
Cryptography and Embedded System Security
CRAESS I

Xiaolu Hou

FIIT, STU
xiaolu.hou @ stuba.sk

1 / 69



Course Outline

• Abstract algebra and number theory

• Introduction to cryptography

• Symmetric block ciphers and their implementations

• RSA, RSA signatures, and their implementations

• Probability theory and introduction to SCA

• SPA and non-profiled DPA

• Profiled DPA

• SCA countermeasures

• FA on RSA and countermeasures

• FA on symmetric block ciphers

• FA countermeasures for symmetric block cipher
• Practical aspects of physical attacks

• Invited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH

2 / 69



Recommended reading

• Textbook
• Sections 5.2

3 / 69



Lecture Outline

• Encoding-based Countermeasure for PRESENT

• Infective Countermeasure

4 / 69



Countermeasures
• Protocol level

• Design the usage of cryptographic primitives in a way that certain fault attacks are
not possible anymore

• Re-keying1

• Cryptographic primitive level
• Proposal of new cipher design2

• Implementation level
• Infective countermeasure
• Redundancy

• Repeat the computation, e.g. deploy the circuit more than once
• Using error detecting/correcting codes

1Medwed, M., Standaert, F. X., Großschädl, J., & Regazzoni, F. (2010, May). Fresh re-keying:
Security against side-channel and fault attacks for low-cost devices. In International Conference on
Cryptology in Africa (pp. 279-296). Springer, Berlin, Heidelberg.

2Baksi, A., Bhasin, S., Breier, J., Khairallah, M., Peyrin, T., Sarkar, S., & Sim, S. M. (2021,
December). DEFAULT: Cipher Level Resistance Against Differential Fault Attack. In International
Conference on the Theory and Application of Cryptology and Information Security (pp. 124-156).
Springer, Cham.

5 / 69



Countermeasures

• Hardware level
• Light sensors to detect the opening of chip
• Voltage/temperature sensors to detect fault injections by voltage glitches or

temperature variations1

• On the other hand, there are new ways to induce faults proposed all the time. The
main focus in academics is more on countermeasures that aim at managing the
effect of fault induction.

1Hutter, M., & Schmidt, J. M. (2013, November). The temperature side channel and heating fault
attacks. In International Conference on Smart Card Research and Advanced Applications (pp.
219-235). Springer, Cham.

6 / 69



FA countermeasures for symmetric block cipher

• Encoding-based Countermeasure for PRESENT

• Infective Countermeasure

7 / 69



Error-detecting code as countermeasure

• A binary code with minimum distance dis (C) can detect dis (C)− 1 bit flips

• A natural choice for fault countermeasure is to consider encoding the intermediate
values during the computation.

• Which code to choose and how to implement it?

• We will discuss one proposal of using anticode for the countermeasure against bit
flips and instruction skips1.

• See the original paper for
• Formalization of encoding-based countermeasure for symmetric block ciphers
• Calculattion of the probability for detecting any m−bit flip and for instruction skips

1Breier, J., Hou, X., & Liu, Y. (2019). On evaluating fault resilient encoding schemes in software.
IEEE Transactions on Dependable and Secure Computing, 18(3), 1065-1079.

8 / 69



Rational for using anticode

Definition (Kerckhoffs’ principle)

The security of a cryptosystem should depend only on the secrecy of the key.

• We assume the code used for the countermeasure is public – the attacker has the
knowledge of all the codewords and how the information is encoded.

• Intuitively if the minimum distance of the code is too small, we know that the
code cannot detect a large number of bit flips.

• On the other hand, let us consider a code of length n and size M that contains at
least two codewords, say c1, c2, with distance n.

• If a n−bit flip is injected when c1 or c2 is used for the computation, then the
resulting faulty value is still a codeword and cannot be detected.

• Since there are in total M codewords, the possibility for the fault to go
undetected is 2/M .

• Thus, a very big maximum distance is also not desirable.

9 / 69



Encoding countermeasure for PRESENT
• Each operation is implemented as a lookup table from memory.

• Before the table lookup, the destination register of an operation is precharged to
0.

• When any of the inputs is 0, the output is 0.

• When an error is detected, the output is 0 (error message).

• We assume the registers are precharged to 0 before the program starts and this
process cannot be faulted.

Such a design can protect the implementation from single instruction skips – e.g. A
single instruction skip of any instruction of the following algorithm will either make no
change to the output or result in outputting 0 (error message).

1 LDI r0 a// load input a

2 LDI r1 b// load input b

3 EOR r2 r2// precharge register r2 to zero

4 LPM r2 r0 r1// execution of an operation by table lookup

10 / 69



Error message cannot be a codeword

• Do not contain 0 as a codeword.

