should be secret from Eve

• Also, a basic requirement is that the algorithm for encryption/decryption should
be designed in a way that Eve cannot easily brute force the plaintext with the
knowledge of the ciphertext.
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Cryptosystem

Definition

A cryptosystem is a tuple (P,C,K,E,D) with the following properties.

• P is a finite set of plaintexts, called plaintext space.

• C is a finite set of ciphertexts, called ciphertext space.

• K is a finite set of keys, called key space.

• E = { Ek : k ∈ K }, where Ek : P → C is an encryption function.

• D = {Dk : k ∈ K }, where Dk : C → P is a decryption function.

• For each e ∈ K, there exists d ∈ K such that Dd(Ee(p)) = p for all p ∈ P.

If e = d, the cryptosystem is called a symmetric key cryptosystem. Otherwise, it is
called a public-key/asymmetric cryptosystem.
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Cryptosystem

• Take any c1 = Ee(p1), c2 = Ee(p2) from the ciphertext space C, where e ∈ K.

• Let d ∈ K be the corresponding decryption key for e.

• If c1 = c2, then by definition,

p1 = Dd(c1) = Dd(c2) = p2.

Thus, Ee is an injective function.

• We also note that if P = C, then Ek is a permutation of P – a bijective function
P → P.

• There are mainly two types of symmetric ciphers: block ciphers and stream
ciphers.
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Block ciphers

Definition (Block cipher)

A block cipher is a symmetric key cryptosystem with P = C = An for some alphabet
A and positive integer n. n is called the block length.

• For classical ciphers that we will see today, A = Z26.

• For modern cryptosystems that we will discuss next week, A = F2 = { 0, 1 }.
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Block ciphers

• If we have a long plaintext p = p1p2 . . . , where each pi ∈ An is one block of
plaintext, and a key k, using a block cipher, we can obtain ciphertext string c as
follows:

c = c1c2 · · · = ek(p1)ek(p2) . . . .

• Such an encryption mode is called an ECB mode, more encryption modes will be
introduced at the end of this lecture
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Stream ciphers

• For a stream cipher , P = C = A are single digits.

• Encryptions are computed on each digit of the plaintext.

• In particular, suppose we have a plaintext string p = p1p2 . . . (where pi ∈ A) and
a key k.

• We first compute a key stream z = z1z2 . . . using the key k, then the ciphertext
is obtained as follows:

c = c1c2 · · · = ez1(p1)ez2(p2) . . .

• A stream cipher is said to be synchronous if the key stream only depends on the
chosen key k but not on the encrypted plaintext.

• In this case, the sender and the receiver can both compute the keystream
synchronously.

• We will see a classical synchronous stream cipher called one-time pad.

33 / 104



Converting message to plaintext

• An important aspect to clarify is how the message that Alice intends to send is
represented as plaintext.

• For classical ciphers, which we will discuss in a while, we will only consider
messages consisting of English letters (A – Z), and we map each letter to an
element in Z26.

• The plaintext spaces are vector spaces over Z26.

A B C D E F G H I J K L M N O P Q R S T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
U V W X Y Z

20 21 22 23 24 25

Table: Converting English letters to elements in Z26.
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Converting message to plaintext – modern cipher

• In modern computers, we store data in binary digits (bits).

• An 8−bit binary string is called a byte

• Computers often operate on a few bytes at a time.

• For example, a 64-bit processor operates on eight bytes at a time.
• In computer architecture, a word is defined as the unit of data of (at most) a

certain bit length that can be addressed and moved between storage and the
processor.

• For a 64-bit processor, the word length is 64 bits.
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Converting message to plaintext – modern cipher
• We have discussed that a byte can be represented as a decimal number between 0

and 255 or as a hexadecimal number between 0016 and FF16.
• When modern cryptographic algorithms are used, the messages are converted to
plaintexts which are n-bit binary strings (i.e. vectors in Fn

2 ), where n is a multiple
of 8.

