
Cryptography and Embedded System Security
CRAESS I

Xiaolu Hou

FIIT, STU
xiaolu.hou @ stuba.sk

1 / 67

Course Outline

• Abstract algebra and number theory

• Introduction to cryptography

• Symmetric block ciphers and their implementations

• RSA, RSA signatures, and their implementations

• Probability theory and introduction to SCA

• SPA and non-profiled DPA

• Profiled DPA

• SCA countermeasures

• FA on RSA and countermeasures

• FA on symmetric block ciphers

• FA countermeasures for symmetric block cipher
• Practical aspects of physical attacks

• Invited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH

2 / 67

Recommended reading

• Textbook
• Sections 5.1.1, 5.1.2

3 / 67

Lecture Outline

• Differential Fault Analysis

• Statistical Fault Analysis

• Other Fault Attacks

4 / 67

Fault attacks on symmetric block ciphers

• The specifications of round functions and key schedules are public (Kerckhoffs’
principle)

• The master key, hence also the round keys, are secret.

• We also assume that throughout the attack, the same master key is used and the
goal of the attacker is normally to recover certain round key(s).

• The methodologies that we will discuss can be applied to any unprotected
implementations of symmetric block cipher proposed up to now

• Fault attacks normally aim to recover the last/first round key(s), then use the
inverse key schedule to find the master key

• DES: any round key → 48 bits of master key
• AES: any round key → master key
• PRESENT: any round key → 64 bits of master key, brute force the rest or recover

another round key

5 / 67

Remark

• We will see two attacks on AES
• Differential fault analysis attack
• Statistical fault analysis attack

• There are many more fault attack methods

6 / 67

Fault mask

• If the fault injected in an intermediate value x results in a faulty value x′

• We refer to ε := x⊕ x′ as the fault mask, which represents the change in the
faulted value.

7 / 67

FA on symmetric block ciphers

• Differential Fault Analysis

• Statistical Fault Analysis

• Other Fault Attacks

8 / 67

Attack methodology

• Differential Fault Analysis (DFA) was first introduced by Biham et al.1 in 1997.

• It has been studied by numerous researchers in different settings and is one of the
most popular fault attack analysis methods for symmetric block ciphers.

• DFA considers a fault injection into the intermediate state of the cipher, normally
in the last few rounds.

• Then the difference between correct and faulty ciphertexts is analyzed to recover
the round key(s).

1Biham, E., & Shamir, A. (1997, August). Differential fault analysis of secret key cryptosystems. In
Annual international cryptology conference (pp. 513-525). Springer, Berlin, Heidelberg.

9 / 67

Difference distribution table

Definition

For an Sbox SB: Fω1
2 → Fω2

2 , the (extended) difference distribution table (DDT) of SB
is a 2−dimensional table T of size (2ω1 − 1)× 2ω2 such that for any 0 < δ < 2ω1 and
0 ≤ ∆ < 2ω2 , the entry of T at the ∆th row and δth column is given by

T [∆, δ] = { a | a ∈ Fω1
2 , SB(a⊕ δ)⊕ SB(a) = ∆ } .

We refer to δ as the input difference, and ∆ as the output difference.

Example (DDT of PRESENT Sbox)

0 1 2 3 4 5 6 7 8 9 A B C D E F
C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

If input is 9, input difference δ = 3, what is the output difference?

SBPRESENT(9⊕ 3)⊕ SBPRESENT(9) =?

10 / 67

Difference distribution table

Definition

T [∆, δ] = { a | a ∈ Fω1
2 , SB(a⊕ δ)⊕ SB(a) = ∆ } .

We refer to δ as the input difference, and ∆ as the output difference.

Example (DDT of PRESENT Sbox)

0 1 2 3 4 5 6 7 8 9 A B C D E F
C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

If input is 9, input difference δ = 3, the output difference is given by

SBPRESENT(9⊕3)⊕SBPRESENT(9) = SBPRESENT(A)⊕1110 = 1111⊕1110 = 0001 = 1.

Thus 9 is in T [1, 3]. Similarly, 7 is in T [?, 3]

11 / 67

Difference distribution table

Definition

T [∆, δ] = { a | a ∈ Fω1
2 , SB(a⊕ δ)⊕ SB(a) = ∆ } .

We refer to δ as the input difference, and ∆ as the output difference.

Example (DDT of PRESENT Sbox)

0 1 2 3 4 5 6 7 8 9 A B C D E F
C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

If input is 9, input difference δ = 3, the output difference is given by

SBPRESENT(9⊕3)⊕SBPRESENT(9) = SBPRESENT(A)⊕1110 = 1111⊕1110 = 0001 = 1.

Thus 9 is in T [1, 3]. Similarly, 7 is in T [4, 3]

SBPRESENT(7⊕3)⊕SBPRESENT(7) = SBPRESENT(4)⊕1101 = 1001⊕1101 = 0100 = 4.

