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Course Outline

• Abstract algebra and number theory

• Introduction to cryptography

• Symmetric block ciphers and their implementations

• RSA, RSA signatures, and their implementations

• Probability theory and introduction to SCA

• SPA and non-profiled DPA

• Profiled DPA

• SCA countermeasures

• FA on RSA and countermeasures

• FA on symmetric block ciphers

• FA countermeasures for symmetric block cipher
• Practical aspects of physical attacks

• Invited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH
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Recommended reading

• Textbook
• Sections 1.1 – 1.5
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Lecture Outline

• Preliminaries

• Integers

• Groups

• Rings

• Fields

• Vector Spaces

• Modular Arithmetic

• Polynomial Rings
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Abstract algebra and number theory

• Preliminaries

• Integers

• Groups

• Rings

• Fields

• Vector Spaces

• Modular Arithmetic

• Polynomial Rings
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Set theory
• ∅: empty set

• |S|: cardinality of S

• a ∈ S: a is an element in set S

• a ̸∈ S: a is not an element in set S

• S ⊆ T : if s ∈ S, then s ∈ T , S is a subset of T

• S = T : S ⊆ T and T ⊆ S

• The power set of a set S, denoted by 2S , is the set of all subsets of S.

Example

Let T = { 0, 1, 2, 3 } and S = { 2, 3 }, then
• S ? T and T ? S.

• 2 ? S, 0 ? S.

• |S| =?, |T | =?.

• 2S =?.
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Set theory
• ∅: empty set

• |S|: cardinality of S

• a ∈ S: a is an element in set S

• a ̸∈ S: a is not an element in set S

• S ⊆ T : if s ∈ S, then s ∈ T , S is a subset of T

• S = T : S ⊆ T and T ⊆ S

• The power set of a set S, denoted by 2S , is the set of all subsets of S.

Example

Let T = { 0, 1, 2, 3 } and S = { 2, 3 }, then
• S ⊆ T and T ̸⊆ S.

• 2 ∈ S, 0 ̸∈ S.

• |S| = 2, |T | = 4.

• 2S = { ∅, S, { 2 } , { 3 } }.
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Set theory
• Union: A ∪B
• Intersection: A ∩B
• Difference: A−B = { a ∈ A, a ̸∈ B }
• Complement of A in S: Ac = S −A
• Cartesian product A×B = { (a, b) | a ∈ A, b ∈ B }

• ordered pairs

Example

• A = { 0, 1, 2 }, B = { 2, 3, 4 }
• A ∪B = { 0, 1, 2, 3, 4 }, A ∩B = { 2 }

Example

• A = { 2, 4, 6 }, B = { 1, 3, 5 }, S = A ∪B

• A−B =? Complement of A in S is ?

A×B =?
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Set theory
• Union: A ∪B
• Intersection: A ∩B
• Difference: A−B = { a ∈ A, a ̸∈ B }
• Complement of A in S: Ac = S −A
• Cartesian product A×B = { (a, b) | a ∈ A, b ∈ B }

• ordered pairs

Example

• A = { 0, 1, 2 }, B = { 2, 3, 4 }
• A ∪B = { 0, 1, 2, 3, 4 }, A ∩B = { 2 }

Example

• A = { 2, 4, 6 }, B = { 1, 3, 5 }, S = A ∪B

• A−B = A. Complement of A in S is B

A×B = { (2, 1), (2, 3), (2, 5), (4, 1), (4, 3), (4, 5), (6, 1), (6, 3), (6, 5) } .
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Functions

Definition

A function/map f : S → T is a rule that assigns each element s ∈ S a unique element
t ∈ T .

• S – domain of f ; T – codomain of f .

• If f(s) = t, then t is called the image of s, s is a preimage of t.

• For any A ⊆ T , preimage of A under f is

f−1(A) := { s ∈ S | f(s) ∈ A }

Example

Define

f : R → R
x 7→ x2

where R is the set of real numbers. Then f has domain R and codomain R. 10 / 140



Functions

Example

Define

f : R → R
x 7→ x2

where R is the set of real numbers. Then f has domain R and codomain R.
Let A = { 1 } ⊆ R, the preimage of A under f is given by

f−1(A) =?