A 01000001 41

B 01000010 42

a 01100001 61

b 01100010 62

? 00111111 3F

(a) ASCII

Á 1100001110000001 C381

Ä 1100001110000100 C384

Í 1100001110001101 C38D

× 1100001110010111 C397

÷ 1100001110110111 C3B7

(b) UTF-8

Table: Examples of methods for converting message symbols to bytes. The second column in
each table is the binary representation of the byte value and the third column is the
corresponding hexadecimal representation.
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Kerckhoffs’ principle

When the security of a cryptosystem is analyzed, Kerckhoffs’ principle is always
followed.

Definition (Kerckhoffs’ principle)

The security of a cryptosystem should depend only on the secrecy of the key.

In other words, everything is public knowledge except for the secret key.
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Attack assumptions

• To discuss the security of cryptosystems, we should also specify the attack
assumptions.

• Normally, they consist of the attacker’s knowledge and the attacker’s goal.

• Ciphertext-only attack : the attacker has access to a collection of ciphertexts.

• Known plaintext attack: the attacker has a collection of plaintext and ciphertext
pairs.

• Chosen plaintext attack: the attacker has access to the encryption mechanism
such that they can choose plaintexts and obtain the corresponding ciphertexts.

• The attacker’s goal can be the recovery of the plaintext or the recovery of the key.

• By Kerckhoffs’ principle, we assume the attacker has the knowledge of the cipher
design and communication context, e.g. the sender is a student and might use
words like “exam,” “assignment,” etc.
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Ciphertext-only attack

• Most realistic one

• Weakest attacker model

• An intercepted encrypted network traffic
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Known plaintext attack

• Cryptanalysis of Enigma during World War II.

• There were situations when the German military broadcast the same message
encrypted by different cryptosystems – for some recipients, it was encrypted by a
so-called dockyard cipher (a manual cipher, relatively easy to cryptanalyze), and
for some, it was encrypted by Enigma.

• If both messages were intercepted, the allies would possess both the plaintext and
the ciphertext, thus making it a known plaintext attack on Enigma.
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Enigma

• Used during WWII by German armies

• Broken by Polish mathematicians and Alan Turing

• It is believed that breaking Enigma shortened the war by two years

src: https://en.wikipedia.org/ 41 / 104
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Chosen plaintext attack

• An encryption device is captured and the attacker can send queries to it and
receive the ciphertexts.

• As the key would normally be stored in secure storage, the attacker needs to use
the plaintext-ciphertext pairs to recover it.
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Security of a cipher
• In this course, we say a cipher is broken if the secret key is recovered.

• In a more general sense, breaking a cipher means finding a weakness in the cipher
algorithm that can be exploited with a complexity less than brute-force.

• Perfectly secure: in a ciphertext-only attack setting, the attacker cannot obtain
any information about the plaintext no matter how much computing power they
have.

• Secure in practice: there is no known attack that can break it within a reasonable
amount of time and with a reasonable amount of computing power.

• Computationally secure: breaking it requires computing power that is not
available in practice.

• Modern cryptosystems that are popular today are considered to be
computationally secure.

• Most of the ciphers are designed in a way that the effort taken to break them
grows exponentially with the number of bits of the secret key, which is called key
length.

• Key length is an important factor in the security of modern ciphers.
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Congruence class

Definition

For any a ∈ Z, the congruence class of a modulo n, denoted a, is given by

a := { b | b ∈ Z, b ≡ a mod n } .

Lemma

Let Zn denote the set of all congruence classes of a ∈ Z modulo n. Then
Zn =

{
0, 1, . . . , n− 1

}
.

Example

Let n = 5. We have 1 = 6 = −4. Z5 =
{
0, 1, 2, 3, 4

}
.
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Addition and multiplication in Zn

Define addition on the set Zn as follows:

a+ b = a+ b.

Example

• Let n = 7, 3 + 2 = 5.

• Let n = 4, 2 + 2 = 4 = 0.

Define multiplication on Zn as follows

a · b = ab.

Example

Let n = 5,
−2 · 13 = 3 · 3 = 9 = 4
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Zn

Theorem

(Zn,+, ·), the set Zn together with addition multiplication defined just now is a
commutative ring.