• Of course, the error message can be changed to a different value as long as it is
not a codeword and has the same bit length as the codewords

11 / 69



Detected and undetected faults

• In case the fault changes some encoded intermediate value to a word that is not a
codeword, the table lookup will produce 0, which indicates an error.

• In the subsequent instructions, when the input of a table is 0, the output will
always be 0 since 0 is not a codeword.

• In such cases, we say that the fault is detected.

• Otherwise, when a successful fault injection does not result in 0 output, we say
the fault is undetected.

12 / 69



Lookup table for an operation – Example

Example

• As a simple example, let us consider { 01, 10 }, a binary (2, 2, 2, 2)−anticode.

• Since there are two codewords, it can be used to encode one bit of information.

• Let 0 7→ 01, 1 7→ 10

• The lookup table for carrying out XOR between a, b (a, b ∈ F2) is shown in the
following table.

• The table outputs 00 (error message) if one input is not a codeword

00 01 10 11

00 00 00 00 00
01 00 01 10 00
10 00 10 01 00
11 00 00 00 00

13 / 69



Fault in the inputs – Example

Example

00 01 10 11

00 00 00 00 00
01 00 01 10 00
10 00 10 01 00
11 00 00 00 00

• 1−bit flip will be detected:
• If 1−bit flip is injected in input 01, we get either 00 or 11, both will give output 00.
• If 1−bit flip is injected in input 10, we will have 00 or 11 and output will again be 00.

• A 2−bit flip will be undetected.
• Suppose we would like to compute 0⊕ 0
• Inputs for the table lookup will be 01 and 01, the output will be 01
• If a 2−bit flip is injected in one of the inputs, we get 10 and 01 for table lookup and

the result will be 10

14 / 69



PRESENT – encryption

• Block length: 64

• Number of rounds: 31

• Key length: either 80 or 128.

• Round function: addRoundKey, sBoxLayer,
and pLayer.

• After 31 rounds, addRoundKey is applied
again before the ciphertext output

Remark

For PRESENT specification, we consider the
0th bit of a value as the rightmost bit in its
binary representation. For example, the 0th bit
of 3 = 0112 is 1, the 1st bit is 1 and the 2nd
bit is 0.

Plaintext

addRoundKey

sBoxLayer

pLayer

31×

addRoundKey

Ciphertext 15 / 69



PRESENT – addRoundKey

• Round key Ki = κi63 . . . κ
i
0, (1 ≤ i ≤ 32)

• Current state b63b62 . . . b0

• For 0 ≤ j ≤ 63

bj → bj ⊕ κij

16 / 69



PRESENT – sBoxLayer
• sBoxLayer applies sixteen 4−bit Sboxes to each nibble of the current cipher state.
• For example, if the input is 0, the output is C.

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

Ki

Ki+1

17 / 69



PRESENT – pLayer

pLayer permutes the 64 bits using the following formula:

pLayer(j) =

⌊
j

4

⌋
+ (j mod 4)× 16,

where j denotes the bit position.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

18 / 69



Quotient group and Remainder group

• Before we go into details of the countermeasure implementation, we introduce the
notion of Quotient group and Remainder group.

• We number the Sboxes in the ith round of PRESENT as SBi
0, SB

i
1, . . . ,SB

i
15,

where SBi
0 is the right most Sbox

• Those Sboxes can be grouped in 2 different ways: the Quotient group and the
Remainder group:

Qji :=
{
SBi

4j , SB
i
4j+1, SB

i
4j+2,SB

i
4j+3

}
, Rji :=

{
SBi

j , SB
i
j+4,SB

i
j+8, SB

i
j+12

}
,

where j = 0, 1, 2, 3.

• Such a grouping allows us to relate the bits for each Sbox output in round i to
bits of each Sbox input in round i+ 1 in a certain way through pLayer

19 / 69



Quotient group and Remainder group
PPPPPPPPPRji+1

Qji
SBi

4j SBi
4j+1 SBi

4j+2 SBi
4j+3

SBi+1
j (0, 0) (1, 0) (2, 0) (3, 0)

SBi+1
j+4 (0, 1) (1, 1) (2, 1) (3, 1)

SBi+1
j+8 (0, 2) (1, 2) (2, 2) (3, 2)

SBi+1
j+12 (0, 3) (1, 3) (2, 3) (3, 3)

Table: Relation between the output bits of Sboxes from the Quotient group Qji and the input
bits of Sboxes from the corresponding Remainder group Rji+1. For example, the 0th input bit
of SBi+1

j+4 in Rji+1 comes from the 1st output bit of SBi
4j in Qji..

