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Course Outline

Abstract algebra and number theory

Introduction to cryptography

Symmetric block ciphers and their implementations
RSA, RSA signatures, and their implementations
Probability theory and introduction to SCA

SPA and non-profiled DPA

Profiled DPA

SCA countermeasures

FA on RSA and countermeasures

FA on symmetric block ciphers

FA countermeasures for symmetric block cipher
Practical aspects of physical attacks

® |nvited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH

2/140



® Textbook
® Sections 1.1 -1.5

Recommended reading

Xiaolu Hou
Jakub Breier

Cryptography and
Embedded Systems

Security




e Preliminaries

e Integers

e Groups

e Rings

e Fields

e Vector Spaces

e Modular Arithmetic

e Polynomial Rings

Lecture Outline
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Abstract algebra and number theory

e Preliminaries
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Set theory
® (): empty set
|S|: cardinality of S
® g€ S: ais an element in set S

® o ¢ S: aisnot an element in set S

SCT:ifseS thenseT, Sisasubset of T

e S=T:5SCTandT CS

® The power set of a set S, denoted by 25, is the set of all subsets of S.

Example
Let 7={0,1,2,3} and S = { 2,3}, then
e S?TandT 7?7 S.

©275,078.
o S| =, |T| =2
o 25 =7
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Set theory
® (): empty set
|S|: cardinality of S
® g€ S: ais an element in set S

a & S: ais not an element in set S

SCT:ifse S, thense T, Sis asubset of T

e S=T:SCTandT CS

e The power set of a set S, denoted by 2%, is the set of all subsets of S.

Example

Let T={0,1,2,3} and S = { 2,3 }, then
e SCTandT ¢S.

2€85,0¢8.

|S| =2, |T| = 4.

25 =1{0,5{2},{3}}.
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Set theory

Union: AUB

Intersection: AN B

Difference: A—B={acA,a¢ B}

Complement of Ain S: A=5—-A

Cartesian product A x B ={ (a,b) |a€ A,be B}
® ordered pairs

Example
e A={0,1,2}, B={2,3,4}
e AUB={0,1,2,3,4}, AnB={2}

Example
e A={246}, B={1,3,5}, S=AUB
e A— B =7 Complement of Ain Sis?

Ax B=?
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Set theory

Union: AUB

Intersection: AN B

Difference: A—B={acA,a¢ B}

Complement of Ain S: A=5—-A

Cartesian product A x B ={(a,b) |a€ A,be B}
® ordered pairs

Example
e A={0,1,2}, B={2,3,4}
e AUB={0,1,2,3,4}, AnB={2}

Example
e A={246}, B={1,35}, S=AUB
e A— B=A. Complement of Ain S is B

AxB=1{(21),(23),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3),(6,5) }.
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Functions
Definition
A function/map f : S — T is a rule that assigns each element s € S a unique element
teT.
® S — domain of f; T — codomain of f.
e If f(s) =t, then t is called the image of s, s is a preimage of t.

® For any A C T, preimage of A under f is
fHA) :={seS | f(s)eA}

Example
Define

f*R — R

r —

where R is the set of real numbers. Then f has domain R and codomain R. 10/140



Functions

Example
Define

f:R — R

r —

where R is the set of real numbers. Then f has domain R and codomain R.
Let A={1} CR, the preimage of A under f is given by

FN4) =2

Let B={-1} CR, then f~}(B) =?
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Functions — Example

Example
Define

f*R — R

r —

where R is the set of real numbers. Then f has domain R and codomain R.

Let A={1} CR, the preimage of A under f is given by

fﬁl(A):{_Ll}'

1 is the image of —1 and —1 is a preimage of 1. 1 is another preimage of 1.

Let B={-1} CR, then f~}(B) =0.
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Functions
Definition
e A function f: S — T is called onto or surjective if given any t € T, there exists
s € S, such that t = f(s).

e A function f: S — T is said to be one-to-one (written 1-1) or injective if for any
s1,82 € S such that s; # sg, we have f(s1) # f(s2).

e fis called 1-1 correspondence or bijective if f is 1-1 and onto.

Example
fis? gis?
f R — RZO
A
g:R — R
x = T
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Functions

Example

fZR — RZO

r — 22

[ is surjective as for any y € R>q, we can find a preimage of y by calculating z = ,/y.
But f is not injective, since f(—1) = f(1) = 1.

g:R — R
x = .

It can be easily seen that g is bijective.
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Inverse of a function

® When f is bijective, f~!: T — S is a function — it assigns each ¢t € T a unique
element s € S.

e f~1is called the inverse of f.

Example
Define f

f*R — R
xr = v

Then, the inverse of f is 7
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Inverse of a function

® When f is bijective, f~!: T — S is a function — it assigns each ¢t € T a unique
element s € S.

e f~lis called the inverse of f.

Example
Define f

fR — R

T = 0.

Then, the inverse of f exists and is given by

ff.:R - R
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Composition of functions
Definition
For two functions f: T — U, g: S — T, the composition of f and g, denoted by
f og, is the function

fog:S — U

s = flg(s).
Example
What is fog?
fR —
T — 2z
g:R —
z — 3
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Composition of functions

Example

IS
I
8

=
=
l

fog:R — R
r — (%) =25
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Composition of functions

Remark
e f:§—>8
® We write fo fo---of as f"

e If f is bijective, we write f~1o f~lo-..0f"las f™

Example
Define

f:R — R

T = X,

then what is f"7?
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Composition of functions
Remark
e f:S5—>8
® We write fo fo---of as f"

e If f is bijective, we write f~1o f~lo...0f~las f™

Example
Define
f:R —
r — 22
then
MR —
r — ¥
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Abstract algebra and number theory

e Integers
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Representation of a positive integer
® We write one hundred and twenty-three as 123 because

123 =1x100+2 x 10+ 3 x 1.

Theorem
Let b > 2 be an integer. Then any n € Z, n > 0 can be expressed uniquely in the form

/-1
n= g a;b',
i=0

where 0 < a; <b (0<i</¥),ap_1#0,and > 1. ay_1as_5...ay1ap is called a
base—b representation for n. ¢ is called the length of n in base—b representation.

® h =2, binary representation
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Representation of a positive integer

Example

310 =72 =716.
419 =72 ="16.

6010 =72 =716.

Base1l0|0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Basel6/0 1 2 3 4 56 6 7 8 9 A B C D E F

Table: Correspondence between decimal and hexadecimal (base b = 16) numerals.
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Representation of a positive integer

Example
310 = 112 = 316.
419 = 1009 = 445.
6019 = 1111009 = 3Cy5.

Base1l0|0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Basel6/0 1 2 3 4 56 6 7 8 9 A B C D E F

Table: Correspondence between decimal and hexadecimal (base b = 16) numerals.
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Divisor and multiple

Theorem
Ifm,n € Z, n >0, then dq,r € Z, such that 0 <r <n andn = qgm + .

q is called the quotient and 7 is called the remainder.
Definition

Given m,n € Z, if m # 0 and n = am for some integer a, we say that m divides n,

written m|n. We call m a divisor of n and n a multiple of m. If m does not divide n,

we write m { n.