Remark

For simplicity, we write a instead of a and to make sure there is no confusion we would
first say a ∈ Zn. In particular, Zn = { 0, 1, 2, . . . , n− 1 }. Furthermore, to emphasize
that multiplication or addition is done in Zn, we write ab mod n or a+ b mod n.

Example

Let n = 5, we write

4× 2 mod 5 = 8 mod 5 = 3, or 4× 2 ≡ 8 ≡ 3 mod 5.
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Converting message to plaintext

• We focus on the case when messages consist of English letters.

• Those letters are identified with elements in Z26.
• For simplicity, we will not distinguish letters and elements in Z26.

• For example, when the message is A, we may say that the plaintext is A or the
plaintext is 0, similarly for ciphertext.

A B C D E F G H I J K L M N O P Q R S T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
U V W X Y Z

20 21 22 23 24 25

Table: Converting English letters to elements in Z26.
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Shift cipher

Definition (Shift cipher)

Let P = C = K = Z26. For each k ∈ K, define

Ek : Z26 → Z26, p 7→ p+ k mod 26; Dk : Z26 → Z26, c 7→ c− k mod 26.

The cryptosystem (P,C,K,E,D), where E = { Ek : k ∈ K }, and D = {Dk : k ∈ K },
is called the shift cipher.

• We have seen that Z26 is a commutative ring with addition and multiplication
modulo 26.

• Subtracting k corresponds to adding the additive inverse of k
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Shift cipher – Example

Shift cipher

For each k ∈ K,

Ek : Z26 → Z26, p 7→ p+ k mod 26; Dk : Z26 → Z26, c 7→ c− k mod 26.

Example

Let k = 2, we have
−k = −2 mod 26 = 24 mod 26.

Suppose the message is A, then the corresponding plaintext is 0. The ciphertext is
given by

Ek(A) = 0 + 2 mod 26 = 2 mod 26 = C.

When we decrypt the ciphertext using the same key, we get our original message:

Dk(C) = 2− 2 = 2 + 24 mod 26 = 0 mod 26 = A.
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Shift cipher – Example

Shift cipher

For each k ∈ K,

Ek : Z26 → Z26, p 7→ p+ k mod 26; Dk : Z26 → Z26, c 7→ c− k mod 26.

We note that encrypting using a key k is the same as shifting the letters by k
positions, hence the name “shift cipher”.

Example

Let k = 5,
Ek(A) =?, Ek(Z) =?.
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Shift cipher – Example

Example

Let k = 5,

Ek(A) = 0 + 5 mod 26 = F, Ek(Z) = 25 + 5 mod 26 = 4 mod 26 = E.

To encrypt a message, we can use the following table and replace letters in the first
row with those in the second row.

A B C D E F G H I J K L M N O P Q R S T

F G H I J K L M N O P Q R S T U V W X Y

U V W X Y Z

Z A B C D E

Suppose the message is
I STUDY IN BRATISLAVA

Then the corresponding ciphertext (omitting the white spaces) is ?
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Shift cipher
We note that encrypting using a key k is the same as shifting the letters by k
positions, hence the name “shift cipher”.

Example

Let k = 5, To encrypt a message, we can use the following table and replace letters in
the first row with those in the second row.

A B C D E F G H I J K L M N O P Q R S T

F G H I J K L M N O P Q R S T U V W X Y

U V W X Y Z

Z A B C D E

Suppose the message is
I STUDY IN BRATISLAVA

Then the corresponding ciphertext (omitting the white spaces) is

NXYZIDNSGWFYNXQFAF.
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Caeser cipher

• When k = 3, the encryption and decryption algorithms are called the Caesar
Cipher

• Used by Julius Caesar around 50 B.C.