• Bits of the 0th Sbox (SBi
4j) output in Quotient group Qji are permuted to the

0th bits of Sbox inputs in the corresponding Remainder group Rji+1;

• Bits of the 1st Sbox (SBi
4j+1) output in Qji are permuted to the 1st bits of Sbox

inputs in Rji+1;

20 / 69



Quotient group and Remainder group

SBi
15 SBi

14 SBi
13 SBi

12 SBi
11 SBi

10 SBi
9 SBi

8 SBi
7 SBi

6 SBi
5 SBi

4 SBi
3 SBi

2 SBi
1 SBi

0

SBi+1
15 SBi+1

14 SBi+1
13 SBi+1

12 SBi+1
11 SBi+1

10 SBi+1
9 SBi+1

8 SBi+1
7 SBi+1

6 SBi+1
5 SBi+1

4 SBi+1
3 SBi+1

2 SBi+1
1 SBi+1

0

Ki

Ki+1

Figure: An illustration of the relation between Sbox outputs in a Quotient group to Sbox inputs
in the corresponding Remainder group. Sboxes in Quotient groups Q0i, Q1i, Q2i, Q3i and
their corresponding Remainder groups R0i+1, R1i+1, R2i+1, R3i+1 are in orange, blue, green,
red colors respectively.

pLayer can be considered as four identical parallel bitwise operations where each is a
function: F16

2 → F16
2 that takes one Quotient group output and permutes it to the

corresponding Remainder group input.
21 / 69



Choice of the anticode

• pLayer can be considered as four identical parallel bitwise operations where each is
a function: F16

2 → F16
2

• addRoundKey is a function: F64
2 → F64

2 .

• Present Sbox SB: F4
2 → F4

2.

• One convenient code choice would be those with cardinalities 16, encoding 4 bits
of information.

• In particular, we are looking for a binary (n, 16, d, δ)−anticode, where d is the
minimum distance of the code and δ is the maximum distance of the code.

22 / 69



Choice of the anticode

• See the original paper1 for an algorithm for finding anticodes that achieve a low
probability of undetected faults with given length, minimum distance, and
maximum distance.

• In the rest of this presentation, we will use the following binary
(8, 16, 2, 7)−anticode as a running example

{ 01, 08, 02, 0B, 04, 1D, 1E, 30, 7, 65, 6A, AD, B3, CE, D9, F6 } .

• 01 is the codeword for 0000, 08 in the codeword for 0001, etc.

• We write
01 = encode(0000).

1Breier, J., Hou, X., & Liu, Y. (2019). On evaluating fault resilient encoding schemes in software.
IEEE Transactions on Dependable and Secure Computing, 18(3), 1065-1079.

23 / 69



Encoding countermeasure - addRoundKey
• Given an anticode C, the addRoundKey operation can be implemented using an
XOR table similar to the one we have seen before

• The table has 28 rows and 28 columns.
• Let ⊕̃ denote this table lookup operation.

Example (The previous example)

• { 01, 10 }, a binary (2, 2, 2, 2)−anticode.

• 0 7→ 01, 1 7→ 10

• The lookup table for carrying out XOR between a, b (a, b ∈ F2) is shown in the
following table.

00 01 10 11

00 00 00 00 00
01 00 01 10 00
10 00 10 01 00
11 00 00 00 00

24 / 69



Encoding countermeasure - addRoundKey

• Given an anticode C, the addRoundKey operation can be implemented using an
XOR table similar to the one we have seen before

• The size of the table will be 28 × 28.

• Let ⊕̃ denote this table lookup operation.

Example

{ 01, 08, 02, 0B, 04, 1D, 1E, 30, 07, 65, 6A, AD, B3, CE, D9, F6 } .

The table entry corresponding to 01 and 08 will be ?

25 / 69



Encoding countermeasure - addRoundKey

• Given an anticode C, the addRoundKey operation can be implemented using an
XOR table similar to the one we have seen before

• The size of the table will be 28 × 28.

• Let ⊕̃ denote this table lookup operation.

Example

{ 01, 08, 02, 0B, 04, 1D, 1E, 30, 07, 65, 6A, AD, B3, CE, D9, F6 } .

The table entry corresponding to 01 and 08 will be

encode(0000⊕ 0001) = encode(0001) = 08.

And we write
01⊕̃08 = 08.

26 / 69



Encoding countermeasure - sBoxLayer and pLayer

• The implementation of sBoxLayer and pLayer are based on four 16× 64 lookup
tables, T0, T1, T2, T3.

• Let x = x3x2x1x0 be an element in F4
2.

• We write
SB(x3x2x1x0) = xs3x

s
2x

s
1x

s
0.

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Example

Take D = 1101, then x3 = 1, x2 = 1, x1 = 0, x0 = 1. Since SB(D) = 7 = 0111, we
have

xs3 = 0, xs2 = 1, xs1 = 1, xs0 = 1.