Let B = { −1 } ⊆ R, then f−1(B) =?
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Functions – Example

Example

Define

f : R → R
x 7→ x2

where R is the set of real numbers. Then f has domain R and codomain R.
Let A = { 1 } ⊆ R, the preimage of A under f is given by

f−1(A) = { −1, 1 } .

1 is the image of −1 and −1 is a preimage of 1. 1 is another preimage of 1.
Let B = { −1 } ⊆ R, then f−1(B) = ∅.
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Functions

Definition
• A function f : S → T is called onto or surjective if given any t ∈ T , there exists

s ∈ S, such that t = f(s).

• A function f : S → T is said to be one-to-one (written 1-1) or injective if for any
s1, s2 ∈ S such that s1 ̸= s2, we have f(s1) ̸= f(s2).

• f is called 1-1 correspondence or bijective if f is 1-1 and onto.

Example

f is ?, g is ?

f : R → R≥0

x 7→ x2

g : R → R
x 7→ x 13 / 140



Functions

Example

f : R → R≥0

x 7→ x2,

f is surjective as for any y ∈ R≥0, we can find a preimage of y by calculating x =
√
y.

But f is not injective, since f(−1) = f(1) = 1.

g : R → R
x 7→ x.

It can be easily seen that g is bijective.
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Inverse of a function

• When f is bijective, f−1 : T → S is a function – it assigns each t ∈ T a unique
element s ∈ S.

• f−1 is called the inverse of f .

Example

Define f

f : R → R
x 7→ x3.

Then, the inverse of f is ?
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Inverse of a function

• When f is bijective, f−1 : T → S is a function – it assigns each t ∈ T a unique
element s ∈ S.

• f−1 is called the inverse of f .

Example

Define f

f : R → R
x 7→ x3.

Then, the inverse of f exists and is given by

f−1 : R → R
x 7→ 3

√
x.
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Composition of functions

Definition

For two functions f : T → U , g : S → T , the composition of f and g, denoted by
f ◦ g, is the function

f ◦ g : S → U

s 7→ f(g(s)).

Example

What is f ◦ g?

f : R → R
x 7→ x2,

g : R → R
x 7→ x3.
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Composition of functions

Example

f : R → R
x 7→ x2,

g : R → R
x 7→ x3.

f ◦ g : R → R
x 7→ (x3)2 = x6.
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Composition of functions

Remark
• f : S → S

• We write f ◦ f ◦ · · · ◦ f as fn

• If f is bijective, we write f−1 ◦ f−1 ◦ · · · ◦ f−1 as f−m

Example

Define

f : R → R
x 7→ x2,

then what is fn?
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Composition of functions

Remark
• f : S → S

• We write f ◦ f ◦ · · · ◦ f as fn

• If f is bijective, we write f−1 ◦ f−1 ◦ · · · ◦ f−1 as f−m

Example

Define

f : R → R
x 7→ x2,

then

fn : R → R
x 7→ x2

n
.
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Abstract algebra and number theory

• Preliminaries

• Integers

• Groups

• Rings

• Fields

• Vector Spaces

• Modular Arithmetic

• Polynomial Rings
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Representation of a positive integer

• We write one hundred and twenty-three as 123 because

123 = 1× 100 + 2× 10 + 3× 1.

Theorem

Let b ≥ 2 be an integer. Then any n ∈ Z, n > 0 can be expressed uniquely in the form

n =

ℓ−1∑
i=0

aib
i,

where 0 ≤ ai < b (0 ≤ i < ℓ), aℓ−1 ̸= 0, and ℓ ≥ 1. aℓ−1aℓ−2 . . . a1a0 is called a
base−b representation for n. ℓ is called the length of n in base−b representation.

• b = 2, binary representation
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Representation of a positive integer

Example

310 =?2 =?16.
410 =?2 =?16.
6010 =?2 =?16.

Base 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Base 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

Table: Correspondence between decimal and hexadecimal (base b = 16) numerals.
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Representation of a positive integer

Example

310 = 112 = 316.
410 = 1002 = 416.
6010 = 1111002 = 3C16.