12 / 67

DDT of PRESENT Sbox
H
HHH

HH∆
δ

1 2 3 4 5 6 7 8 9 A B C D E F

1 9A 36 078F 5E 1C 24BD

2 8E 34 09 5F 1D 67AB 2C

3 CDEF 46 12 3B 0A 58 79

4 47 8D 35AC 0B 2F 169E

5 CDEF 0145 2389 67AB

6 9B CDEF 37 06 25 18 4A

7 67AB 03 8C 5D 2E 49 1F

8 17 AD 6F 4E 2389 0C 5B

9 0145 9D BE 2A 7C 3F 68

A 02 56 BF 9C 7D 1A 48 3E

B 8B 27 35AC 169E 4F 0D

C 8a 26 0145 9F BC 7E 3D

D 2389 57 AF 4C 1B 6D 0E

E 13 AE 24BD 6C 59 078F

F 24BD 169E 078F 35AC

Table: Difference distribution table for PRESENT Sbox, where the row corresponding to output
difference ∆ = 0 is omitted since it is empty

13 / 67

DDT – Example

Example

Find the DDT for the following Sbox

x 0 1 2 3 4 5 6 7

SB(x) 4 7 0 5 2 6 3 1

HH
HHHH∆

δ
1 2 3 4 5 6 7

1 ? ? 15 27

2 67 13 05 24

3 01 47 26 35

4 45 02 37 16

5 23 56 14 07

6 04 36 17 25

7 57 12 06 34

14 / 67

DDT – Example

Example

x 0 1 2 3 4 5 6 7

SB(x) 4 7 0 5 2 6 3 1

H
HHH

HH∆
δ

1 2 3 4 5 6 7

1 46 03 15 27

2 67 13 05 24

3 01 47 26 35

4 45 02 37 16

5 23 56 14 07

6 04 36 17 25

7 57 12 06 34

SB(0)⊕ SB(0⊕ 3) = 4⊕ SB(3) = 4⊕ 5 = 1
15 / 67

How DFA works on a simple example

• Let us consider the AND operation that takes inputs a, b ∈ F2 and outputs

c = a & b.

• All possible values of a, b, c are given by

a b c = a & b

0 0 0
0 1 0

1 0 0
1 1 1

• Suppose the output c can be observed by the attacker and a, b are unknown.

• The attacker injects a fault in b by flipping it.

• By observing the output c, how does the attacker recover value of a?

16 / 67

How DFA works on a simple example

• All possible values of a, b, c are given by

a b c = a & b

0 0 0
0 1 0

1 0 0
1 1 1

• Suppose the output c can be observed by the attacker and a, b are unknown.

• The attacker injects a fault in b by flipping it.

• If the output c stays the same, then a = 0; otherwise a = 1.

17 / 67

How DFA works on PRESENT Sbox

• SB: PRESENT Sbox

• Let a ∈ F4
2, b ∈ F4

2 be fixed secret values

• Define

f : F4
2 → F4

2

x 7→ SB(x⊕ a)⊕ b.

• We will show how to recover the values of a and b with DFA
• Attack assumption

• Fault location: input of f
• Fault model: bit flip
• Fault mask: ε ∈ F4

2 s.t. x′ = x⊕ ε
• Attacker knowledge: Sbox design, inputs and outputs of f , fault mask
• Attacker goal: recover values of a and b
• Attacker can repeat the computation with the same input (not chosen by attacker)

18 / 67

How DFA works on PRESENT Sbox

f : F4
2 → F4

2

x 7→ SB(x⊕ a)⊕ b.

• Attack assumption
• Fault location: input of f
• Fault model: bit flip
• Fault mask: ε ∈ F4

2 s.t. x′ = x⊕ ε
• Attacker knowledge: Sbox design, inputs and outputs of f , fault mask
• Attacker goal: recover values of a and b
• Attacker can repeat the computation with the same input (not chosen by attacker)

• Attack steps:
• Compute DDT of the Sbox, T
• Inject fault
• Reduce guesses for a with knowledge of fault mask, input and outputs
• Reduce guesses for b with guesses of a, knowledge of the correct input and output

19 / 67

How DFA works on PRESENT Sbox

f : F4
2 → F4

2

x 7→ SB(x⊕ a)⊕ b.

Attack steps:

• Compute DDT of the Sbox, T

• Inject fault
• Reduce guesses for a with knowledge of fault mask, input and outputs

• Let ∆ denote the difference between the correct and faulty output, then

∆ = (SB(x⊕a)⊕b)⊕(SB(x′⊕a)⊕b) = SB(x⊕a)⊕SB(x′⊕a) = SB(x⊕a)⊕SB(x⊕a⊕ε)

• Thus the value x⊕ a is in the entry corresponding to input difference δ =? and
output difference ? of T

• Reduce guesses for b with guesses of a, knowledge of the correct input and output

20 / 67

How DFA works on PRESENT Sbox

f : F4
2 → F4

2

x 7→ SB(x⊕ a)⊕ b.