Example
* 3|6, —2/4, 1|8, 5|5.
® 719 416.
e All the positive divisors of 4 are 1,2, 4.
e All the positive divisors of 6 are 1,2, 3, 6.
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Greatest common divisor

Definition
Take m,n € Z, m # 0 or n # 0, the greatest common divisor of m and n, denoted
ged(m, n), is given by d € Z such that

° d>0,

® dlm, d|n, and

e if ¢c/m and ¢|n, then c|d.

Example
® We have discussed that all positive divisors of 4 and 6 are 1,2,4 and 1,2, 3,6
respectively. So ged(4,6) = 2.
e All the positive divisors of 2 are 1 and 2. All the positive divisors of 3 are 1 and 3.
So ged(2,3) = 1.
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Bézout's identity

Theorem (Bézout's identity)

For any m,n € Z, such that m # 0 or n # 0. gcd(m,n) exists and is unique.
Moreover, 3s,t € Z such that ged(m,n) = sm + tn.

Example

ged(4,6) = 2= ?x447? x6.
ged(2, 3) 1= ?7x247x3.
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Bézout's identity

Theorem (Bézout's identity)

For any m,n € Z, such that m # 0 or n # 0. gcd(m,n) exists and is unique.
Moreover, 3s,t € Z such that ged(m,n) = sm + tn.

Example

ged(4,6) = 2= (—-1)x4+1x6.
ged(2,3) = 1= (—4)x2+3x3.
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Euclidean algorithm

Theorem (Euclid’s division)
Given m,n € Z, take q,r such that n = gqm + r, then ged(m,n) = ged(m, ).

Thus, to find ged(m,n), we can compute Euclid’s division repeatedly until we get
r=20.

Example
We can calculate ged (120, 35) as follows:

120 = 35 x 3+ 15 ged(120, 35) = ged(35, 15),
35=15x2+5  ged(35,15) =?
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Euclidean algorithm

Theorem (Euclid’s division)
Given m,n € Z, take q,r such that n = qm + r, then gcd(m,n) = ged(m, ).
Thus, to find ged(m, n), we can compute Euclid’s division repeatedly until we get
r = 0.
Example
We can calculate ged(120, 35) as follows:

120 = 35 x 3+ 15 ged(120,35) = ged(35, 15),

35=15x2+5  ged(35,15) = ged(15,5),
15=5x 3 ged(15,5) = 5 = ged(120,35) = 5.

Example
Find gcd (160, 21)
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Euclidean algorithm

Example

We can calculate ged (160, 21) using the Euclidean algorithm

160 = 21 x 7+ 13 ged(160,21) = ged(21,13),

21 =13 x1+38
13=8x1+5
8=5x1+3

5=3x1+2

3=2x1+1

2=1x2

ged(21,13) = ged(13, 8),

(

(
ged(13,8) = ged(8,5),
ged(8,5) = ged(5, 3),
ged(5,3) = gcd(3 2),
ged(3,2) = ged(2,1),
ged(2,1)

= : gcd(160,21) = 1
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A W N =

[&,]

Euclidean Algorithm

Algorithm 1: Euclidean algorithm.

Input: m, n// mnecZ, m+#0

Output: ged(m,n)

while m # 0 do
Tr=m
m = n%m// remainder of n divided by m
n=r

return n
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Extended Euclidean algorithm

Note
With the intermediate results we have from the Euclidean algorithm, we can also find
s,t such that ged(m,n) = sm + tn (Bézout's identity).

Example
We have calculated ged(120, 35) as follows:

120 =35 x 3+ 15 ged(120,35) = ged(35, 15),
35=15x2+5  gcd(35,15) = ged(15,5),
15=5x 3 ged(15,5) = 5 = ged(120, 35) = 5.

Then
5=35—15x 2,

15 =120 — 35 x 3,
5=235—(120—35x 3) x 2 = 120 x (—2) + 35 x 7.
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Extended Euclidean algorithm

Example

We have calculated ged(160,21) using the Euclidean algorithm

160 = 21 x 7+ 13 ged(160,21) = ged(21,13),

21 =13 x1+38
13=8x1+5
8=5x1+3

5=3x1+2

3=2x1+1

2=1x2

ged(21,13) = ged(13, 8),

ged(13,8) = ged(8,5),

ged(8,5) = ged(5, 3),

ged(5,3) = ged(3,2),

ged(3,2) = cd(2, 1),

ged(2,1) =1 = ged(160,21) =1

Using the extended Euclidean algorithm, find integers s, ¢ such that

gcd(160,21) = s160 + 35
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Extended Euclidean algorithm

Example
By the extended Euclidean algorithm,

1=3-2, 2=5-3,
3=8-5 5=13-38,
8§=121-13, 13=160—21 x 7.

We have

1 = 3-(5—-3)=3x2-5=8x2-5x3=8x2—-(13-8)x3
= 8x5—-13x3=21x5—-13x8=21x5—-(160—-21x7)x8
(—8) x 160 + 61 x 21.
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Prime numbers

Definition
® For m,n € Z such that m # 0 or n # 0, m and n are said to be relatively
prime/ coprime if ged(m,n) = 1.
® Given p € Z. p is said to be prime (or a prime number) if for any m € 7Z, either
m is a multiple of p (i.e. p|m) or m and p are coprime (i.e. gcd(p,m) = 1).

Example
® 4 and 9 are relatively prime.
® 8 and 6 are not coprime.
® 2 3,5,7 are prime numbers.

® (,9,21 are not prime numbers.
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Prime factorization

Theorem (The Fundamental Theorem of Arithmetic)

For any n € Z, n > 1, n can be written in the form

k
.
n=][sf"
i=1

where the exponents e; are positive integers, p1,pa, ..., P are prime numbers that are
pairwise distinct and unique up to permutation.

Example
20 =22 x 5, 135 = 33 x 5.
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Abstract algebra and number theory

e Groups
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Definition
Definition
A group (G,-) is a non-empty set G with a binary operation - satisfying the following

conditions:
® G is closed under - (closure property), Vgi1,92 € G, g1 - 92 € G.
® . is associative, Vg1,92,93 € G, g1- (92 - 93) = (91 - 92) - 93
® Je € (G, an identity element, such that Vg € G, e-g=g-e=g.
® Every g € G has aninverse g~! € G such that g-g ' =g !-g=e.

Example
® (Z,+), the set of integers with addition is a group. The identity element is ?.
e Similarly, (Q,+) and (C, +) are groups.
® Is (Q, x) a group?
® How about (Q\ {0}, x)?
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Definition

Definition

A group (G,-) is a non-empty set G with a binary operation - satisfying the following

conditions:
® G is closed under - (closure property), Vg1,92 € G, g1 - g2 € G.
o . is associative, Vg1, 02,05 € G, g1 - (62 - G3) = (41 - 92) - g5
® Jde € G, an identity element, such that Vg e G, e-g=g-e =g.

® Every g € G hasaninverse g € Gsuchthat g-g ' =g 1. g=e.

Example
® (Z,+), the set of integers with addition is a group. The identity element is 0.

e Similarly, (Q,+) and (C, +) are groups.
® (Q, x) is not a group. Because 0 € Q does not have an inverse with respect to

multiplication.
e But (Q\ {0}, x)isagroup. The identity element is 1.
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Prove a set with a binary operation is a group

Let G = R™ be the set of positive real numbers and let - be the multiplication of real
numbers, denoted x. We will show that (R, x) is a group.