Base 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Base 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

Table: Correspondence between decimal and hexadecimal (base b = 16) numerals.
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Divisor and multiple

Theorem

If m,n ∈ Z, n > 0, then ∃q, r ∈ Z, such that 0 ≤ r < n and n = qm+ r.

q is called the quotient and r is called the remainder.

Definition

Given m,n ∈ Z, if m ̸= 0 and n = am for some integer a, we say that m divides n,
written m|n. We call m a divisor of n and n a multiple of m. If m does not divide n,
we write m ∤ n.

Example

• 3|6, −2|4, 1|8, 5|5.
• 7 ∤ 9, 4 ∤ 6.
• All the positive divisors of 4 are 1, 2, 4.

• All the positive divisors of 6 are 1, 2, 3, 6.
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Greatest common divisor

Definition

Take m,n ∈ Z, m ̸= 0 or n ̸= 0, the greatest common divisor of m and n, denoted
gcd(m,n), is given by d ∈ Z such that

• d > 0,

• d|m, d|n, and
• if c|m and c|n, then c|d.

Example

• We have discussed that all positive divisors of 4 and 6 are 1, 2, 4 and 1, 2, 3, 6
respectively. So gcd(4, 6) = 2.

• All the positive divisors of 2 are 1 and 2. All the positive divisors of 3 are 1 and 3.
So gcd(2, 3) = 1.
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Bézout’s identity

Theorem (Bézout’s identity)

For any m,n ∈ Z, such that m ̸= 0 or n ̸= 0. gcd(m,n) exists and is unique.
Moreover, ∃s, t ∈ Z such that gcd(m,n) = sm+ tn.

Example

gcd(4, 6) = 2 = ?× 4+?× 6.
gcd(2, 3) = 1 = ?× 2+?× 3.
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Bézout’s identity

Theorem (Bézout’s identity)

For any m,n ∈ Z, such that m ̸= 0 or n ̸= 0. gcd(m,n) exists and is unique.
Moreover, ∃s, t ∈ Z such that gcd(m,n) = sm+ tn.

Example

gcd(4, 6) = 2 = (−1)× 4 + 1× 6.
gcd(2, 3) = 1 = (−4)× 2 + 3× 3.
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Euclidean algorithm

Theorem (Euclid’s division)

Given m,n ∈ Z, take q, r such that n = qm+ r, then gcd(m,n) = gcd(m, r).

Thus, to find gcd(m,n), we can compute Euclid’s division repeatedly until we get
r = 0.

Example

We can calculate gcd(120, 35) as follows:

120 = 35× 3 + 15 gcd(120, 35) = gcd(35, 15),
35 = 15× 2 + 5 gcd(35, 15) =?
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Euclidean algorithm

Theorem (Euclid’s division)

Given m,n ∈ Z, take q, r such that n = qm+ r, then gcd(m,n) = gcd(m, r).

Thus, to find gcd(m,n), we can compute Euclid’s division repeatedly until we get
r = 0.

Example

We can calculate gcd(120, 35) as follows:

120 = 35× 3 + 15 gcd(120, 35) = gcd(35, 15),
35 = 15× 2 + 5 gcd(35, 15) = gcd(15, 5),
15 = 5× 3 gcd(15, 5) = 5 =⇒ gcd(120, 35) = 5.

Example

Find gcd(160, 21)
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Euclidean algorithm

Example

We can calculate gcd(160, 21) using the Euclidean algorithm

160 = 21× 7 + 13 gcd(160, 21) = gcd(21, 13),
21 = 13× 1 + 8 gcd(21, 13) = gcd(13, 8),
13 = 8× 1 + 5 gcd(13, 8) = gcd(8, 5),
8 = 5× 1 + 3 gcd(8, 5) = gcd(5, 3),
5 = 3× 1 + 2 gcd(5, 3) = gcd(3, 2),
3 = 2× 1 + 1 gcd(3, 2) = gcd(2, 1),
2 = 1× 2 gcd(2, 1) = 1 =⇒ gcd(160, 21) = 1
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Euclidean Algorithm

Algorithm 1: Euclidean algorithm.