Attack steps:

• Compute DDT of the Sbox, T

• Inject fault
• Reduce guesses for a with knowledge of fault mask, input and outputs

• Let ∆ denote the difference between the correct and faulty output, then

∆ = (SB(x⊕a)⊕b)⊕(SB(x′⊕a)⊕b) = SB(x⊕a)⊕SB(x′⊕a) = SB(x⊕a)⊕SB(x⊕a⊕ε)

• Thus the value x⊕ a is in the entry of T corresponding to input difference δ = ε
and output difference ∆

• Reduce guesses for b with guesses of a, knowledge of the correct input and output

21 / 67

How DFA works on PRESENT Sbox – Example

f : F4
2 → F4

2

x 7→ SB(x⊕ a)⊕ b.

Reduce guesses for a with knowledge of fault mask, input and outputs
• Let ∆ denote the difference between the correct and faulty output, then

∆ = (SB(x⊕a)⊕b)⊕(SB(x′⊕a)⊕b) = SB(x⊕a)⊕SB(x′⊕a) = SB(x⊕a)⊕SB(x⊕a⊕ε)

• Thus the value x⊕ a is in the entry of T corresponding to input difference δ = ε
and output difference ∆

Example

• Suppose the attacker fixes the input to be x = 0 and they know that the correct
output of f is 0

• When the attacker injects fault in x with fault mask ε1 = 3, they get a faulty
output 1, which gives ∆1 =?

22 / 67

How DFA works on PRESENT Sbox – Example
HHH

HHH∆
δ

1 2 3 4 5 6 7 8 9 A B C D E F

1 9A 36 078F 5E 1C 24BD

2 8E 34 09 5f 1D 67AB 2C

3 CDEF 46 12 3B 0A 58 79

4 47 8D 35AC 0B 2F 169E

5 CDEF 0145 2389 67AB

6 9B CDEF 37 06 25 18 4A

7 67AB 03 8C 5D 2E 49 1F

. .

Example

• Input: x = 0; correct output: 0

• fault mask: ε1 = 3; faulty output: 1, which gives ∆1 = 0⊕ 1 = 1.

• x⊕ a is in the entry corresponding to input difference δ = 3 and output
difference 1 of T

• The possible values for x⊕ a are given by?

23 / 67

How DFA works on PRESENT Sbox – Example

Reduce guesses for a with knowledge of fault mask, input and outputs
• Let ∆ denote the difference between the correct and faulty output, then

∆ = (SB(x⊕a)⊕b)⊕(SB(x′⊕a)⊕b) = SB(x⊕a)⊕SB(x′⊕a) = SB(x⊕a)⊕SB(x⊕a⊕ε)

• Thus the value x⊕ a is in the entry of T corresponding to input difference δ = ε
and output difference ∆

Example

• Input: x = 0; correct output: 0

• fault mask: ε1 = 3; faulty output: 1 → the possible values for x⊕ a are 9 and A

• When the attacker injects another fault with fault mask ε2 = 2, they get a faulty
output 6. ∆2 =?. x⊕ a is in the entry of T corresponding to input difference
δ =? and output difference ?

24 / 67

How DFA works on PRESENT Sbox – Example
HHH

HHH∆
δ

1 2 3 4 5 6 7 8 9 A B C D E F

1 9A 36 078F 5E 1C 24BD

2 8E 34 09 5f 1D 67AB 2C

3 CDEF 46 12 3B 0A 58 79

4 47 8D 35AC 0B 2F 169E

5 CDEF 0145 2389 67AB

6 9B CDEF 37 06 25 18 4A

7 67AB 03 8C 5D 2E 49 1F

. .

Example

• Input: x = 0; correct output: 0

• fault mask: ε1 = 3; faulty output: 1 → the possible values for x⊕ a are 9 and A

• fault mask ε2 = 2; faulty output: 6 → ∆2 = 6

• x⊕ a is in the entry of T corresponding to input difference δ = 2 and output
difference 6

• Possible values of x⊕ a are ?
25 / 67

How DFA works on PRESENT Sbox – Example

f : F4
2 → F4

2

x 7→ SB(x⊕ a)⊕ b.

Reduce guesses for b with guesses of a, knowledge of the correct input and output

0 1 2 3 4 5 6 7 8 9 A B C D E F
C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Example

• Input: x = 0; correct output: 0

• fault mask: ε1 = 3; faulty output: 1 → the possible values for x⊕ a are 9 and A

• fault mask ε2 = 2; faulty output: 6 → possible values for x⊕ a are 9 and B

• Thus a =?, b =?