27 / 69



Encoding countermeasure - sBoxLayer and pLayer

T0 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(000xs3), encode(000x
s
2), encode(000x

s
1), encode(000x

s
0)

T1 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(00xs30), encode(00x
s
20), encode(00x

s
10), encode(00x

s
00)

T2 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(0xs300), encode(0x
s
200), encode(0x

s
100), encode(0x

s
000)

T3 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(xs3000), encode(x
s
2000), encode(x

s
1000), encode(x

s
0000)

28 / 69



Encoding countermeasure - sBoxLayer and pLayer

• Each table extracts the bits of Sbox output, permutes them and outputs the
corresponding codeword.

• Each entry of the outputs of each table can be
• T0: encode(0000) or encode(0001)
• T1: encode(0000) or encode(0010)
• T2: encode(0000) or encode(0100)
• T3: encode(0000) or encode(1000)

29 / 69



Encoding countermeasure - sBoxLayer and pLayer

T0 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(000xs3), encode(000x
s
2), encode(000x

s
1), encode(000x

s
0)

Example

{ 01, 08, 02, 0B, 04, 1D, 1E, 30, 07, 65, 6A, AD, B3, CE, D9, F6 } .

• Suppose the input is 01 = encode(0000).

• The corresponding Sbox output would be C = 1100, i.e. xs3x
s
2x

s
1x

s
0 = 1100.

• The output of T0 will be ?

30 / 69



Encoding countermeasure - sBoxLayer and pLayer

T0 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(000xs3), encode(000x
s
2), encode(000x

s
1), encode(000x

s
0)

Example

{ 01, 08, 02, 0B, 04, 1D, 1E, 30, 07, 65, 6A, AD, B3, CE, D9, F6 } .

• Suppose the input is 01 = encode(0000).

• The corresponding Sbox output would be C = 1100, i.e. xs3x
s
2x

s
1x

s
0 = 1100.

• The output of T0 will be

encode(0001) = 08, encode(0001) = 08,

encode(0000) = 01, encode(0000) = 01.
31 / 69



Encoding countermeasure - sBoxLayer and pLayer

T1 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(00xs30), encode(00x
s
20), encode(00x

s
10), encode(00x

s
00)

Example

{ 01, 08, 02, 0B, 04, 1D, 1E, 30, 07, 65, 6A, AD, B3, CE, D9, F6 } .

• Suppose the input is 01 = encode(0000).

• The corresponding Sbox output would be C = 1100, i.e. xs3x
s
2x

s
1x

s
0 = 1100.

• The output of T1 will be ?

32 / 69



Encoding countermeasure - sBoxLayer and pLayer

T1 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(00xs30), encode(00x
s
20), encode(00x

s
10), encode(00x

s
00)

Example

{ 01, 08, 02, 0B, 04, 1D, 1E, 30, 07, 65, 6A, AD, B3, CE, D9, F6 } .

• Suppose the input is 01 = encode(0000).

• The corresponding Sbox output would be C = 1100, i.e. xs3x
s
2x

s
1x

s
0 = 1100.

• The output of T1 will be

encode(0010) = 02, encode(0010) = 02,

encode(0000) = 01, encode(0000) = 01.
33 / 69



Encoding countermeasure - sBoxLayer and pLayer

T2 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(0xs300), encode(0x
s
200), encode(0x

s
100), encode(0x

s
000)

Example

{ 01, 08, 02, 0B, 04, 1D, 1E, 30, 07, 65, 6A, AD, B3, CE, D9, F6 } .

• Suppose the input is 01 = encode(0000).

• The corresponding Sbox output would be C = 1100, i.e. xs3x
s
2x

s
1x

s
0 = 1100.

• The output of T2 will be ?

34 / 69



Encoding countermeasure - sBoxLayer and pLayer

T2 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(0xs300), encode(0x
s
200), encode(0x

s
100), encode(0x

s
000)

Example

{ 01, 08, 02, 0B, 04, 1D, 1E, 30, 07, 65, 6A, AD, B3, CE, D9, F6 } .

• Suppose the input is 01 = encode(0000).

• The corresponding Sbox output would be C = 1100, i.e. xs3x
s
2x

s
1x

s
0 = 1100.

• The output of T2 will be

encode(0100) = 04, encode(0100) = 04,

encode(0000) = 01, encode(0000) = 01.
35 / 69



Encoding countermeasure - sBoxLayer and pLayer

T3 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(xs3000), encode(x
s
2000), encode(x

s
1000), encode(x

s
0000)

Example

{ 01, 08, 02, 0B, 04, 1D, 1E, 30, 07, 65, 6A, AD, B3, CE, D9, F6 } .

• Suppose the input is 01 = encode(0000).

• The corresponding Sbox output would be C = 1100, i.e. xs3x
s
2x

s
1x

s
0 = 1100.

• The output of T3 will be ?