• It is unknown how effective the Caesar cipher was at the time.
• Likely to have been reasonably secure

• Most of Caesar’s enemies would have been illiterate
• Might have assumed the messages were written in an unknown

foreign language.

src: https://www.shutterstock.com/
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Security of shift cipher
Exhaustive key search

• Try each possible key value from K = Z26

Example

• Ciphertext: N XYZID NS GWFYNXQFAF

• Try different key values k = 1, 2, . . . until we find a sentence that makes sense

• k = 1: M WXYHC MR FVEXMWPEZE

• k = 2: ?

A B C D E F G H I J K L M N O P Q R S T
B C D E F G H I J K L M N O P Q R S T U

U V W X Y Z
V W X Y Z A
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Security of shift cipher

Exhaustive key search

• try each possible key value from K = Z26

Example

• Ciphertext: N XYZID NS GWFYNXQFAF

• k = 1: M WXYHC MR FVEXMWPEZE

• k = 2: L VWXGB LQ EUDWLVODYD

• k = 3: K UVWFA KP DTCVKUNCXC

• k = 4: J TUVEY JO CSBUJTMBWB

• k = 5: I STUDY IN BRATISLAVA

We have demonstrated that with an exhaustive key search, we can break the shift
cipher, i.e. find the key.
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Z∗
n

• Recall that Z∗
n is the set of elements x ∈ Zn such that gcd(x, n) = 1.

Example

n = 6, Z∗
6 = { 1, 5 }
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Affine cipher

Definition (Affine cipher)

Let P = C = Z26 and K = { (a, b) | a ∈ Z∗
26, b ∈ Z26 }. For each key (a, b), define

E(a,b) : Z26 → Z26, p 7→ ap+b mod 26; D(a,b) : Z26 → Z26, c 7→ a−1(c−b) mod 26.

The cryptosystem (P,C,K,E,D), where E =
{
E(a,b) : (a, b) ∈ K

}
,

D =
{
D(a,b) : (a, b) ∈ K

}
, is called the affine cipher.

When a = 1, we have a shift cipher.
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Affine cipher – compute decryption key

• Given a key (a, b), to find a−1 mod 26, we can apply the extended Euclidean
algorithm

Recall – Extended Euclidean algorithm for finding inverse

• a ∈ Z∗
n

• Using the extended Euclidean algorithm, we can find x, y ∈ Z s.t.

1 = ax+ ny

• So ax ≡ 1 mod n, and a−1 = x mod n

Example

Suppose the key for affine cipher is (3, 1), by the extended Euclidean algorithm, find
3−1 mod 26
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Affine cipher – compute decryption key
• Given a key (a, b), to find a−1 mod 26, we can apply the extended Euclidean
algorithm

Recall – Extended Euclidean algorithm for finding inverse

• a ∈ Z∗
n

• Using the extended Euclidean algorithm, we can find x, y ∈ Z s.t.

1 = ax+ ny

• So ax ≡ 1 mod n, and a−1 = x mod n

Example

Suppose the key for affine cipher is (3, 1), by the extended Euclidean algorithm, find
3−1 mod 26

26 = 3× 8+ 2, 3 = 2+ 1,=⇒ 1 = 3− (26− 3× 8) = 3× 9− 26 =⇒ 3−1 mod 26 = 9.
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Affine cipher – example

Recall affine cipher definition

Let P = C = Z26 and K = { (a, b) | a ∈ Z∗
26, b ∈ Z26 }. For each key (a, b), define

E(a,b) : Z26 → Z26, p 7→ ap+b mod 26; D(a,b) : Z26 → Z26, c 7→ a−1(c−b) mod 26.

Example

Encrypt the word STROM using affine cipher with the key k = (3, 1)

A B C D E F G H I J K L M N O P Q R S T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

U V W X Y Z

20 21 22 23 24 25
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Affine cipher – example

Example

Encrypt the word STROM using affine cipher with the key k = (3, 1)

A B C D E F G H I J K L M N O P Q R S T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

U V W X Y Z

20 21 22 23 24 25

3× 18 + 1 = 55 ≡ 3 mod 26, 3× 19 + 1 = 58 ≡ 6 mod 26,
3× 17 + 1 = 52 ≡ 0 mod 26, 3× 14 + 1 = 43 ≡ 17 mod 26,
3× 12 + 1 = 37 ≡ 11 mod 26 =⇒ ciphertext is DGARL.