26 / 67

How DFA works on PRESENT Sbox – Example

f : F4
2 → F4

2

x 7→ SB(x⊕ a)⊕ b.

Reduce guesses for b with guesses of a, knowledge of the correct input and output

0 1 2 3 4 5 6 7 8 9 A B C D E F
C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Example

• Input: x = 0; correct output: 0

• fault mask: ε1 = 3; faulty output: 1 → the possible values for x⊕ a are 9 and A

• fault mask ε2 = 2; faulty output: 6 → possible values for x⊕ a are 9 and B

• a = 9, b = E

27 / 67

How many faults are needed
HHH

HHH∆
ε

1 2 3 4 5 6 7 8 9 a b c d e f

1 9a 36 078f 5e 1c 24bd

2 8e 34 09 5f 1d 67ab 2c

3 cdef 46 12 3b 0a 58 79

4 47 8d 35ac 0b 2f 169e

5 cdef 0145 2389 67ab

6 9b cdef 37 06 25 18 4a

7 67ab 03 8c 5d 2e 49 1f

8 17 ad 6f 4e 2389 0c 5b

9 0145 9d be 2a 7c 3f 68

a 02 56 bf 9c 7d 1a 48 3e

b 8b 27 35ac 169e 4f 0d

c 8a 26 0145 9f bc 7e 3d

d 2389 57 af 4c 1b 6d 0e

e 13 ae 24bd 6c 59 078f

f 24bd 169e 078f 35ac

• Chosen fault mask: 2 (e.g. 3 and 5)

• Random fault mask: at most 4

28 / 67

AES encryption
• An initial AddRoundKey
• Round function for Nr−1 rounds: SubBytes, ShiftRows, MixColumns,

AddRoundKey
• Last round, round Nr: SubBytes, ShiftRows, AddRoundKey
• AddRoundKey is bitwise XOR with the round key
• SubBytes is the application of 8−bit Sboxes.
• ShiftRows permutes the bytes
• MixColumns is a function on 32−bit values (four bytes).

SB

SBAES

✧
✧
✧
✧

SR

column ×




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




✧
✧

✧
✧

MC AK

29 / 67

Fault propagation in AES
• Recall that AES cipher state can be represented as a four-by-four matrix of bytes:




s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33


 .

• Let us represent those bytes by squares for the purpose of visual illustration.
• Suppose a fault is injected at the beginning of one round (except for the last
round) in byte s00.

• Then the fault propagation in this round can be represented by

SB SR MC
AK

Figure: Blue squares correspond to bytes that can be affected by the fault.

30 / 67

Fault propagation in AES

SB SR MC
AK

(a)

SB SR MC
AK

(b)

SB SR MC
AK

(c)

Figure: Visual illustration of how the fault propagates when a fault is injected at the beginning
of one AES round in bytes (a) s00, s11, (b) s00, s11, s22, and (c) s00, s11, s22, s33. Blue squares
correspond to bytes that can be affected by the fault.

31 / 67

Fault at end of round 7

• Let us refer to the bytes s00, s11, s22, s33 as a diagonal of AES state

• We consider a fault attack where a random byte fault is injected in the diagonal
of the AES state at the end of round 7.

• By the above discussion, we know that at the end of round 8, the whole first
column might be affected by the fault.

• Similarly, we can study the fault propagation in round 9.

• Recall that MixColumns multiplies one column by the following matrix




02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02


 .

32 / 67

Fault propagation in round 9

SB SR MC
AK

S8 S9

δ1

δ2

δ3

δ4

δ1

δ2

δ3

δ4

2δ1

δ1

δ1

3δ1

δ4

δ4

3δ4

2δ4

δ3

3δ3

2δ3

δ3

3δ2

2δ2

δ2

δ2

Figure: Visual illustration of fault propagation in the 9th round of AES when the fault was
injected in the diagonal s00, s11, s22, s33 of the AES cipher state at the end of round 7. δi
(i = 1, 2, 3, 4) denote the differences between the four correct and faulty bytes in the first
column of the cipher state after SubBytes in round 9.




02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02


 .

33 / 67

Notations

• S9: the cipher state at the end of round nine

• c: the correct ciphertext
• K10: the last round key

S9 =




a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33


 , c =




c00 c01 c02 c03
c10 c11 c12 c13
c20 c21 c22 c23
c30 c31 c32 c33


 , K10 =




k00 k01 k02 k03
k10 k11 k12 k13
k20 k21 k22 k23
k30 k31 k32 k33


 .

• c′: faulty ciphertext

c′ =




c′00 c′01 c′02 c′03
c′10 c′11 c′12 c′13
c′20 c′21 c′22 c′23
c′30 c′31 c′32 c′33


 .