36 / 69



Encoding countermeasure - sBoxLayer and pLayer

T3 : C → C × C × C × C

encode(x3x2x1x0) 7→ encode(xs3000), encode(x
s
2000), encode(x

s
1000), encode(x

s
0000)

Example

{ 01, 08, 02, 0B, 04, 1D, 1E, 30, 07, 65, 6A, AD, B3, CE, D9, F6 } .

• Suppose the input is 01 = encode(0000).

• The corresponding Sbox output would be C = 1100, i.e. xs3x
s
2x

s
1x

s
0 = 1100.

• The output of T3 will be

encode(1000) = 07, encode(1000) = 07,

encode(0000) = 01, encode(0000) = 01.
37 / 69



Encoding countermeasure - sBoxLayer and pLayer

• Let the original cipher state at sBoxLayer input be b63b62 . . . b0.

• For the encoding-based implementation, the corresponding cipher state will be

encode(b63b62b61b60)encode(b59b58b57b56) . . . encode(b7b6b5b4)encode(b3b2b1b0).

• Each codeword in this cipher state will be passed to tables T0, T1, T2, T3, and
the outputs will be recorded.

• Then the output of pLayer will be computed by combining those table outputs
through ⊕̃ – lookup table for XOR.

38 / 69



Encoding countermeasure - sBoxLayer and pLayer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

Example

• The bits at positions 0, 1, 2, 3 for the output of pLayer come from the bits at
positions 0, 4, 8, 12 of the input of pLayer.

• We first get encode(000bs0) from T0 output, encode(00bs40) from T1,
encode(0bs800) from T2, encode(bs12000) from T3, then the 0th nibble of pLayer
output will be ?

39 / 69



Encoding countermeasure - sBoxLayer and pLayer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

Example

• The bits at positions 0, 1, 2, 3 for the output of pLayer come from the bits at
positions 0, 4, 8, 12 of the input of pLayer.

• We first get encode(000bs0) from T0 output, encode(00bs40) from T1,
encode(0bs800) from T2, encode(bs12000) from T3, then the 0th nibble of pLayer
output will be

encode(000bs0)⊕̃encode(00bs40)⊕̃encode(0bs800)⊕̃encode(bs12000).

• As another example, the 3rd nibble (bits 16, 17, 18, 19) of pLayer output is given
by ?

40 / 69



Encoding countermeasure - sBoxLayer and pLayer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

Example

• The bits at positions 0, 1, 2, 3 for the output of pLayer come from the bits at
positions 0, 4, 8, 12 of the input of pLayer.

• We first get encode(000bs0) from T0 output, encode(00bs40) from T1,
encode(0bs800) from T2, encode(bs12000) from T3, then the 0th nibble of pLayer
output will be

encode(000bs0)⊕̃encode(00bs40)⊕̃encode(0bs800)⊕̃encode(bs12000).

• As another example, the 3rd nibble (bits 16, 17, 18, 19) of pLayer output is given
by

encode(000bs1)⊕̃encode(00bs50)⊕̃encode(0bs900)⊕̃encode(bs13000).
41 / 69



Effectiveness against fault attacks

• By the design of our implementation, when the faulty intermediate value is not a
codeword, the table lookup returns 0 and the attacker will not be able to tell
what the original faulty ciphertext is.

• Since both DFA and SFA require analysis of the faulty ciphertexts, they can be
prevented when the fault model is bit flip and the number of bit flips is lower than
the minimum distance of the binary code.

42 / 69



Minimum distance decoding rule

• After receiving x, Bob computes

cx = argmin
c

{ dis (x, c) | c ∈ C } ,

i.e.
dis (cx,x) = min

c
{ dis (x, c) | c ∈ C } .

• If more than one codeword is identified as cx, there are two options.
• Incomplete decoding rule: Bob requests Alice for another transmission.
• Complete decoding rule: Bob randomly selects one codeword.

43 / 69



Error-correcting code

Definition

A binary code C is said to be k−error correcting if minimum distance decoding is able
to correct k or fewer errors. If C is k−error correcting but not k + 1−error correcting,
then we say that C is exactly k-error correcting.

Example

Let C = { 000, 111 }.
• If 000 was sent and 1 bit flip occurred, the received word { 001, 010, 100 } will be

decoded to 000.

• If 111 was sent and 1 bit flip occurred, the received word { 110, 011, 101 } will be
decoded to 111.

• If 000 was sent and 011 was received, the decoding result will be 111.

Thus C is exactly 1−error correcting.

44 / 69



Minimum distance and error-correcting

Theorem
• A binary (n,M, d)−code is exactly ⌊(d− 1)/2⌋−error correcting.