1. R is closed under x: for any a1,as € RT, a; x as € R and a1 x as > 0, hence
a1 X ag € RT.

2. x is associative: Vaq,az,a3 € RT, a1 X (a3 X ag) = (a1 X az) X as.
3. 1 is the identity element in R™: Va e RT, 1 xa=a x 1 =a.
4. Takeanya € R*, L e Rand 2 >0, so 1 € R*. Moreover,

1 1
ax —=—-—xa=1
a a

hence =1 = % e Rt

By definition, we have proved that, (R, x) is a group.

41/140



Abelian group

Definition
Let (G,-) be a group. If - is commutative, i.e.

V1,92 € G, 91+ 92 = 92 - 91,

then the group is called abelian.

The name abelian is in honor of the great mathematician Niels Henrik Abel
(1802-1829).

Example

The groups we have seen before, (Z,+), (R, x), (Q\ {0}, %), (Q,+), and (C, +)
are all abelian groups.
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Abelian group

Example
® Max2(R): 2 x 2 matrices with coefficients in R.

® Matrix addition, denoted by +, is defined component-wise.
(aoo alO) (boo blO) _ <a00 +boo  aio +blo>
_|_ g o
apl ail bo1 b11 aop1 +bo1 a1 + b1
(Max2(R),+) is an abelian group:
® closure, associativity and commutativity of + are easy to show
® The identity element is ?

apo @10

® The inverse of matrix
aplr aii

> is ? Does it belong to the set?
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Abelian group

Example
® Max2(R): 2 x 2 matrices with coefficients in R.

® Matrix addition, denoted by +, is defined component-wise.

o a10) boo b1 _ (@00 +boo a0+ bio
apr  aii bor b1 aor +bo1 a1 +bi1/)

(Max2(R), +) is an abelian group:

® closure, associativity and commutativity of + are easy to show

® The identity element is the zero matrix (8 8)

) . (a a . [—a —a D )
® The inverse of a matrix ( L 10> is ( o 10), which is also in

ap1 a1l —apr —ai1

(Max2(R), +).
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Abelian group

Example
Let Fo :={ 0,1 }. We define logical XOR, denoted @, in Fy as follows:

060=0, 0@l=100=1, 1®1=0.

Closure, associativity, and commutativity can be directly seen from the definition. The
identity element is 7 and the inverse of the other element is 7
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Abelian group

Example
Let Fo :={ 0,1 }. We define logical XOR, denoted @, in Fy as follows:

0060=0, 0@l=190=1, 1®1=0.

Closure, associativity, and commutativity can be directly seen from the definition. The
identity element is 0 and the inverse of 1 is 1. Hence (F2, @) is an abelian group.
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Abelian group

Example
Let £E={a,b}, a#b. Define addition in E as follows:

a+a=a, a+b=b+a=0>b, b+b=a.

Closure, associativity, and commutativity can be directly seen from the definition. The
identity element is 7 and the inverse of the other element is 7
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Abelian group

Example
Let E = { a,b}. Define addition in E as follows:

a+a=a, a+b=b+a=0>, b+b=a.

Closure, associativity, and commutativity can be directly seen from the definition. The
identity element is a and the inverse of b is b. Hence (E, +) is an abelian group.
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Abstract algebra and number theory

e Rings
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Definition

Definition
A set R together with two binary operations (R, +,-) is a ring if (R,+) is an abelian
group, and for any a, b, c € R, the following conditions are satisfied:

® R is closed under - (closure), a-b € R.

® . is associative, (a-b)-c=a-(b-c).

® The distributive laws holds: a- (b+c¢)=a-b+a-c.

® The identity element for - exists, which is different from the identity element for +.

Remark
The last condition in the definition implies that a set consisting of only 0 is not a ring.

Definition
Ifa-b=0b-aforall a,b € R, Ris a commutative ring.

50 /140



Examples

Example

® We have seen that (Z,+) is an abelian group and the identity element is 0. It can
be easily shown that (Z, +, x) is a commutative ring. The identity element for x
is ?

e Similarly (Q, +, x), (R,+, x) and (C, +, x) are all commutative rings with ? as
the identity element for + and ? as the identity element for x.
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Examples

Example

® We have seen that (Z,+) is an abelian group and the identity element is 0. It can

be easily shown that (Z, +, x) is a commutative ring. The identity element for x
is 1.

e Similarly (Q,+, x), (R,+, x) and (C, +, x) are all commutative rings with 0 as
the identity element for + and 1 as the identity element for x.
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Notations

Remark

For most cases, we will denote the identity element for + as 0 and the identity
element for - as 1.

We normally refer to the operation + as addition, and 0 as additive identity.
Similarly, we refer to the operation - as multiplication and 1 as multiplicative
identity.

The inverse of an element a € R with respect to + is called the additive inverse
of a, usually denoted by —a.

For simplicity, we sometimes write ab instead of a - b.

When the operations in (R, +,-) are clear from the context, we omit them and
write R.
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Example of a ring

Example
We have shown that (Max2(R),+) is an abelian group. We recall matrix

multiplication, denoted by x, for 2 x 2 matrices: for any Hy Gl , boo 1o in
ap1 a bor b1
Max2(R),

(aoo a10> « <boo b10> _ <aooboo + a10bor  apobio +a10b11>
apr  ai1 bor b1 ap1boo + a11bor  ap1bio + ai1bii )

(Max2(R), +, x) is a ring: associativity and distributive laws are easy to show. The
identity element for x is ? Is (Mayx2(R),+, X) a commutative ring? why?
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Example of a ring

Example
We have shown that (Max2(R),+) is an abelian group. We recall matrix

multiplication, denoted by X, for 2 x 2 matrices: for any <a00 am) , (boo 210> in
11

apl  G11 bo1

Maya(R),

Ao a1 boo b0\ _ (@ooboo + aiobor  agobio + aiobi1
ao1 @11 bor b1 ap1boo + a11bo1  aoibio + ar1bi1)

(Max2(R), +, X) is a ring: associativity and distributive laws are easy to show. The
. : : : . . (1
identity element for x is the 2 x 2 identity matrix (0 (1)> We note that

(Max2(R), +, x) is not a commutative ring. For example,

(o) (0= 0) o (0 (6 0)=( o)
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Example of a ring

Example
Recall an example of a group we have seen: Fo = { 0,1 }, logical XOR, denoted @,

0060=0, 0pl=100=1, 1p1=0.
(Fa, @) is an abelian group. Let us define logical AND, denoted &, in Fy as follows:
0&0=0, 1&0=0&1=0, 1&1=1.

Closure of Fy with respect to &, associativity and commutativity of &, and the
distributive laws are easy to see from the definitions. The identity element for & is ?
(Fa, ®, &) is a commutative ring.
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Example of a ring

Example
Recall an example of a group we have seen: Fo = { 0,1 }, logical XOR, denoted @,

0060=0, 0pl=100=1, 1p1=0.
(Fa, @) is an abelian group. Let us define logical AND, denoted &, in Fy as follows:
0&0=0, 1&0=0&1=0, 1&1=1.