S T R O M

18 19 17 14 12
3 6 0 17 11
D G A R L
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Security of affine cipher

Recall

Euler’s totient function:
φ(n) = |Z∗

n|.
For any n ∈ Z, n > 1,

if n =

k∏
i=1

peii , then φ(n) = n

k∏
i=1

(
1− 1

pi

)
,

where pi are distinct primes.

What is φ(26)?
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Security of affine cipher

Since
26 = 2× 13,

we have

φ(26) = 26×
(
1− 1

2

)(
1− 1

13

)
= 12.

Recall

Affine cipher key space K = { (a, b) | a ∈ Z∗
26, b ∈ Z26 }.

• There are ? possible values for a ∈ Z∗
26.

• There are ? possible values for b ∈ Z26.

• Then the total number of possible keys (a, b) is ?
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Security of affine cipher

Recall

Affine cipher key space K = { (a, b) | a ∈ Z∗
26, b ∈ Z26 }.

• There are 26 possible values for b ∈ Z26.

• Then the total number of possible keys (a, b) is 12× 26 = 312.

• Similarly to shift cipher, knowing a ciphertext, we can try each of the 312 keys
until we find a plaintext that makes sense.

• Thus we can break affine cipher by exhaustive key search!
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Cryptanalysis

• kryptós: hidden

• analýein: to analyze

• decrypts the message without knowing the key

• successful cryptanalysis recovers the plaintext or even the key

Definition (Kerckhoffs’ principle)

The security of a cryptosystem should depend only on the secrecy of the key.

In other words, everything is public knowledge except for the secret key.

• We assume we know the plaintext is an English text.

• We also know the cipher used for communication.

• We assume a ciphertext-only attacker model

• We will show how to recover both the plaintext and the key using frequency
analysis for affine cipher
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Frequency analysis

• Plaintext is an English text

• Analyze the probabilities for the appearance
of each letter in a standard English text

• E has the highest probability and the second
most common letter is T

• Similarly, the most common two consecutive
letters are TH, HE, IN, . . . ; and the most
common three consecutive letters are THE,
ING, AND, . . . .

• Given a ciphertext that is encrypted using an
affine cipher, we expect a permutation of the
letters in the ciphertext to have similar
frequencies as in the table

• Because one letter is mapped to one letter

A 0.082 N 0.067
B 0.015 O 0.075
C 0.028 P 0.019
D 0.043 Q 0.001
E 0.127 R 0.060
F 0.022 S 0.063
G 0.020 T 0.091
H 0.061 U 0.028
I 0.070 V 0.010
J 0.002 W 0.023
K 0.008 X 0.001
L 0.040 Y 0.020
M 0.024 Z 0.001
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Frequency analysis – affine cipher

Example

Suppose we have the following ciphertext

VCVIRSKPOFPNZOTHOVMLVYSATISKVNVLIVSZVR.

We can calculate the frequencies of each letter that appear in the text:

V S I O R K P N Z T L C F H M Y A

8 4 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1

The most frequent letter is ? and the second most frequent is ?
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Frequency analysis – affine cipher

Recall

For each key k = (a, b),

Ek : Z26 → Z26, p 7→ ap+ b mod 26.

Example

Suppose we have the following ciphertext

VCVIRSKPOFPNZOTHOVMLVYSATISKVNVLIVSZVR.

V S I O R K P N Z T L C F H M Y A

8 4 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1

• The most frequent letter is V and the second most frequent is S.

• Thus, it makes sense to assume V is the ciphertext corresponding to E and S to T.

• Let the key be (a, b), what do we know about a and b?
69 / 104



Frequency analysis – affine cipher

Example

Ciphertext
VCVIRSKPOFPNZOTHOVMLVYSATISKVNVLIVSZVR.