Input: m, n// m,n ∈ Z, m ̸= 0

Output: gcd(m,n)
1 while m ̸= 0 do
2 r = m
3 m = n%m// remainder of n divided by m

4 n = r

5 return n

32 / 140



Extended Euclidean algorithm

Note

With the intermediate results we have from the Euclidean algorithm, we can also find
s, t such that gcd(m,n) = sm+ tn (Bézout’s identity).

Example

We have calculated gcd(120, 35) as follows:

120 = 35× 3 + 15 gcd(120, 35) = gcd(35, 15),
35 = 15× 2 + 5 gcd(35, 15) = gcd(15, 5),
15 = 5× 3 gcd(15, 5) = 5 =⇒ gcd(120, 35) = 5.

Then
5 = 35− 15× 2,
15 = 120− 35× 3,
5 = 35− (120− 35× 3)× 2 = 120× (−2) + 35× 7.
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Extended Euclidean algorithm

Example

We have calculated gcd(160, 21) using the Euclidean algorithm

160 = 21× 7 + 13 gcd(160, 21) = gcd(21, 13),
21 = 13× 1 + 8 gcd(21, 13) = gcd(13, 8),
13 = 8× 1 + 5 gcd(13, 8) = gcd(8, 5),
8 = 5× 1 + 3 gcd(8, 5) = gcd(5, 3),
5 = 3× 1 + 2 gcd(5, 3) = gcd(3, 2),
3 = 2× 1 + 1 gcd(3, 2) = gcd(2, 1),
2 = 1× 2 gcd(2, 1) = 1 =⇒ gcd(160, 21) = 1

Using the extended Euclidean algorithm, find integers s, t such that
gcd(160, 21) = s160 + t35
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Extended Euclidean algorithm

Example

By the extended Euclidean algorithm,

1 = 3− 2, 2 = 5− 3,
3 = 8− 5, 5 = 13− 8,
8 = 21− 13, 13 = 160− 21× 7.

We have

1 = 3− (5− 3) = 3× 2− 5 = 8× 2− 5× 3 = 8× 2− (13− 8)× 3

= 8× 5− 13× 3 = 21× 5− 13× 8 = 21× 5− (160− 21× 7)× 8

= (−8)× 160 + 61× 21.
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Prime numbers

Definition
• For m,n ∈ Z such that m ̸= 0 or n ̸= 0, m and n are said to be relatively

prime/coprime if gcd(m,n) = 1.

• Given p ∈ Z. p is said to be prime (or a prime number) if for any m ∈ Z, either
m is a multiple of p (i.e. p|m) or m and p are coprime (i.e. gcd(p,m) = 1).

Example

• 4 and 9 are relatively prime.

• 8 and 6 are not coprime.

• 2, 3, 5, 7 are prime numbers.

• 6, 9, 21 are not prime numbers.
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Prime factorization

Theorem (The Fundamental Theorem of Arithmetic)

For any n ∈ Z, n > 1, n can be written in the form

n =

k∏
i=1

peii ,

where the exponents ei are positive integers, p1, p2, . . . , pk are prime numbers that are
pairwise distinct and unique up to permutation.

Example

20 = 22 × 5, 135 = 33 × 5.
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Abstract algebra and number theory

• Preliminaries

• Integers

• Groups

• Rings

• Fields

• Vector Spaces

• Modular Arithmetic

• Polynomial Rings
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Definition

Definition

A group (G, ·) is a non-empty set G with a binary operation · satisfying the following
conditions:

• G is closed under · (closure property), ∀g1, g2 ∈ G, g1 · g2 ∈ G.

• · is associative, ∀g1, g2, g3 ∈ G, g1 · (g2 · g3) = (g1 · g2) · g3.
• ∃e ∈ G, an identity element, such that ∀g ∈ G, e · g = g · e = g.

• Every g ∈ G has an inverse g−1 ∈ G such that g · g−1 = g−1 · g = e.

Example

• (Z,+), the set of integers with addition is a group. The identity element is ?.

• Similarly, (Q,+) and (C,+) are groups.

• Is (Q,×) a group?