34 / 67

• Round 10: SubBytes, ShiftRows, and AddRoundKey.

c00 = SBAES(a00)⊕ k00, c13 = SBAES(a10)⊕ k13,

c22 = SBAES(a20)⊕ k22, c31 = SBAES(a30)⊕ k31.

• Then

a00 = SB−1
AES(c00 ⊕ k00)

a10 = SB−1
AES(c13 ⊕ k13)

a20 = SB−1
AES(c22 ⊕ k22)

a30 = SB−1
AES(c31 ⊕ k31).

• Similarly

a′00 = SB−1
AES(c

′
00 ⊕ k00)

a′10 = SB−1
AES(c

′
13 ⊕ k13)

a′20 = SB−1
AES(c

′
22 ⊕ k22)

a′30 = SB−1
AES(c

′
31 ⊕ k31).

35 / 67

• Let δ = δ1 and by observing the first column of S9, we have

2δ = a00 ⊕ a′00 = SB−1
AES(c00 ⊕ k00)⊕ SB−1

AES(c
′
00 ⊕ k00)

δ = a10 ⊕ a′10 = SB−1
AES(c13 ⊕ k13)⊕ SB−1

AES(c
′
13 ⊕ k13)

δ = a20 ⊕ a′20 = SB−1
AES(c22 ⊕ k22)⊕ SB−1

AES(c
′
22 ⊕ k22)

3δ = a30 ⊕ a′30 = SB−1
AES(c31 ⊕ k31)⊕ SB−1

AES(c
′
31 ⊕ k31).

SB SR MC
AK

S8 S9

δ1

δ2

δ3

δ4

δ1

δ2

δ3

δ4

2δ1

δ1

δ1

3δ1

δ4

δ4

3δ4

2δ4

δ3

3δ3

2δ3

δ3

3δ2

2δ2

δ2

δ2

36 / 67

Key recovery

2δ = a00 ⊕ a′00 = SB−1
AES(c00 ⊕ k00)⊕ SB−1

AES(c
′
00 ⊕ k00)

δ = a10 ⊕ a′10 = SB−1
AES(c13 ⊕ k13)⊕ SB−1

AES(c
′
13 ⊕ k13)

δ = a20 ⊕ a′20 = SB−1
AES(c22 ⊕ k22)⊕ SB−1

AES(c
′
22 ⊕ k22)

3δ = a30 ⊕ a′30 = SB−1
AES(c31 ⊕ k31)⊕ SB−1

AES(c
′
31 ⊕ k31).

• For each value of δ, the possible values for (k00, k13, k22, k31) are restricted

• a00 = SB−1
AES(c00 ⊕ k00) can be considered as an AES Sbox input that corresponds

to input difference 2δ and output difference c00 ⊕ c′00
• a10 = SB−1

AES(c13 ⊕ k13) is an AES Sbox input that gives output difference
c13 ⊕ c′13 when the input difference is δ

• On average1, the key hypotheses for (k00, k13, k22, k31) can be reduced to 28
1Saha, D., Mukhopadhyay, D., & RoyChowdhury, D. (2009). A diagonal fault attack on the

advanced encryption standard. Cryptology ePrint Archive.
37 / 67

Diagonal DFA

• In this attack, we assume the attacker has the knowledge of
• The fault location: diagonal of cipher state at the end of round 7
• Fault model: random byte
• Output of AES: correct and faulty ciphertext

• Since the attack is on the diagonal of the cipher state, it is also called the
diagonal DFA.

38 / 67

Other diagonals

δ2

δ2

3δ2

2δ2

δ1

3δ1

2δ1

δ1

3δ4

2δ4

δ4

δ4

2δ3

δ3

δ3

3δ3

δ3

3δ3

2δ3

δ3

3δ2

2δ2

δ2

δ2

2δ1

δ1

δ1

3δ1

δ4

δ4

3δ4

2δ4

3δ4

2δ4

δ4

δ4

2δ3

δ3

δ3

3δ3

δ2

δ2

3δ2

2δ2

δ1

3δ1

2δ1

δ1

S7 S8 S9

Figure: Fault propagation for random byte fault injected in the “diagonals” of the cipher state
at the end of round 7. Si denotes the cipher state at the end of the ith round

39 / 67

FA on symmetric block ciphers

• Differential Fault Analysis

• Statistical Fault Analysis

• Other Fault Attacks

40 / 67

Random Experiments

• Probability theory studies the mathematical theory behind random experiments.

• A random experiment is an experiment whose output cannot be predicted with
certainty in advance.

• However, if the experiment is repeated many times, we can see “regularity” in the
average output.

• For example, if we roll a die, we cannot predict the output of one roll.

• But if we roll it many times, we would expect to see the number 1 in 1/6 of the
outcomes assuming the die is fair.