V↔E, S ↔ T. Let the key be (a, b), we have the following equations:

4a+ b = 21 mod 26, 19a+ b = 18 mod 26,

which gives 15a = 23 mod 26. Compute 15−1 mod 26 with the extended Euclidean
algorithm.
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Frequency analysis – affine cipher

Example

Ciphertext
VCVIRSKPOFPNZOTHOVMLVYSATISKVNVLIVSZVR.

Let the key be (a, b), we have the following equations:

4a+ b = 21 mod 26, 19a+ b = 18 mod 26,

which gives 15a = 23 mod 26. By the extended Euclidean algorithm,

26 = 15× 1 + 11, 15 = 11× 1 + 4, 11 = 4× 2 + 3, 4 = 3 + 1,

1 = 4− 3 = 4− (11− 4× 2) = −11 + 4× 3 = −11 + (15− 11)× 3

= 15× 3− 11× 4 = 15× 3− (26− 15)× 4 = 15× 7− 26× 4.

Hence, we have 15−1 mod 26 = 7 and a =?, b =?
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Frequency analysis – affine cipher

Example

Ciphertext
VCVIRSKPOFPNZOTHOVMLVYSATISKVNVLIVSZVR.

Let the key be (a, b), we have the following equations:

4a+ b = 21 mod 26, 19a+ b = 18 mod 26,

which gives 15a = 23 mod 26. By the extended Euclidean algorithm,
15−1 mod 26 = 7, we have

a = 23× 15−1 mod 26 = 23× 7 mod 26 = 5 mod 26.

b = 21− 4a mod 26 = 21− 4× 5 mod 26 = 1.

To decrypt the message, we compute the decryption key by finding
a−1 mod 26 = 5−1 mod 26 =?
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Frequency analysis – affine cipher

A B C D E F G H I J K L M N O P Q R S T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

U V W X Y Z

20 21 22 23 24 25

Example

Ciphertext
VCVIRSKPOFPNZOTHOVMLVYSATISKVNVLIVSZVR.

Let the key be (a, b), we have computed a = 5, b = 1.
To decrypt the message, we compute the decryption key by finding
a−1 mod 26 = 5−1 mod 26:

26 = 5× 5 + 1 =⇒ 1 = 26− 5× 5 =⇒ 5−1 mod 26 = −5 mod 26 = 21.

Apply the decryption key (21, 1) to the ciphertext, what is the plaintext?
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Frequency analysis – affine cipher

Example

Ciphertext
VCVIRSKPOFPNZOTHOVMLVYSATISKVNVLIVSZVR.

A B C D E F G H I J K L M N O P Q R S T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

U V W X Y Z

20 21 22 23 24 25

Apply the decryption key (21, 1) to the ciphertext we get the following plaintext

EVERYTHING IS KNOWN EXCEPT FOR THE SECRET KEY.
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Block ciphers

Definition (Block cipher)

A block cipher is a symmetric key cryptosystem with P = C = An for some alphabet
A and positive integer n. n is called the block length.

• For classical ciphers that we have seen (shift cipher, affine cipher), A = Z26.

• For modern cryptosystems that we will discuss next week, A = F2 = { 0, 1 }.
• What is the block length of an affine cipher?
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Block ciphers

Definition (Block cipher)

A block cipher is a symmetric key cryptosystem with P = C = An for some alphabet
A and positive integer n. n is called the block length.

• For classical ciphers that we have seen (shift cipher, affine cipher), A = Z26.

• For modern cryptosystems that we will discuss next week, A = F2 = { 0, 1 }.
• The block length of a an affine cipher is 1.
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Stream ciphers

• For a stream cipher , P = C = A are single digits.

• Encryptions are computed on each digit of the plaintext.

• In particular, suppose we have a plaintext string p = p1p2 . . . (where pi ∈ A) and
a key k.

• We first compute a key stream z = z1z2 . . . using the key k, then the ciphertext
is obtained as follows:

c = c1c2 · · · = ez1(p1)ez2(p2) . . .

• A stream cipher is said to be synchronous if the key stream only depends on the
chosen key k but not on the encrypted plaintext.