• How about (Q\ { 0 } ,×)?
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Definition

Definition

A group (G, ·) is a non-empty set G with a binary operation · satisfying the following
conditions:

• G is closed under · (closure property), ∀g1, g2 ∈ G, g1 · g2 ∈ G.

• · is associative, ∀g1, g2, g3 ∈ G, g1 · (g2 · g3) = (g1 · g2) · g3.
• ∃e ∈ G, an identity element, such that ∀g ∈ G, e · g = g · e = g.

• Every g ∈ G has an inverse g−1 ∈ G such that g · g−1 = g−1 · g = e.

Example

• (Z,+), the set of integers with addition is a group. The identity element is 0.

• Similarly, (Q,+) and (C,+) are groups.

• (Q,×) is not a group. Because 0 ∈ Q does not have an inverse with respect to
multiplication.

• But (Q\ { 0 } ,×) is a group. The identity element is 1.
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Prove a set with a binary operation is a group

Let G = R+ be the set of positive real numbers and let · be the multiplication of real
numbers, denoted ×. We will show that (R+,×) is a group.

1. R+ is closed under ×: for any a1, a2 ∈ R+, a1 × a2 ∈ R and a1 × a2 > 0, hence
a1 × a2 ∈ R+.

2. × is associative: ∀a1, a2, a3 ∈ R+, a1 × (a2 × a3) = (a1 × a2)× a3.

3. 1 is the identity element in R+: ∀a ∈ R+, 1× a = a× 1 = a.

4. Take any a ∈ R+, 1
a ∈ R and 1

a > 0, so 1
a ∈ R+. Moreover,

a× 1

a
=

1

a
× a = 1

hence a−1 = 1
a ∈ R+

By definition, we have proved that, (R+,×) is a group.
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Abelian group

Definition

Let (G, ·) be a group. If · is commutative, i.e.

∀g1, g2 ∈ G, g1 · g2 = g2 · g1,

then the group is called abelian.

The name abelian is in honor of the great mathematician Niels Henrik Abel
(1802-1829).

Example

The groups we have seen before, (Z,+), (R+,×), (Q\ { 0 } ,×), (Q,+), and (C,+)
are all abelian groups.
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Abelian group

Example

• M2×2(R): 2× 2 matrices with coefficients in R.
• Matrix addition, denoted by +, is defined component-wise.(

a00 a10
a01 a11

)
+

(
b00 b10
b01 b11

)
=

(
a00 + b00 a10 + b10
a01 + b01 a11 + b11

)
.

(M2×2(R),+) is an abelian group:

• closure, associativity and commutativity of + are easy to show

• The identity element is ?

• The inverse of matrix

(
a00 a10
a01 a11

)
is ? Does it belong to the set?

43 / 140



Abelian group

Example

• M2×2(R): 2× 2 matrices with coefficients in R.
• Matrix addition, denoted by +, is defined component-wise.(

a00 a10
a01 a11

)
+

(
b00 b10
b01 b11

)
=

(
a00 + b00 a10 + b10
a01 + b01 a11 + b11

)
.

(M2×2(R),+) is an abelian group:

• closure, associativity and commutativity of + are easy to show

• The identity element is the zero matrix

(
0 0
0 0

)
.

• The inverse of a matrix

(
a00 a10
a01 a11

)
is

(
−a00 −a10
−a01 −a11

)
, which is also in

(M2×2(R),+).
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Abelian group

Example

Let F2 := { 0, 1 }. We define logical XOR, denoted ⊕, in F2 as follows:

0⊕ 0 = 0, 0⊕ 1 = 1⊕ 0 = 1, 1⊕ 1 = 0.

Closure, associativity, and commutativity can be directly seen from the definition. The
identity element is ? and the inverse of the other element is ?
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Abelian group

Example

Let F2 := { 0, 1 }. We define logical XOR, denoted ⊕, in F2 as follows:

0⊕ 0 = 0, 0⊕ 1 = 1⊕ 0 = 1, 1⊕ 1 = 0.

Closure, associativity, and commutativity can be directly seen from the definition. The
identity element is 0 and the inverse of 1 is 1. Hence (F2,⊕) is an abelian group.
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Abelian group

Example

Let E = { a, b }, a ̸= b. Define addition in E as follows:

a+ a = a, a+ b = b+ a = b, b+ b = a.