41 / 67

Sample Space and Events

• For a given random experiment, we define sample space, denoted by Ω, to be the
set of all possible outcomes.

• A subset A of Ω is called an event.

• If the outcome of the experiment is contained in A, then we say that A has
occurred.

• The empty set ∅ denotes the event that consists of no outcomes.

• ∅ is also called the impossible event.

Example

• When the random experiment is rolling a die, the sample space
Ω = { 1, 2, 3, 4, 5, 6 }. A = { 1, 2, 3 } ⊆ Ω is an event.

• When the random experiment is rolling two dice, Ω = { (i, j) | 1 ≤ i, j ≤ 6 }.
One possible event is A = { (1, 2), (1, 1) }.

42 / 67

Sample space and its power set

• Ω: sample space

• A: power set of Ω, 2Ω

Example

Let us consider the random experiment of tossing a coin, the sample space
Ω = {H,T }. A = 2Ω = { ∅,Ω, {H } , { T } }.

43 / 67

Probability

Definition

A probability measure defined on (Ω,A) is a function P : A → [0, 1] such that

• P (Ω) = 1, P (∅) = 0.

• For any Ai ∈ A that are pairwise disjoint, i.e. Ai1 ∩Ai2 = ∅ for i1 ̸= i2, countable
additivity

P

(∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai).

P (A) is called the probability of A.

Example

Tossing a coin, Ω = {H,T }. A = 2Ω = { ∅,Ω, {H } , { T } }. P defined as follows is
a probability measure on (Ω,A):

P (∅) = 0, P (Ω) = 1, P ({H }) = 1

2
, P ({ T }) = 1

2
.

44 / 67

Partition of Ω

Sample space Ω, power set A = 2Ω.

Definition

A set of events { E1, E2, . . . | Ei ∈ A }, is called a partition of Ω if they are pairwise
disjoint, P (Ei) > 0 for all i, and ∪iEi = Ω.

Example

Let Ω = { 1, 2, 3, 4, 5, 6 }, A = 2Ω, and P be the uniform probability measure on
(Ω,A). Let E1 = { 1, 2, 3 } , E2 = { 4, 5 }, E3 = { 6 }. Then, { E1, E2, E3 } is a finite
partition of Ω. We can also calculate that

P (E1) =
1

2
, P (E2) =

1

3
, P (E3) =

1

6
.

45 / 67

Lemma

Lemma

Let { E1, E2, . . . | Ei ∈ A } be a finite or countable partition of Ω. Then, for any
A ∈ A, we have

P (A) =
∑

i

P (A|Ei)P (Ei).

Example

Ω = { 1, 2, 3, 4, 5, 6 }, E1 = { 1, 2, 3 } , E2 = { 4, 5 }, E3 = { 6 }, A = { 2, 4 }.

P (A) = 1/3, A ∩ E1 = { 2 } , A ∩ E2 = { 4 } , A ∩ E3 = ∅.

P (A|E1) =
1/6

1/2
=

1

3
, P (A|E2) =

1/6

1/3
=

1

2
, P (A|E3) = 0.

3∑

i=1

P (A|Ei)P (Ei) =
1

3
× 1

2
+

1

2
× 1

3
=

1

3
= P (A).

46 / 67

Fault distribution table
• Consider fault models that change an intermediate value x to x′.
• Model these two values as random variables X and X ′.
• Based on the fault properties, we can draw a table with probabilities for the value
x to be changed to x′, i.e. P (X ′ = x′|X = x) – fault distribution table

Example

• Let us consider the case when x is just one bit.

• stuck-at-0: changes x to 0 with probability 1.

• bit flip fault: changes x to x⊕ 1 with probability 1.

• random fault: changes x to x⊕ 1 with probability 0.5.
x′

x
0 1 0 1 0 1

0 1 0 0 ? ? 0 ? ?
1 1 0 1 ? ? 1 ? ?

stuck-at-0 bit flip random

47 / 67

Fault distribution table
• Consider fault models that change an intermediate value x to x′.
• Model these two values as random variables X and X ′.
• Based on the fault properties, we can draw a table with probabilities for the value
x to be changed to x′, i.e. P (X ′ = x′|X = x) – fault distribution table

Example

• Let us consider the case when x is just one bit.

• stuck-at-0: changes x to 0 with probability 1.

• bit flip fault: changes x to x⊕ 1 with probability 1.

• random fault: changes x to x⊕ 1 with probability 0.5.
x′

x
0 1 0 1 0 1

0 1 0 0 0 1 0 0.5 0.5
1 1 0 1 1 0 1 0.5 0.5

stuck-at-0 bit flip random

48 / 67

Assumption

• Statistical Fault Analysis (SFA)1 assumes no knowledge of plaintext or correct
ciphertext for the attacker.