Closure of Fy with respect to &, associativity and commutativity of &, and the
distributive laws are easy to see from the definitions. The identity element for & is 1.
(Fa, ®, &) is a commutative ring.
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Example of a ring

Example
We have also seen E = { a,b } with addition:

at+a=a, a+b=b+a=0b b+b=a.
(E,+) is an abelian group. Define multiplication in E as follows:
a-a=a, a-b=b-a=a, b-b=0.

Closure of E with respect to -, associativity of -, commutativity of -, and the

distributive laws are easy to see from the definitions. The identity element for - is ?
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Example of a ring

Example
We have also seen E = { a,b } with addition:

a+a=a, a+b=b4+a=0b b+b=a.
(E,+) is an abelian group. Define multiplication in E as follows:
a-a=a, a-b=b-a=a, b-b=0.

Closure of E with respect to -, associativity of -, commutativity of -, and the

distributive laws are easy to see from the definitions. The identity element for - is b.

Thus (E,+,-) is a commutative ring.
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Abstract algebra and number theory

e Fields
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Definition

Definition
Let (R,+,-) be a ring with identity element O for + and identity element 1 for -. Let
a,be R. Ifa-b=>b-a=1, a (also b) is said to be invertible and it is called a unit.

Definition

A field is a commutative ring in which every non-zero element is invertible.

Example
* (Q,+, %), (R,+, x) and (C, +, x) are all fields.
® (Z,+, %) is not a field, why?
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Definition

Definition
Let (R,+,-) be a ring with identity element O for + and identity element 1 for -. Let
a,be R. Ifa-b=>b-a=1, a (also b) is said to be invertible and it is called a unit.

Definition

A field is a commutative ring in which every non-zero element is invertible.

Example
* (Q,+, %), (R,+, x) and (C, +, x) are all fields.
® (Z,+,x) is not a field. For example, 2 € Z is not invertible and 2 # 0.
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Multiplicative inverse

By definition, for any a € F', a # 0 there exists b € F' such that ab = ba = 1.
Then b is called the multiplicative inverse of a.

It is easy to show that the multiplicative inverse of an element a is unique: let
b,c € I be such that
ab=ac=1.

Multiplying by b on the left, we get
bab=bac=b=—=b=c=0D.

We will denote the multiplicative inverse of a nonzero element a € F by a™.
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Example of a field

Example

Recall an example of a commutative ring we have seen: Fo = { 0,1 }, logical XOR,

denoted @,
0p0=0, 01l=190=1, 1®1=0.

logical AND, denoted &,
0&0=0, 1&0=0&1=0, 1&1=1.

The only nonzero element is ?, which has inverse ? with respective to &.
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Example of a field

Example

Recall an example of a commutative ring we have seen: Fy = { 0,1 }, logical XOR,

denoted &,
060=0, 0pl=190=1, 141=0.

logical AND, denoted &,
0&0=0, 1&0=0&1=0, 1&1=1.

The only nonzero element is 1, which has inverse 1 with respective to &. Thus
(Fa, ®, &) is a field.
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Example of a field

Example
We have also seen E = { a,b } with addition:

a+a=a, a+b=b+a=0>, b+b=a.

and multiplication:
a-a=a, a-b=b-a=a, b-b=b.

(E,+,-) is a commutative ring. The only nonzero element, i.e. the element not equal
to the additive identity, is 7, which has multiplicative inverse 7
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Example of a field

Example
We have also seen £ = { a,b } with addition:

ata=a, a+b=b+a=0b b+b=a.
and multiplication:
a-a=a, a-b=b-a=a, b-b=0.

(E,+,-) is a commutative ring. The only nonzero element, i.e. the element not equal
to the additive identity, is b, which has multiplicative inverse b since b-b = b. Hence
(E,+,-) is a field.
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Finite field

Definition

A field with finite many elements is called a finite field.

Example
(Fq, @, &) is a finite field. (E,+,-) is a finite field.
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Field isomorphism
Definition
Let (F,+F, r),(E,+E, E) be two fields. F' is said to be isomorphic to E, written
F 2 E if there is a bijective function f : FF — FE such that for any a,b € F,

* fla+prb)= f(a)+g f(b), and
* fla-rb)=f(a) g f(b)

Example
Let us consider the fields (Fa, @, &) and (E,+, ). Define f : F — E, such that

f is bijective. f preserves both addition and multiplication. For example,
fAe0)=f1)=0b, f1)+f(0)=b+ta=b= f(180)=f(1)+ f(0)

We have Fy &2 F.
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Finite field

® |t can be shown that any finite field with two elements is always isomorphic to Fs.

® The next theorem says that, in general, there is only one finite field up to
isomorphism.

Theorem
® A finite field K contains p™ elements for a prime number p.

® For any prime p and any positive integer n, there exists, up to isomorphism, a
unique field with p™ elements.

Remark

We will use F,;» to denote the unique finite field with p™ elements.

Example
Fy, = {0,1}
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Bits

Definition
® Variables that range over [Fy are called Boolean variables or bits.
e Addition of two bits is defined to be logical XOR , also called exclusive or.
® Multiplication of two bits is defined to be logical AND.
® When the value of a bit is changed, we say the bit is flipped.
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Abstract algebra and number theory

e Vector Spaces
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Definition
Definition (Vector space)

Let F' be a field. A nonempty set V, together with two binary operations — vector
addition (denoted by +) and scalar multiplication by elements of F' (a map

V x F — V), is called a vector space over F'if (V,+) is an abelian group and for any
v,w €V and any a,b € I, we have

® a(v+ w) = av + aw.

® (a+bv=av+bv.

® a(bv) = (ab)v.

® lv = v, where 1 is the multiplicative identity of F'.

Elements of V are called vectors and elements of F' are called scalars.

Example

The set of complex numbers C = {z +iy | x,y € R} is a vector space over R.
How are vector addition and scalar multiplication defined?
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Example of a vector space

Example

The set of complex numbers C ={x + iy | z,y € R} is a vector space over R. Note
that for any a1 + b1i, as + bai € C, vector addition is defined as

(a1 + b1i) + (ag + bai) = (a1 + ag) + (b1 + be)i.
And for any a € R, scalar multiplication by elements of R is defined as
a(ai + b1i) = aa; + abyi.

The identity element for vector addition is ? Furthermore, for any a + bi € C, its
inverse with respect to vector addition is given by ?
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Example of a vector space

Example

The set of complex numbers C ={x + iy | z,y € R} is a vector space over R. Note
that for any a1 + b1i, as + bai € C, vector addition is defined as

(a1 + b1i) + (ag + bai) = (a1 + ag) + (b1 + be)i.
And for any a € R, scalar multiplication by elements of R is defined as
a(ai + b1i) = aa; + abyi.

The identity element for vector addition is 0. Furthermore, for any a + bi € C, its
inverse with respect to vector addition is given by —a — bi.
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Fn

® Let F be a field
o Let F" ={ (vo,v1,...,Un—1) | v; € F Vi} be the set of n—tuples over F.