Closure, associativity, and commutativity can be directly seen from the definition. The
identity element is ? and the inverse of the other element is ?
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Abelian group

Example

Let E = { a, b }. Define addition in E as follows:

a+ a = a, a+ b = b+ a = b, b+ b = a.

Closure, associativity, and commutativity can be directly seen from the definition. The
identity element is a and the inverse of b is b. Hence (E,+) is an abelian group.
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Abstract algebra and number theory

• Preliminaries

• Integers

• Groups

• Rings

• Fields

• Vector Spaces

• Modular Arithmetic

• Polynomial Rings
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Definition

Definition

A set R together with two binary operations (R,+, ·) is a ring if (R,+) is an abelian
group, and for any a, b, c ∈ R, the following conditions are satisfied:

• R is closed under · (closure), a · b ∈ R.

• · is associative, (a · b) · c = a · (b · c).
• The distributive laws holds: a · (b+ c) = a · b+ a · c.
• The identity element for · exists, which is different from the identity element for +.

Remark

The last condition in the definition implies that a set consisting of only 0 is not a ring.

Definition

If a · b = b · a for all a, b ∈ R, R is a commutative ring.
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Examples

Example

• We have seen that (Z,+) is an abelian group and the identity element is 0. It can
be easily shown that (Z,+,×) is a commutative ring. The identity element for ×
is ?

• Similarly (Q,+,×), (R,+,×) and (C,+,×) are all commutative rings with ? as
the identity element for + and ? as the identity element for ×.
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Examples

Example

• We have seen that (Z,+) is an abelian group and the identity element is 0. It can
be easily shown that (Z,+,×) is a commutative ring. The identity element for ×
is 1.

• Similarly (Q,+,×), (R,+,×) and (C,+,×) are all commutative rings with 0 as
the identity element for + and 1 as the identity element for ×.
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Notations

Remark
• For most cases, we will denote the identity element for + as 0 and the identity

element for · as 1.
• We normally refer to the operation + as addition, and 0 as additive identity.

Similarly, we refer to the operation · as multiplication and 1 as multiplicative
identity.

• The inverse of an element a ∈ R with respect to + is called the additive inverse
of a, usually denoted by −a.

• For simplicity, we sometimes write ab instead of a · b.
• When the operations in (R,+, ·) are clear from the context, we omit them and

write R.
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Example of a ring

Example

We have shown that (M2×2(R),+) is an abelian group. We recall matrix

multiplication, denoted by ×, for 2× 2 matrices: for any

(
a00 a10
a01 a11

)
,

(
b00 b10
b01 b11

)
in

M2×2(R),(
a00 a10
a01 a11

)
×

(
b00 b10
b01 b11

)
=

(
a00b00 + a10b01 a00b10 + a10b11
a01b00 + a11b01 a01b10 + a11b11

)
.

(M2×2(R),+,×) is a ring: associativity and distributive laws are easy to show. The
identity element for × is ? Is (M2×2(R),+,×) a commutative ring? why?
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Example of a ring

Example

We have shown that (M2×2(R),+) is an abelian group. We recall matrix

multiplication, denoted by ×, for 2× 2 matrices: for any

(
a00 a10
a01 a11

)
,

(
b00 b10
b01 b11

)
in

M2×2(R),(
a00 a10
a01 a11

)
×

(
b00 b10
b01 b11

)
=

(
a00b00 + a10b01 a00b10 + a10b11
a01b00 + a11b01 a01b10 + a11b11

)
.

(M2×2(R),+,×) is a ring: associativity and distributive laws are easy to show. The

identity element for × is the 2× 2 identity matrix

(
1 0
0 1

)
. We note that

(M2×2(R),+,×) is not a commutative ring. For example,(
1 0
0 0

)(
0 0
1 0

)
=

(
0 0
0 0

)
, but

(
0 0
1 0

)(
1 0
0 0

)
=

(
0 0
1 0

)
.
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Example of a ring

Example

Recall an example of a group we have seen: F2 = { 0, 1 }, logical XOR, denoted ⊕,

0⊕ 0 = 0, 0⊕ 1 = 1⊕ 0 = 1, 1⊕ 1 = 0.