• In this case, the sender and the receiver can both compute the keystream
synchronously.

• We will see a classical synchronous stream cipher called one-time pad.
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One-time pad

Definition (One-time pad)

Given a positive integer n, let P = C = K = Fn
2 . For any k ∈ K, define

Ek : Fn
2 → Fn

2 , p 7→ p⊕ k Dk : Fn
2 → Fn

2 , c 7→ c⊕ k

The cryptosystem (P,C,K,E,D), where E = { Ek : k ∈ K }, D = {Dk : k ∈ K }, is
called the one-time pad.

• Recall that vector addition in Fn
2 is defined as bitwise XOR, denoted by ⊕

• If the attacker has the knowledge of one pair of plaintext p and its corresponding
ciphertext c, they can recover the key by computing p⊕ c = p⊕ p⊕ k = k.

• Thus each key can be used only once.

• Synchronous stream cipher
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Security of one-time pad

• One distinct feature of the one-time pad from the previously introduced classical
ciphers is that it achieves perfect secrecy

• In a ciphertext-only attack setting, the attacker cannot obtain any information about
the plaintext no matter how much computing power they have.

• We also note that brute force of the key does not work for one-time pad – by
brute force, the attacker can obtain any plaintext of the same length as the
original plaintext.
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Key management of one-time pad

• Key management is the bottleneck of one-time pad.

• With a plaintext of length n, we will also need a key of length n.

• Each key can only be used once.

• Necessary to share a key of the same length as the message each time before the
communication.

• Impractical to use one-time pad.
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Encrypting long messages

• When we use a symmetric block cipher with block length n to encrypt a long
message, we first divide this long message into blocks of plaintexts of length n

• Then we apply certain encryption mode to encrypt the plaintext blocks.

• If the last block has a length of less than n, padding might be required.

• Different methods exist for padding, e.g, using a constant, or using a random
number.
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ECB mode

• We have seen a few examples of classical block ciphers.

• For messages that are longer than the block length, the way we encrypted them
can be described by

Ek

p0

k

c0

Ek

p1

k

c1

Ek

p2

k

c2

· · · · · · Ek

pℓ

k

cℓ

Figure: ECB mode for encryption.

• simplest encryption mode

• electronic codebook (ECB) mode
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ECB mode
• ECB mode is easy to use, but the main drawback is that the encryption of
identical plaintext blocks produces identical ciphertext blocks.

• For an extreme case, if the plaintext is either all 0s or all 1s, it would be easy for
the attacker to deduce the message given a collection of plaintext and ciphertext
pairs.

• Due to this property, it is also easy to recognize patterns of the plaintext in the
ciphertext, which makes statistical attacks easier (e.g. frequency analysis).
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Ek

p1
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Figure: ECB mode for encryption.
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ECB mode – identical plaintext blocks produces identical ciphertext blocks

• The encryption of identical plaintext blocks produces identical ciphertext blocks.

• It is easy to recognize patterns of the plaintext in the ciphertext

(a) Original picture (b) ECB encrypted
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ECB mode – encryption and decryption
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Figure: ECB mode for encryption.
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Figure: ECB mode for decryption 86 / 104



CBC mode – encryption
• To avoid the problem of seeing patterns of plaintext in ciphertext, we can use the
cipherblock chaining (CBC) mode.

• IV stands for initialization vector.
• An IV has the same length as the plaintext block and is public.
• We can see that with CBC, the same plaintext is encrypted differently with
different IVs.
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Figure: CBC mode for encryption.
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ECB and CBC

(a) Original picture (b) ECB encrypted (c) CBC encrypted

Figure: Original picture and encrypted picture with ECB and CBC modes.
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CBC mode – encryption

• If a plaintext block is changed, the corresponding ciphertext block will also be
changed, affecting all the subsequent ciphertext blocks.

• Hence CBC mode can also be useful for authentication.
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Figure: CBC mode for encryption.
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CBC mode – encryption and decryption
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CBC mode – decryption

• The receiver needs to wait for the previous ciphertext block to arrive to decrypt
the next ciphertext block.