® We define vector addition and scalar multiplication by elements of F’
component-wise as follows

for any v = (vo, v1,...,0n-1) € F", w = (wg, w1,...,wy—1) € F", and any a € F,
v+ w = (Vg + wo, V1 + Wi, .., Vp—1 + Wnp—1),
av := (avy, avi,...,av,_1).
Theorem
F" ={(vo,v1,...,vn—1) | v; € F Vi} together with vector addition and scalar

multiplication defined above is a vector space over F'.
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Example
® |et ' = [Fy, the unique finite field with two elements.
® Let n be a positive integer, it follows from the previous theorem that F7 is a
vector space over [Fs.
® The identity element for vector addition is ?
® For any v = (vg,v1,...,Un—1) € FY, the inverse of v with respect to vector
addition is ?
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Example
® |et I’ = [y, the unique finite field with 2 elements.

® Let n be a positive integer, it follows from the previous theorem that F7 is a
vector space over FFs.

® The identity element for vector addition is O.
¢ For any v = (vp,v1,...,v,—1) € FY, the inverse of v with respect to vector
addition is (—vg, —v1, ..., —Up_1) = V.
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Fy

® Recall that variables ranging over Fy are called bits. We have shown that
(Fo, @, &) is a finite field, where @ is logical XOR, and & is logical AND.

Definition

Vector addition in 3 is called bitwise XOR, also denoted @. Similarly, we define bitwise
AND between any two vectors v = (vg, V1, . ..,Vp—1), W = (Wp, W1, ..., Wwp—_1) from FY
as follows:

v & w:= (v & wo,v1 & wi,..., 01 & Wp_1).

Another useful binary operation, logical OR, denoted V, on [Fy is defined as follows:
oOvo=0, 1v0=1, Ovl=1, 1v1l=1.

It can also be extended to % in a bitwise manner and we get bitwise OR.
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For simplicity, we sometimes write vgv; ... v,—1 instead of (vy,v1,...,Up—1).

Example
Let n = 3, take 111,101 € [F3,

111 ¢ 101 = 010

111 & 101 =101
111 v 101 = 111.
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Byte

Definition
A vector in [} is called an n-bit binary string. A 4—bit binary string is called a nibble.
An 8—bit binary string is called a byte.

Example
® 1010,0011 € [ are two nibbles. Furthermore,

1010 6 0011 = 1001, 1010 & 0011 = 0010.
® 00101100 is a byte.

Remark

A byte can be considered as a base—2 representation/binary representation of an
integer. The value of this integer is between 0 and 255 or between 0016 and FF1g with
base—16 representation/hexadecimal representation.
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Abstract algebra and number theory

e Modular Arithmetic
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Congruent modulo n

Let n > 1 be an integer.
e We are interested in the set {0,1,2...,n—1}.
® |t can be considered as the set of possible remainders when dividing by n

We will also associate each integer with one element in the set — namely the
remainder of this integer divided by n.

Formally, we define

Definition
If n|(b — @), then we say a is congruent to b modulo n, written a = b mod n. n is
called the modulus.

Remark
Saying a is congruent to b modulo n is equivalent to saying that the remainder of a
divided by n is the same as the remainder of b divided by n.
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Congruence class

Definition
For any a € Z, the congruence class of a modulo n, denoted @, is given by

a:={blbeZ,b=amodn}.

Lemma

Let Z,, denote the set of all congruence classes of a € Z modulo n. Then
Zn={0,1,...,n—1}.

Example
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Addition and multiplication in Z,

Define addition on the set Z,, as follows:

a+b=a+0.

Example
®letn=73+2=5.
e letn=4,2+2=4=0.

Define multiplication on Z,, as follows
@-b=ab.

Example
Let n =5,

)
[\
=l
w
I
o
W
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Ne]
I
Ny
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Ly

Theorem

(Zn,+, ), the set Z,, together with addition multiplication defined just now is a
commutative ring.

Remark

For simplicity, we write a instead of @ and to make sure there is no confusion we would
first say a € Z,,. In particular, Z, ={0,1,2,...,n —1}. Furthermore, to emphasize
that multiplication or addition is done in Z,,, we write ab mod n or a + b mod n.

Example

Let n = 5, we write

4x2modb=8modb=23, ord x2=8=3mod 5.
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Multiplicative inverse in Z,

Lemma

For any a € Z,,, a # 0, a has a multiplicative inverse, denoted a~ Y mod n, if and only
if ged(a,n) = 1.

We provide part of the proof.

By Bézout's identity, gcd(a,n) = sa + tn for some s,t € Z. If ged(a,n) = 1, then
sa+tn=1,ie n|(l-sa).

By definition, sa = 1 mod n, thus a~ ! mod n=s.
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Corollary

Zy, is a field if and only if n is prime.

We know that Z,, is a commutative ring.

By Definition of a field and the previous Lemma, Z,, is a field if and only if for any
a € Zy, such that a # 0, we have ged(a,n) = 1, which is true if and only if n is a
prime.
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Find multiplicative inverse in Z,

® Recall that by the extended Euclidean algorithm, we can find integers s,t such
that
ged(a,n) = sa+ tn
for any a,n € Z.

¢ In particular, when ged(a,n) = 1, we can find s,t such that 1 = as + tn, which
gives as mod n = 1.

® Thus, we can find ! mod n = s mod n by the extended Euclidean algorithm.
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Example — Find multiplicative inverse in Z,

Example

We have calculated ged(160,21) = 1 using the Euclidean algorithm. By the extended
Euclidean algorithm,

1=3-2, 2=5-3,

3=8-05, 5=13-38,

8§=21-13, 13=160—21 x 7.

We have
1 = 3-(5-3)=3x2-5=8x2-5x3=8x2—(13—-8)x3
= 8x5—-13x3=21x5—-13x8=21x5—(160—21x7)x38
(—8) x 160 + 61 x 21.

Thus
217! mod 160 =?
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Example — Find multiplicative inverse in Z,

Example
By the extended Euclidean algorithm,

1=3-2, 2=5-23,
3=8-5 5=13-8,
8=21-13, 13=160—21 x 7.

1 = 3-(5-3)=3x2-5=8x2-5x3=8x2—(13—8)x3
= 8x5—-13x3=21x5—-13x8=21x5—(160—21x7)x38
= (—8) x 160+ 61 x 21.

Thus
217! mod 160 = 61.

Similarly
160~ mod 21 =?
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Example — Find multiplicative inverse in Z,

Example
By the extended Euclidean algorithm,

1=3-2, 2=5-23,
3=8-5 5=13-8,
8=21-13, 13=160—21 x 7.

1 = 3-(5-3)=3x2-5=8x2-5x3=8x2—(13—8)x3
= 8x5—-13x3=21x5—-13x8=21x5—(160—21x7)x38
= (—8) x 160+ 61 x 21.

Thus
217! mod 160 = 61.

Similarly
160" mod 21 = —8 mod 21 = 13
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Z*

n
Definition
Let Z;, denote the set of congruence classes in Z,, which have multiplicative inverses:

Z),:={a | a€Zy,ged(a,n)=1}.

The Euler’s totient function, ¢, is a function defined on the set of integers bigger than
1 such that ¢(n) gives the cardinality of Z:

p(n) = |Zy|.

Example
o letn=2325={1,2} ¢(3) =?
o Letn =4, Zj =? p(4) =?
® Let n = p be a prime number, Z; =7 ¢(p) =?
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Z*

n
Definition
Let Z;, denote the set of congruence classes in Z,, which have multiplicative inverses:

Z),:={a | a€Zy,ged(a,n)=1}.