45 / 69



Using error-correction code
3−repetition code, 0 7→ 000, 1 7→ 111

000 001 010 011 100 101 110 111

000 000 000 000 111 000 111 111 111
001 000 000 000 111 000 111 111 111
010 000 000 000 111 000 111 111 111
011 111 111 111 000 111 000 000 000
100 000 000 000 111 000 111 111 111
101 111 111 111 000 111 000 000 000
110 111 111 111 000 111 000 000 000
111 111 111 111 000 111 000 000 000

• Some faults will be corrected to wrong codewords
• Better to only use error-correcting code-based countermeasure when we know at
most ⌊(d− 1)/2⌋ bits can be flipped, where d is the minimum distance of the
binary code.

• In general, need to reserve one word to indicate more than one codeword is at the
same smallest distance from the input word

46 / 69



FA countermeasures for symmetric block cipher

• Encoding-based Countermeasure for PRESENT

• Infective Countermeasure

47 / 69



Infective countermeasure

• The idea of infective countermeasure is to process the ciphertext in a way that the
output becomes useless for an attacker when faults are injected during the
computations.

• We will take the proposal from the following paper and only focus on the case for
AES-128.

• Tupsamudre, H., Bisht, S., & Mukhopadhyay, D. (2014). Destroying Fault
Invariant with Randomization: A Countermeasure for AES Against Differential
Fault Attacks. In Cryptographic Hardware and Embedded Systems–CHES 2014:
16th International Workshop, Busan, South Korea, September 23-26, 2014.
Proceedings 16 (pp. 93-111). Springer Berlin Heidelberg.

48 / 69



Main idea

• The main methodology is to compute each round of AES encryption twice before
moving to the next round.

• The results of those two rounds will be compared, if a fault is detected, the rest of
the computation should produce random values.

• Computations of dummy rounds are also randomly added in between the AES
rounds so that the attacker would not know where the fault was actually injected.

49 / 69



AES

• NIST, 1997, Call for algorithms, replacement for DES

• Advanced Encryption Standard

• October 2000, Rijndael was selected

• Invented by Belgian cryptographers Joan Daemen and Vincent Rijmen

• Optimized for software efficiency on 8 and 32 bit processors

50 / 69



AES encryption
• An initial AddRoundKey
• Round function for Nr−1 rounds: SubBytes, ShiftRows, MixColumns,

AddRoundKey
• Last round, round Nr: SubBytes, ShiftRows, AddRoundKey
• AddRoundKey is bitwise XOR with the round key
• SubBytes is the application of 8−bit Sboxes.
• ShiftRows permutes the bytes
• MixColumns is a function on 32−bit values (four bytes).

SB

SBAES

✧
✧
✧
✧

SR

column ×




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




✧
✧

✧
✧

MC AK

51 / 69



Notations

• We define Fi (i = 0, 1, 2, . . . , 10) as follows:
• F0: the initial AddRoundKey operation in AES;
• For i = 1, 2, . . . , 9, Fi: the AES round function, Fi consists of the following

operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey;
• F10: the AES round function for the last round, consists of SubBytes, ShiftRows,

AddRoundKey.

• Ki (i = 0, 1, 2, . . . , 10): the round keys for AES.

• Each Fi takes input the cipher state at end of round i− 1 and Ki, then outputs
the cipher state at end of round i.

52 / 69



Notations
• We generate a random number β and the round keys for the dummy rounds,
denoted κi (i = 0, 1, 2, . . . , 10), such that

Fi(β, κi) = β

for i = 0, 1, 2 . . . , 10.
• Since F0 is an AddRoundKey operation,

κ0 = 0000000000000000.

• For i = 1, 2, . . . , 9,

κi = β ⊕MixColumns(ShiftRows(SubBytes(β))).

• For i = 10
κ10 = β ⊕ ShiftRows(SubBytes(β)).

• We set an array of keys of size 2× 11, denoted keys as

keys[0][i] = κi, keys[1][i] = Ki.

53 / 69



Infective countermeasure for AES-128

• The user-specified number t determines how many dummy rounds will be added
during the computation.

• The cipher state for the first computation is stored in R0 and the cipher state in
the redundant AES computation is stored in R1 – Both are initialized to be the
plaintext

• The dummy round state is stored in R2 and initialized to be the random number β

Input: p, β, keys, t // p is a plaintext block; β is a random number; keys

contains the AES round keys Ki and the dummy round keys κi for

i = 0, 1, 2, . . . , 10; t is a user-specified security parameter.

Output: ciphertext or infected ciphertext
1 R0 = p, R1 = p, R2 = β
2 . . .

54 / 69



Infective countermeasure for AES-128
• j counts the total number (including the redundant ones) of AES rounds

computed and i = ⌊j/2⌋ is the actual round counter.
• The random string rstr contains 22 of 1s corresponding to two computations of
each Fi for i = 0, 1, . . . , 10 and t− 22 bits of 0 corresponding to dummy rounds.