• In real-time applications, output feedback (OFB) mode can be used to make
communication more efficient.
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OFB mode
• The encryption function is not used for encrypting the plaintext blocks, rather it is
used for generating a key sequence.

• Ciphertext blocks are computed by XORing the plaintext blocks and the key
sequence.

• Such a design allows the receiver and sender to generate the key sequence
simultaneously before the ciphertext is sent.
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Figure: OFB mode for encryption.
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OFB mode
• In a way, OFB mode can be considered as a synchronous stream cipher.
• Another advantage of OFB mode is that padding is not needed.
• However, the encryption of a plaintext block does not depend on the previous
blocks, which makes it easier for the attacker to modify the ciphertext blocks.
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Figure: OFB mode for encryption.
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OFB mode – encryption and decryption
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Modular multiplicative inverse

Example

Let
p = 5, q = 7

Find
p−1 mod q =?, q−1 mod p =?
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Modular multiplicative inverse

Example

p = 5, q = 7

By the extended Euclidean algorithm

7 = 5× 1 + 2, 5 = 2× 2 + 1

1 = 5− 2× 2 = 5− (7− 5)× 2 = 5× 3− 7× 2

5−1 mod 7 = 3, 7−1 mod 5 = −2 mod 5 = 3.
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Modular multiplicative inverse

Example

Let
p = 7, q = 47

Find
p−1 mod q =?, q−1 mod p =?
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Modular multiplicative inverse

Example

p = 7, q = 47

By the extended Euclidean algorithm

47 = 7× 6 + 5, 7 = 5× 1 + 2, 5 = 2× 2 + 1

1 = 5− 2× 2 = 5− (7− 5)× 2 = 5× 3− 7× 2 = (47− 7× 6)× 3− 7× 2

= 47× 3− 7× 20

7−1 mod 47 = −20 mod 47 = 27, 47−1 mod 7 = 3.
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Solving linear congruences

Example

Solve the following system of simultaneous linear congruences

x ≡ 2 mod 5

x ≡ 1 mod 7

x ≡ 5 mod 11

x ≡ ? mod 385
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Solving linear congruences

Example

With the formula we have seen in the lecture

m1 = 5, m2 = 7, m3 = 11, a1 = 2, a2 = 1, a3 = 5,

m = 5× 7× 11 = 385, M1 = 77, M2 = 55, M3 = 35.

M1 ≡ 77 ≡ 2 mod 5, M2 ≡ 55 ≡ 6 mod 7, M3 ≡ 35 ≡ 2 mod 11.

With the extended Euclidean algorithm, we have find

y1 = M−1
1 mod 5 = 3, y2 = M−1

2 mod 7 = 6, y3 = M−1
3 mod 11 = 6.

And

x =

3∑
i=1

aiyiMi mod m = 2× 3× 77 + 1× 6× 55 + 5× 6× 35 mod 385 =

= 1842 mod 385 = 302. 101 / 104



Solving linear congruences

Example

Solve the following system of simultaneous linear congruences

x ≡ 2 mod 5

x ≡ 5 mod 7

x ≡ 4 mod 9

x ≡ ? mod 315
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Solving linear congruences

Example

With the formula we have seen in the lecture

m1 = 5, m2 = 7, m3 = 9, a1 = 2, a2 = 5, a3 = 4,

m = 5× 7× 9 = 315, M1 = 63, M2 = 45, M3 = 35.

M1 ≡ 63 ≡ 3 mod 5, M2 ≡ 45 ≡ 3 mod 7, M3 ≡ 35 ≡ 8 mod 9.

With the extended Euclidean algorithm, we have find

y1 = M−1
1 mod 5 = 2, y2 = M−1

2 mod 7 = 5, y3 = M−1
3 mod 9 = 8.

And

x =

3∑
i=1

aiyiMi mod m = 2× 2× 63 + 5× 5× 45 + 4× 8× 35 mod 315 =

= 2497 mod 315 = 292. 103 / 104



Assignment 2

• Read textbook
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