The Euler’s totient function, ¢, is a function defined on the set of integers bigger than
1 such that ¢(n) gives the cardinality of Z:

p(n) = |Zy|.

Example
o Letn=3,Z5={1,2}, p(3)=2.
o Lletn=4,Z;={1,3}, p(4) =2.

® Letn = p be a prime number, Z; =Z, — {0} ={1,2,...,p—1}, o(p) =p—1.
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Euler's totient function
Theorem
Foranyn e€Z,n > 1,
k k 1
if n= pri, then ¢(n) = nH (1 - ) , (1)
; " Di
=1 i=1

where p; are distinct primes.

Example

® et n =10. 10 =2 x 5. We can count the elements in Z( that are coprime to 10
(there are four of them): Z1o ={0,1,2,3,4,5,6,7,8,9 }. By the above theorem,

we also have | |
10) = 10 1—— 1—=-| =4.
o10) =10 (1-5) < (1-3)
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Euler's totient function

Example
e Let n =120. 120 = 23 x 3 x 5.

©(120) =?

® et n = pq, where p and ¢ are two distinct primes. Then

p(n) =7

® |letn = pk, where p is a prime and k € Z, k > 1, then
p(p*) =7

® In particular, if p =2,
p(2%) =7
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Euler's totient function

Example
o Let n=120. 120 =23 x 3 x 5.

¢(120):120x<1—;)x<1—;> X <1—;>:32.

® et n = pq, where p and ¢ are two distinct primes. Then

¢(n) = pq <1 - ;) <1— ;) =(@-1(e—-1).

® |letn = pk, where p is a prime and k € Z, k > 1, then

® |n particular, if p = 2,
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Lemma
(Z7,-), the set Z} together with the multiplication defined in Zy,, is an abelian group.

Recall multiplication in Z,:

Example
Let n =5,

)
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Euler's Theorem

Theorem (Euler’'s Theorem)

For any a € Z, a*™ =1 mod n if gcd(a,n) = 1.

Example

Let n = 4. We have calculated that ¢(4) = 2. And
32 =9 =1 mod 4.
Let n = 10. we have calculated that ¢(10) = 4. And

3% =81 =1 mod 10.
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Fermat's Little Theorem

Note that ¢(p) = p — 1, a direct corollary of Euler's Theorem is Fermat's Little
Theorem.

Theorem (Fermat's Little Theorem)

Let p be a prime. For any a € Z, if pt a, then a?~* =1 mod p.

Example
® let p=3. 22=4=1mod 3.
® let p=>5. 24 =16 =1 mod 5.
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An ancient problem from the 3rd century

Sun Zi Suan Jing

“There is something whose amount is unknown. If we count by threes, 2 are remaining;
by fives, 3 are remaining; and by sevens, 2 are remaining. How many things are there?”

Translating to our notations, the question is

8 8 8 8

2 mod 3
3 mod 5

2 mod 7
?
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Solving a system of simultaneous linear congruences

Before answering the question, we provide the solution for a more general case. Let us

consider a system of simultaneous linear congruences

r =

where m; are pairwise coprime positive

a1 mod my

ag mod moy

ar mod my,

integers, i.e gcd(m;, m;) =1 for i # j.
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Solving a system of simultaneous linear congruences

= a1 mod my
= a9 mod msy
r = ap mod my,
Define
b m
m:Hmi, Mi:77 1§Z§k
i1 m;
1=

Since m; are pairwise coprime, m; and M; are coprime, and y; := M{l mod m;
exists. It can be computed by the extended Euclidean algorithm. Let
k
T = ZaiyiMi mod m.
i=1

Then z is a solution.
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An ancient problem from the 3rd century

= 2mod 3
3 mod 5

= 2mod 7
?

8 8 8 R
1

We have m1 =3,my =5,mg =7,a1 = 2,a0 = 3,a3 = 2,
m=3x5x7=105,

M;=35=2mod 3, My;=21=1mod5, M3z=15=1mod7.
yleflmod?):Q, ygzMglmodE):l, y3:M§1m0d7:1.

3
z =) ayiM; = 2x2x35+3x1x21+2x1x15 mod 105 = 233 mod 105 = 23 mod 105.
=1
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let my, ma,...,my be pairwise coprime integers. For any ai,as,...,a, € Z, the
system of simultaneous congruences

r=a; modmy, x=ay modms, ... T =a, modmy

has a unique solution modulo m = Hle m;.
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CRT — Example

Example
Find the unique solution x € Zj( such that

x =10 mod 3, =10 mod 5.

We have
mi :?, mo :?, aj :?, a =7,
Hence
m :?, M1 :?, M2 :?, Y1 :?, Y2 :?
And

T =7
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CRT — Example

Example
Find the unique solution = € Zi5 such that

=10 mod 3, x =10 mod 5.

We have
m1:3, m2:5, a1:a2:10.

Hence
m=15 M =5 My=3, y1=5'mod3=2, y,=3'mod5=2.
And

T = a1y1 My + asyas Mo mod n =10 X 2 x 5410 x 2 x 3 mod 15 = 160 mod 15 = 10.
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CRT — Example

Example
p and q are distinct primes, n = pq, ap,aq € Z. Find the unique x € Z,, such that

T =ap, mod p, T =ay mod q.

We have
Ml =4q, M2 =D,

1

yq::;ylzj\if1 mod p = ¢~ mod p, yp::ygzMgl mod ¢ = p~! mod ¢,

and
T = apYqq + aqypp mod n
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CRT — Example

Example
Take two distinct primes p, q, and let n = pq. By CRT, for any a € Z,, there is a
unique solution x € Z,, such that

xr=amod p, =z =amodq.

Since a = a mod p and a = a mod ¢, the unique solution is given by x = a € Z,.
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Abstract algebra and number theory

e Polynomial Rings
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Definition
® We will introduce another example of a commutative ring — polynomial ring.
® Let (F,+,-) be a field with additive identity 0 and multiplicative identity 1.

Definition
® Define

Flz] := { Zaixi
=0

An element f(x) = ap2"™ + ap_12" '+ -+ a1z +ag € Fla] is called a
polynomial over F.

e If a, # 0, we define degree of f(x), denoted deg(f(z)), to be n. Following the
convention, we define deg(0) = —oo.

aieF,nZO}.

Example
Let ' =R, then f(z) = 2 + 1 € R[] is a polynomial over R and deg(f(z)) =?
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Polynomials
® We will introduce another example of a commutative, ring — polynomial ring.
® Let (F,+,-) be a field with additive identity 0 and multiplicative identity 1.

Definition
® Define

Flz] := { Zaixi
=0

An element f(x) = ap2"™ + ap_12" '+ -+ a1z +ag € Fla] is called a
polynomial over F.

e If a, # 0, we define degree of f(x), denoted deg(f(z)), to be n. Following the
convention, we define deg(0) = —oo.

aieF,nZO}.

Example
Let F' =R, then f(z) = x + 1 € R[] is a polynomial over R and deg(f(z)) = 1.
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Addition and multiplication
() = ana™ + an_12™t + - +ao,
9(x) = bypx™ + bp_12™ L+ -+ bg in Fla]
Without loss of generality, let us assume n > m, write

9(z) = bpa™ + bp_12™ 1+ -+ + by,
where b; = 0 for ¢ > m. Then

f(@) +rp 9(@) = cpa” + cuya™ !