• Only knowledge of faulty ciphertext and a non-uniform fault model is required.

• We say that the fault model is non-uniform if

P (X ′ = x′|X = x) ̸= 1

2b

for some x and x′, where b is the maximum bit length of x.

1Fuhr, T., Jaulmes, É., Lomné, V., & Thillard, A. (2013, August). Fault attacks on AES with
faulty ciphertexts only. In 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography (pp.
108-118). IEEE.

49 / 67

Non-uniform fault model – Example

Example

• Let us consider the case when x is just one bit.

• In this case, the bit length of x is 1, and a fault model is non-uniform if

P (X ′ = x′|X = x) ̸= 0.5

for some x and x′.

• Which fault models are non-uniform?
x′

x
0 1 0 1 0 1

0 1 0 0 0 1 0 0.5 0.5
1 1 0 1 1 0 1 0.5 0.5

stuck-at-0 bit flip random

50 / 67

Non-uniform fault model – Example

Example

• Let us consider the case when x is just one bit.

• In this case, the bit length of x is 1, and a fault model is non-uniform if

P (X ′ = x′|X = x) ̸= 0.5

for some x and x′.

• stuck-at-0 and bit flip fault models are non-uniform.
x′

x
0 1 0 1 0 1

0 1 0 0 0 1 0 0.5 0.5
1 1 0 1 1 0 1 0.5 0.5

stuck-at-0 bit flip random

51 / 67

Fault injection in AES round 9
• S9: the cipher state at the end of round nine

• c: the correct ciphertext
• K10: the last round key

S9 =




s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33


 , c =




c00 c01 c02 c03
c10 c11 c12 c13
c20 c21 c22 c23
c30 c31 c32 c33


 , K10 =




k00 k01 k02 k03
k10 k11 k12 k13
k20 k21 k22 k23
k30 k31 k32 k33


 .

• A fault in s00 with a non-uniform fault model.

• S00: random variable corresponding to s00
• S′

00: random variable corresponding to faulty value of S00, s
′
00

• Attacker knowledge: the fault location and the fault distribution table, i.e. the
probabilities

P (S′
00 = s′00|S00 = s00)

• Goal of the attacker: recover k00.
52 / 67

SFA – Example

Example

Let us consider a stuck-at-0 fault model, then

P (S′
00 = s′00|S00 = s00) =

{
1 s′00 = 00

0 Otherwise
,

for all s00 ∈ F8
2.

In this case, one faulty ciphertext is enough to recover k00. Since the attacker knows
that the faulty value s′00 is always 00, they can recover k00 by computing

k00 = c′00 ⊕ SBAES(00) = c′00 ⊕ 63.

53 / 67

Fault injection in AES round 9
We assume S00 follows a uniform distribution, i.e.

P (S00 = s00) =
1

256
∀s00 ∈ F8

2.

Then by the lemma

Lemma

Let { E1, E2, . . . | Ei ∈ A } be a finite or countable partition of Ω. Then, for any
A ∈ A, we have

P (A) =
∑

i

P (A|Ei)P (Ei).

P (S′
00 = s′00) =

255∑

s00=0

P (S′
00 = s′00|S00 = s00)P (S00 = s00)

=
1

256

255∑

s00=0

P (S′
00 = s′00|S00 = s00).

54 / 67

Probability of a faulty value

We assume S00 follows a uniform distribution, i.e.

P (S00 = s00) =
1

256
∀s00 ∈ F8

2.

Then

P (S′
00 = s′00) =

255∑

s00=0

P (S′
00 = s′00|S00 = s00)P (S00 = s00)

=
1

256

255∑

s00=0

P (S′
00 = s′00|S00 = s00).

55 / 67

Recall – Fault injection in AES round 9

• S9: the cipher state at the end of round nine

• c: the correct ciphertext
• K10: the last round key

S9 =




s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33


 , c =




c00 c01 c02 c03
c10 c11 c12 c13
c20 c21 c22 c23
c30 c31 c32 c33


 , K10 =




k00 k01 k02 k03
k10 k11 k12 k13
k20 k21 k22 k23
k30 k31 k32 k33


 .

c00 = SBAES(s00 ⊕ k00) =⇒ s00 = SB−1
AES(c00 ⊕ k00).

56 / 67

Attack steps

• Injects fault in s00

• Collects a set of m faulty ciphertexts
{
c
′1, c

′2, . . . , c
′m
}
.

• Let k̂00 denote a key hypothesis for k00.

• Then for each c
′i, we can compute a hypothetical value for s′00, denoted ŝi00, as

follows:
ŝi00 = SB−1

AES(c
′i
00 ⊕ k̂00).