Input: p, β, keys, t
Output: ciphertext or infected ciphertext

1 R0 = p, R1 = p, R2 = β
2 Generate rstr∈ Ft

2

3 j = 0, idx = 1
4 while idx ≤ t do
5 i = ⌊j/2⌋// i is the round counter

6 λ = rstr[idx]// λ = 0 implies a dummy round

7 . . .
8 j = j + λ
9 . . .

10 return R0 55 / 69



Infective countermeasure for AES-128
• The random string rstr contains 22 of 1s corresponding to two computations of
each Fi for i = 0, 1, . . . , 10 and t− 22 bits of 0 corresponding to dummy rounds.

• In each loop, we go through the idx-th bit of rstr, and the value is stored in λ.
• The value of idx is increased by 1 at the end of each loop

Input: p, β, keys, t
Output: ciphertext or infected ciphertext

1 R0 = p, R1 = p, R2 = β
2 Generate rstr∈ Ft

2

3 j = 0, idx = 1
4 while idx ≤ t do
5 i = ⌊j/2⌋
6 λ = rstr[idx]
7 . . .
8 j = j + λ
9 idx = idx+ 1

10 return R0 56 / 69



Infective countermeasure for AES-128
• If j is even (resp. odd), the least significant bit (LSB) of j is 0 (resp. 1),

a = ((LSB of j) & λ)⊕ 2(¬λ) =





0⊕ 2 = 2, if λ = 0

(0 & 1)⊕ 0 = 0, if λ = 1 and j is even

(1 & 1)⊕ 0 = 1, if λ = 1 and j is odd

.

• Ra = Fi(Ra, keys[λ][i])
• When λ = 0, a = 2, we compute a dummy round i with

R2 = Fi(R2, keys[0][i]) = Fi(R2, κi).

• When λ = 1 and j is even, a = 0, we compute AES round i with

R0 = Fi(R0, keys[1][i]) = Fi(R0,Ki).

• When λ = 1 and j is odd, a = 1, we compute a redundant AES round i with

R1 = Fi(R1, keys[1][i]) = Fi(R1,Ki).

57 / 69



Infective countermeasure for AES-128
When λ = 0, a = 2, dummy round i; When λ = 1 and j is even, a = 0, AES round i;
When λ = 1 and j is odd, a = 1, redundant AES round i

Input: p, β, keys, t
Output: ciphertext or infected ciphertext

1 R0 = p, R1 = p, R2 = β
2 Generate rstr∈ Ft

2

3 j = 0, idx = 1
4 while idx ≤ t do
5 i = ⌊j/2⌋
6 λ = rstr[idx]
7 a = ((LSB of j) & λ)⊕ 2(¬λ)
8 Ra = Fi(Ra, keys[λ][i])
9 . . .

10 j = j + λ
11 idx = idx+ 1

12 return R0
58 / 69



Infective countermeasure for AES-128

• Indicator function for 0 with domain F128
2

10 : F128
2 → F2

x 7→
∏

i

(1− xi).

• In other words,

10(x) =

{
1 if x = 0

0 otherwise
.

• Then

¬10(x) =

{
0 if x = 0

1 otherwise
.

59 / 69



Infective countermeasure for AES-128

¬10(x) =

{
0 if x = 0

1 otherwise
.

We have

γ = λ & (LSB of j) & (¬10(R0 ⊕R1)) =

{
0 if λ = 0 or j is even

¬10(R0 ⊕R1) otherwise

=

{
0 if λ = 0 or j is even or R0 = R1

1 λ = 1, j is odd, and R0 ̸= R1

• When j is odd and λ = 1 (i.e. in the loop when the redundant AES round is
computed)

• γ indicates if the cipher state in the AES round computation, R0, is equal to the
redundant cipher state, R1, or equivalent, whether fault happened in AES round or
in the redundant round computation.

• If there was no fault, γ = 0; otherwise, γ = 1.
60 / 69



Infective countermeasure for AES-128
• if j is odd and λ = 1, detect fault injection in AES
• If there was no fault, γ = 0; otherwise, γ = 1.

Input: p, β, keys, t
Output: ciphertext or infected ciphertext

1 R0 = p, R1 = p, R2 = β
2 Generate rstr∈ Ft

2

3 j = 0, idx = 1
4 while idx ≤ t do
5 i = ⌊j/2⌋
6 λ = rstr[idx]
7 a = ((LSB of j) & λ)⊕ 2(¬λ)
8 Ra = Fi(Ra, keys[λ][i])
9 γ = λ & (LSB of j) & (¬10(R0 ⊕R1))

10 . . .
11 j = j + λ
12 idx = idx+ 1

13 return R0

61 / 69



Infective countermeasure for AES-128

• Let

δ =

{
0 if λ = 1

¬10(R2 ⊕ β) if λ = 0
=

{
0 if λ = 1 or R2 = β

1 if λ = 0 and R2 ̸= β
.