+ -4, where C; :al—|—bl
And
F(@) X 9(x) 1= dpa™ + dp 12" + -+ do, where d; = ajb;_;.
j=0
Example

Let ' =R. Take f(z) =z + 1,9(x) = z in R]z],

f(z) +rp 9(z) =22+ 1, f(x) Xgp 9(z) = 2+ .
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Polynomial ring

Theorem

With the addition +p(y) and multiplication X g, defined before, (F[x], +p(a]; X plz]) i

a commutative ring. It is called the polynomial ring over F'.

® The identity element for +p[,) is 0 — the identity element for + in F.

® The identity element for X gy, is 1 — the identity element for - in F.

® For simplicity, we will write f(z)g(z) and f(z) + g(z) instead of f(x) X p[y) g(7)
and f(z) +pp) 9().

Example

Let F =R, R[z] is a ring. The identity element for multiplication is 1. The identity
element for addition is 0.

S
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Division Algorithm

Theorem (Division Algorithm)

For any f(z),g(x) € F[z], if deg(f(x)) > 1, there exists s(z),r(x) € Flx] such that
deg(r(x)) < deg(f(z)) and

9(x) = s(x)f () + r(z).
r(x) is called the remainder and s(x) is called the quotient.

Definition

Let f(x),g(z) € Flz], if f(z) # 0 and g(z) = s(x) f(x) for some s(z) € F[z], then we
say f(x) divides g(x), written f(z)|g(x).

Example
Take g(x) = 42® + 23, f(x) = 23 € F3[x], then g(z) = f(z)(42? + 1) and f(z)|g(x).
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Irreducible polynomial
Definition
A polynomial f(x) € F[z] of positive degree is said to be reducible (over F) if there
exist g(z), h(x) € F[z] such that

deg(g()) < deg(f(x)), deg(h(x)) < deg(f(z)), and f(z) = g(x)h(z).
Otherwise, it is said to be irreducible (over F).

Example

Let F' = 5. All the polynomials of degree 2 are 22, 2% + 1,22 + z + 1,22 + 2. Which
polynomials are reducible?

Remark
f(z) € Flz] of degree 2 or 3 is reducible over F' if and only if it has a root in F2.

?An element a € F'is a root of f(z) if f(a) =0.
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Irreducible polynomial

Definition
A polynomial f(x) € F[z] of positive degree is said to be reducible (over F') if there
exist g(z), h(xz) € F[z] such that

deg(g(x)) < deg(f(x)), deg(h(z)) < deg(f()), and f(z) = g(x)h(z).
Otherwise, it is said to be irreducible (over F').

Example

Let F' = 5. All the polynomials of degree 2 are 22,22 + 1,22 +z + 1,22 + z. The
only irreducible polynomial of degree 2 is 2 + x + 1.

?’=z-z,2°+1=(z+1)? 2 +z=2(x+1)
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Congruence modulo f(z)
Definition
For any g(z), h(z) € Flz], if f(x)|(g(z) — h(x)), we say h(z) is congruent to g(x)
modulo f(x), written g(x) = h(z) mod f(x).
Congruence class of g(z) modulo f(x) is given by { h(z) | h(x) = g(x) mod f(z) }.

Lemma

Suppose f(x) has degree n, where n > 1. Let F[z]/(f(x)) denote the set of all
congruence classes of g(x) € F[z] modulo f(x). Then

n—1

Fla]/(f(x)) = { > aia’

=0

aiEFfor0§i<n}.

Example
Let f(z) = 2% + x + 1 € Fo[z]. Faz]/(f(2)) =7
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Congruence modulo f(z)

Example
Let f(x) = 2% + x + 1 € Fa[z]. Then

Folz]/(f(z)) ={0,1,z,z+1}.
Similarly, let g(z) = 22 € Fa[z]. Then
Folz]/(g9(z)) ={0,1,z,x +1}.

Folz]/(f(x)) and Fa[x]/(g(x)) contain equivalent classes generated by the same
polynomials.
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Addition and multiplication in F[z]/(f(x))

¢ Naturally, for any g(z), h(z) € F[z]/(f(z)), same as in for Z,,, addition and
multiplication in F[z]/(f(z)) are computed modulo f(z).

Example

Let F =Ty, f(z) =22+ + 1 € Fo[z], g(x) = = € Folx]/(f(z)), and
h(z) =z € Fa[z]/(f(z)). We have

9(@) + h(z) mod f(z) =7
g(@)h(x) mod f(x) =7
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Addition and multiplication in F[z]/(f(x))

¢ Naturally, for any g(z), h(z) € F[z]/(f(z)), same as in for Z,,, addition and
multiplication in F[z]/(f(z)) are computed modulo f(z).

Example

Let F =Ty, f(z) =22+ + 1 € Fo[z], g(x) = = € Folx]/(f(z)), and
h(z) =z € Fa[z]/(f(z)). We have

g(x) + h(x) mod f(z) =x + x mod f(x) =0,
g(z)h(z) mod f(x) = x? mod f(x) =z + 1.
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]Fpn

Theorem
e Together with addition and multiplication modulo f(x), Fx]/(f(x)) is a

commutative ring.

e |t is a field if and only if f(z) is irreducible.

® let p be a prime, and let f(z) € Fplz] be an irreducible polynomial of
deg(f(z)) = n. Then Fp[z]/(f(x)) = Fpn.

Example
Let f(z) = 2% + o + 1 € Fa[z], by the above theorem, Fa[x]/(f(z))

1

?
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]Fpn

Theorem
e Together with addition and multiplication modulo f(x), Fx]/(f(x)) is a

commutative ring.

e |t is a field if and only if f(z) is irreducible.

® let p be a prime, and let f(z) € Fplz] be an irreducible polynomial of
deg(f(z)) = n. Then Fp[z]/(f(x)) = Fpn.

Example
Let f(x) = 2% + o + 1 € Fo[z], by the above theorem, Fa[z]/(f(x)) = Fa.
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Similarity to integers

Zn, Flz]/(f(z))
a+b:=(a+0b) modn g(x) + h(z) := (g(z) + h(z)) mod f(z)
a-b:=(a-b) modn g(x) - h(zx) := (g(z) - h(z)) mod f(x)

Zy, is a ring F[z]/(f(x)) is a ring
[2]/(S(

Zy is a field <= nis prime F[z x)) is a field <= f(x) is irreducible

e Additive identity and multiplicative identity in F'[z]/(f(x)) are the same as those
in F.