• Last round: SubBytes, ShiftRows, AddRoundKey

57 / 67

Attack steps

P (S′
00 = s′00) =

255∑

s00=0

P (S′
00 = s′00|S00 = s00)P (S00 = s00)

=
1

256

255∑

s00=0

P (S′
00 = s′00|S00 = s00).

• The probability that the faulty value of s00 in the ith encryption actually equals to
ŝi00 can be found by the knowledge of the fault distribution table using the above
formula:

P (S′
00 = ŝi00) =

1

256

255∑

s00=0

P (S′
00 = ŝi00|S00 = s00).

58 / 67

Attack steps

• Define ℓ(k̂00) to be the probability that the faulty value of s00 in the ith
encryption equals to the hypothetical value ŝi00 for all i, i.e.

ℓ(k̂00) :=

m∏

i=1

P (S′
00 = ŝi00). (1)

• Then the correct key can be found using the maximum likelihood approach,
namely

k00 = argmax
k̂00

ℓ(k̂00).

59 / 67

Attack results

• It was shown1 that with high probability, the correct key byte can be recovered
with only a few faults.

• The same method can recover other bytes of K10.

• Each byte can be recovered in parallel, hence the number of faults to recover the
full round key depends on the number of bytes that can be faulted with one fault
injection.

1Fuhr, T., Jaulmes, É., Lomné, V., & Thillard, A. (2013, August). Fault attacks on AES with
faulty ciphertexts only. In 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography (pp.
108-118). IEEE.

60 / 67

FA on symmetric block ciphers

• Differential Fault Analysis

• Statistical Fault Analysis

• Other Fault Attacks

61 / 67

Ineffective Fault Analysis

• Clavier, C. (2007, September). Secret external encodings do not prevent transient
fault analysis. In International Workshop on Cryptographic Hardware and
Embedded Systems (pp. 181-194). Springer, Berlin, Heidelberg.

• Faults that do not change the intermediate values are exploited.

• Those faults are called ineffective faults.

• Normally a particular fault model is assumed, e.g. a stuck-at-0 fault model.

62 / 67

Statistical Ineffective Fault Attack (SIFA)

• Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., & Primas, R.
(2018). SIFA: exploiting ineffective fault inductions on symmetric cryptography.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 547-572.

• A non-uniform fault model is assumed and the attack exploits ineffective faults.

• The dependency between the fault induction being ineffective and the data that is
processed is exploited.

• Different from SFA, SIFA does not require each fault to be successful, but the
attack requires repeated plaintext, and knowledge of the correct ciphertext (or
whether each ciphertext is correct or not).

• The fault injection is the same as for SFA

• In the original paper the authors provide a detailed theoretical analysis of the
number of ciphertexts needed and extensive experimental results.

63 / 67

Persistent Fault Analysis (PFA)

• Zhang, Fan, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding,
Samiya Qureshi, and Kui Ren. Persistent fault analysis on block ciphers. IACR
Transactions on Cryptographic Hardware and Embedded Systems (2018):
150-172.

• Fault in the memory, Sbox lookup table

• Knowledge of ciphertext only

64 / 67

Algebraic Fault Analysis (AFA)

• Courtois, N. T., Jackson, K., & Ware, D. (2010). Fault-algebraic attacks on inner
rounds of DES. In E-Smart’10 Proceedings: The Future of Digital Security
Technologies. Strategies Telecom and Multimedia.

• Similar to DFA, exploits differences between correct and faulty ciphertext

• DFA – manual analysis

• AFA – expresses cryptographic algorithm in the form of algebraic equations and
utilizes SAT solver1 to recover the key.

1A SAT solver solves Boolean satisfiability problems. It takes a Boolean logic formula and checks if
there is a solution satisfying the formula.

65 / 67

Collision Fault Analysis

• Blömer, J., & Seifert, J. P. (2003, January). Fault based cryptanalysis of the
advanced encryption standard (AES). In International Conference on Financial
Cryptography (pp. 162-181). Springer, Berlin, Heidelberg.

• Injects fault in the earlier rounds of a block cipher implementation.

• Then the attacker records the faulty ciphertext and finds plaintext that produces
the same ciphertext, but without fault.

• Further analysis using those plaintexts can recover the round key.

• If the fault only changes one bit or one byte of the intermediate value, the
attacker can try different plaintexts that only differ at one bit or one byte.

66 / 67

Fault Sensitivity Analysis

• Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., & Ohta, K.
(2010, August). Fault sensitivity analysis. In International workshop on
cryptographic hardware and embedded systems (pp. 320-334). Springer, Berlin,
Heidelberg.

• Exploits the sensitivity of a device to faults

• The attack analyzes when a faulty output begins to exhibit some detectable
characteristics and utilizes the information to recover the secret key.

• No knowledge of faulty ciphertext is required for the attack.

67 / 67

	Differential Fault Analysis
	Statistical Fault Analysis
	Other Fault Attacks