• When λ = 0, i.e. in the loop when the dummy round is computed, δ indicates if
there is a fault injected in the computation of the dummy round state R2.

• If there was no fault, δ = 0; otherwise, δ = 1.

62 / 69



Infective countermeasure for AES-128
• When λ = 0, δ indicates if there is a fault injected in dummy round
• If there was no fault, δ = 0; otherwise, δ = 1.

Input: p, β, keys, t
Output: ciphertext or infected ciphertext

1 R0 = p, R1 = p, R2 = β
2 Generate rstr∈ Ft

2

3 j = 0, idx = 1
4 while idx ≤ t do
5 i = ⌊j/2⌋
6 λ = rstr[idx]
7 a = ((LSB of j) & λ)⊕ 2(¬λ)
8 Ra = Fi(Ra, keys[λ][i])
9 γ = λ & (LSB of j) & (¬10(R0 ⊕R1))

10 δ = (¬λ) & (¬10(R2 ⊕ β))
11 . . .
12 j = j + λ
13 idx = idx+ 1

14 return R0 63 / 69



Infective countermeasure for AES-128

• if j is odd and λ = 1, detect fault injection in AES

• If there was no fault, γ = 0; otherwise, γ = 1.

• When λ = 0, δ indicates if there is a fault injected in dummy round

• If there was no fault, δ = 0; otherwise, δ = 1.

• Then

R0 = (¬(γ ∨ δ) ·R0)⊕ ((γ ∨ δ) ·R2) =

{
R0 if γ = 0 and δ = 0

R2 otherwise
.

• R0 will be changed to a random number R2 if a fault is detected in any of the
computations.

64 / 69



Infective countermeasure for AES-128
• R0 becomes a random number when fault is detected
• Consequently, the output will be a random number, or infected ciphertext.

Input: p, β, keys, t
Output: ciphertext or infected ciphertext

1 R0 = p, R1 = p, R2 = β
2 Generate rstr∈ Ft

2

3 j = 0, idx = 1
4 while idx ≤ t do
5 i = ⌊j/2⌋
6 λ = rstr[idx]
7 a = ((LSB of j) & λ)⊕ 2(¬λ)
8 Ra = Fi(Ra, keys[λ][i])
9 γ = λ & (LSB of j) & (¬10(R0 ⊕R1))

10 δ = (¬λ) & (¬10(R2 ⊕ β))
11 R0 = (¬(γ ∨ δ) ·R0)⊕ ((γ ∨ δ) ·R2)
12 j = j + λ
13 idx = idx+ 1

14 return R0 65 / 69



Infective countermeasure for AES-128

Algorithm 1: Computation of AES round in the infective Countermeasure for AES-
128 from

1 j is even
2 i = ⌊j/2⌋// i is the round counter

3 λ = 1
4 a = 0
5 R0 = Fi(R0, keys[1][i])// keys[1][i] = Ki is the ith round key for AES

6 γ = 0
7 δ = 0
8 R0 = R0

66 / 69



Infective countermeasure for AES-128

Algorithm 2: Computation of redundant AES round in the infective Countermeasure
for AES-128.

1 j is odd
2 i = ⌊j/2⌋// i is the round counter

3 λ = 1
4 a = 1
5 R1 = Fi(R1, keys[1][i])// keys[1][i] = Ki is the ith round key for AES

6 γ = ¬10(R0 ⊕R1)// detect fault injection in AES

7 δ = 0
8 R0 = ((¬γ) ·R0)⊕ (γ ·R2)// if there is fault in AES computation, R0 = R2

becomes a random number

67 / 69



Infective countermeasure for AES-128

Algorithm 3: Computation of the dummy round in the infective Countermeasure for
AES-128

1 λ = 0
2 a = 2
3 R2 = Fi(R2, keys[0][i])// i is the round counter, keys[0][i] = κi is the ith round

key for the dummy rounds

4 γ = 0
5 δ = ¬10(R2 ⊕ β)// detect fault injection in dummy round

6 R0 = ((¬δ) ·R0)⊕ (δ ·R2)// if there is fault in the dummy round computation,

R0 = R2 becomes a random number

68 / 69



Potential PhD thesis topics

• Side-channel analysis attacks and countermeasures
• On cryptographic implementations
• On neural networks
• AI-assisted SCA

• Fault attacks and countermeasures
• On cryptographic implementations
• On neural networks
• AI-assisted fault attacks

69 / 69


	Encoding-based Countermeasure for PRESENT
	Infective Countermeasure