® Multiplicative inverse can be found using the extended Euclidean algorithm
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Fos

o let f(r) =28+t + 23+ 2+ 1€ Rz
® |t can be shown that f(x) is irreducible over Fy

® Based on the previous results, we know that

7
Fola]/(f(z)) = { > bia' | b €Fyp Vi } :
=0
and
Falx]/(f(x)) = Fas.

125 /140



Bytes
® We note that any
b7337 + b6$6 + b5l‘5 + b4SU4 + b3$3 + b2552 +bix + by € Iy [:C]/(f(l‘))

can be stored as a byte bybgbsbsb3babi1by € JF%
® Define ¢:

¢ :Falz]/(f(z) — F3
brx” + bex® + bsx® + by + b3z + box® + by + by~ brbgbsbabsbabib
® (o is bijective
Example

o 26 4 2% + 22 4z +1 € Fafz]/(f(x)) corresponds to 010101115 = 5716
e 27" + x4 1€ Fafz]/(f(x)) corresponds to 100000115 = 831¢.
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Addition and multiplication between bytes
With addition and multiplication modulo f(z) in Falx]/(f(z)), we can define the
corresponding addition and multiplication between bytes.
Definition
For any two bytes v = v7vg ... v1vg and w = wrwg . . . wiwy, let
Go(x) = v727 +v628 + - - + V12 4+ vy and o () = wrx” + wez® + - - + w1z + Wo be
the corresponding polynomials in Fo[z]/(f(z)). We define

V4w = gy(2) + guw(z) mod f(x), v X w = gy(x)gw(z) mod f(z).
Example
f(z) =28 +2* + 22 + 2 + 1. Compute the sum and product between

2+t + 22+ 24+ 1 eFofz]/(f(z)) ie 01010111y = 5714

and
"+ +1€Fofz]/(f(z)) ie 10000011y = 836
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Addition and multiplication between bytes

Example
flx) = sS+zt+23++1.

5716+8316 = (@0 +2*+22+2+1)+ (2" +2+1) mod f(z)
= 2"+ 2%+ 2% 4+ 2% mod f(x) = 110101005 = D4y.
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Addition and multiplication between bytes

Example
flz) = 2®+2t+23+2+1.
5716 8315 = (@ +azt+224+2+0)@" +x+1)
B+t +224+2+1)@"+2+1) = 2B+ + 22 +28+ 25+ 25 2t 423 41,

3 = '+ +2+1mod f(z)
¥ = 2’4+ 2+ 2%+ 2 mod f(x)
2 = 27428+ 2+ 2° mod f(2)
¥ = 29+ 2%+ 2%+ 2° mod f(z).

eB e 4 bl xS St 1 =M 2t 42341 = 2"+ 254+ 1 mod f(=).
5716 X 8316 = 110000015 = C1y4.
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Addition between bytes
For any
n—1 n—1
g(z) = Zaixi, h(zx) = Z bz
i=0 =0

from Fa[z]/(f(x)), we have
n—1 A
g(z) + h(x) mod f(z) = Z ciz', where ¢ = a; + b; mod 2.
i=0

Recall that a byte is also a vector in F§, we have defined vector addition as bitwise
XOR, and
v +F§ w=u = urlg . ..U Uy, Where u; = v; B w;.

We note that a + b mod 2 =a ® b for a,b € Fo. Thus, our definition of addition
between two bytes agrees with the vector addition between two vectors in F5.
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Multiplication by 02

flr)=a®+a'+ 23+ 2+ 1.

We will compute the formula for a byte multiplied by 0214 = x. Take any
g(x) = bra” + bexS + -+ + byx + by € Fal]/(f(2))

g(z)z mod f(x)

(brz” + bz’ + bsz® + byt + b3a + byx? + b1z + bg)z mod f(z)

bra® + bex” + bs® + byz® + bszt + box® + b2 + by mod f(x)

bex” + bsx® + bax® + byzt + by + bz + box + brzt + by + brx + by mod f(x)
bex” + bsx® + byx® + (bg + by)z* + (by + by)x® + by + (b + by)x + by mod f(x).

Thus, for any byte b7bg . .. b1bg, multiplication by 0214 is equivalent to left shift by 1
and XOR with 000110115 = 1By if by = 1.
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Multiplication by 02

For any byte brbg ... b1by, multiplication by 0214 is equivalent to left shift by 1 and
XOR with 000110115 = 1By if by = 1.
Example

® 57136 = 010101115, 0216 x 5716 = 10101110 = AEs.

o 83,5 — 100000115, 0256 X 8316 =7

® D45 = 110101005, 0214 X D4y =7
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Multiplication by 02

Example
® 5716 = 010101115, 0216 X 5716 = 10101110 = AEs.
® 8316 = 100000115, 0216 X 8316 = 000001102 6 000110115 = 000111019 = 1Dq¢.
e Dajg = 110101005, 0215 X D416 = 101010005 & 000110115 = 10110011 = B3s.
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Multiplication by 03

Let us compute the multiplication of a byte by 0314 = z + 1. Take any
h(z) = brz” + bgx® + - - + byw + by € Fa[x]/(f(x)), then

h(z)(z+ 1) mod f(x) = h(z)x + h(z) mod f(z).
Thus, for any byte bybg . . . b1bg, multiplication by 0314 is equivalent to first multiplying
by 0216 (left shift by 1 and XOR with 000110115 = 1By if by = 1) and then XOR with
the byte itself (bybg ... b1bo).
Example
We have computed

0216 X 5716 = AE16, 0216 X 8316 = 1D16, 0216 X D415 = B315.

We have
® 0316 X 5716 = AE16 ® 5716 = 10101110 & 01010111 = F91¢.
® 0314 x 8315 = 1D15 @ 8316 = 9E 5.
® 0316 X D416 = B316 O D416 = 6716. 134 /140



Inverse of a byte as an element in Fy[x]/(f(x)).

flx)y=a®+2'+ 23+ 2+ 1.

As mentioned before, multiplicative inverse of g(z) € Fa[x]/(f(x)) can be found using
the extended Euclidean algorithm

Example
0316 = 000000112 = x + 1. By the Euclidean algorithm,

f@)=@+D@"+25+2°+2* + 224+ 2) +1 = ged(f(z), (x + 1)) = 1.
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Long division

In primary school, we learned to do long division for calculating the quotient and
remainder of dividing one integer by another integer. For example, to compute

1346 = 25 X q + r,

we can write

93
25 ) 1346

125
96
75
21

and we get ¢ = 53, r = 21.
Similarly, let us take two polynomials f(z), g(x) € F[x], where F is a field. We can
also compute f(x) divided by g(x) using long division.
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Long division

Let
f@)y=a® +at + 22 + o +1€Pyfz], glx)=x+1¢€ Pl
We have
x4+ ?
x+1)x8+m4+m3+m+1
28+ 27
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Long division

pi ettt ettt w41 f(@) = (a+1) (@ +a%+a +a +a?+a+1)+1.
x+1)x8+x4+x3+x+1
28+ 27
T4zttt + o+ 1
27 + 26
O+ttt +1
26 + 25
Pzt 41
25 4 2t
2+ +1
23 4 22
22+r+1
2+
1
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Inverse of a byte as an element in Fy[x]/(f(x)).

flx)y=a®+2'+ 23+ 2+ 1.
As mentioned before, multiplicative inverse of g(x) € Fa[z]/(f(x)) can be found using
the extended Euclidean algorithm

Example
0316 = 000000112 = x + 1. By the Euclidean algorithm,

f@)=(@+1)(a"+2°+25+ 2 + 22 + 1) + 1 = ged(f(2), (x + 1)) = 1.
By the extended Euclidean algorithm,
1= f(z)+(z+1)(=" +2° +2° + 2* + 2% + 2).
We have

037 = (z+1)"" mod f(z) =" + 2% + 2® + 2 + 2% + = = 11110110, = F6y5.
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Assignment 1

® Read textbook
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