(F2,⊕) is an abelian group. Let us define logical AND, denoted &, in F2 as follows:

0 & 0 = 0, 1 & 0 = 0 & 1 = 0, 1 & 1 = 1.

Closure of F2 with respect to &, associativity and commutativity of &, and the
distributive laws are easy to see from the definitions. The identity element for & is ?
(F2,⊕,&) is a commutative ring.
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Example of a ring

Example

Recall an example of a group we have seen: F2 = { 0, 1 }, logical XOR, denoted ⊕,

0⊕ 0 = 0, 0⊕ 1 = 1⊕ 0 = 1, 1⊕ 1 = 0.

(F2,⊕) is an abelian group. Let us define logical AND, denoted &, in F2 as follows:

0 & 0 = 0, 1 & 0 = 0 & 1 = 0, 1 & 1 = 1.

Closure of F2 with respect to &, associativity and commutativity of &, and the
distributive laws are easy to see from the definitions. The identity element for & is 1.
(F2,⊕,&) is a commutative ring.
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Example of a ring

Example

We have also seen E = { a, b } with addition:

a+ a = a, a+ b = b+ a = b, b+ b = a.

(E,+) is an abelian group. Define multiplication in E as follows:

a · a = a, a · b = b · a = a, b · b = b.

Closure of E with respect to ·, associativity of ·, commutativity of ·, and the
distributive laws are easy to see from the definitions. The identity element for · is ?
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Example of a ring

Example

We have also seen E = { a, b } with addition:

a+ a = a, a+ b = b+ a = b, b+ b = a.

(E,+) is an abelian group. Define multiplication in E as follows:

a · a = a, a · b = b · a = a, b · b = b.

Closure of E with respect to ·, associativity of ·, commutativity of ·, and the
distributive laws are easy to see from the definitions. The identity element for · is b.
Thus (E,+, ·) is a commutative ring.
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Definition

Definition

Let (R,+, ·) be a ring with identity element 0 for + and identity element 1 for ·. Let
a, b ∈ R. If a · b = b · a = 1, a (also b) is said to be invertible and it is called a unit.

Definition

A field is a commutative ring in which every non-zero element is invertible.

Example

• (Q,+,×), (R,+,×) and (C,+,×) are all fields.

• (Z,+,×) is not a field, why?
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Definition

Definition

Let (R,+, ·) be a ring with identity element 0 for + and identity element 1 for ·. Let
a, b ∈ R. If a · b = b · a = 1, a (also b) is said to be invertible and it is called a unit.

Definition

A field is a commutative ring in which every non-zero element is invertible.

Example

• (Q,+,×), (R,+,×) and (C,+,×) are all fields.

• (Z,+,×) is not a field. For example, 2 ∈ Z is not invertible and 2 ̸= 0.
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Multiplicative inverse

• By definition, for any a ∈ F , a ̸= 0 there exists b ∈ F such that ab = ba = 1.

• Then b is called the multiplicative inverse of a.

• It is easy to show that the multiplicative inverse of an element a is unique: let
b, c ∈ F be such that

ab = ac = 1.

Multiplying by b on the left, we get

bab = bac = b =⇒ b = c = b.

• We will denote the multiplicative inverse of a nonzero element a ∈ F by a−1.
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Example of a field

Example

Recall an example of a commutative ring we have seen: F2 = { 0, 1 }, logical XOR,
denoted ⊕,

0⊕ 0 = 0, 0⊕ 1 = 1⊕ 0 = 1, 1⊕ 1 = 0.

logical AND, denoted &,

0 & 0 = 0, 1 & 0 = 0 & 1 = 0, 1 & 1 = 1.

The only nonzero element is ?, which has inverse ? with respective to &.
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Example of a field

Example

Recall an example of a commutative ring we have seen: F2 = { 0, 1 }, logical XOR,
denoted ⊕,

0⊕ 0 = 0, 0⊕ 1 = 1⊕ 0 = 1, 1⊕ 1 = 0.

logical AND, denoted &,

0 & 0 = 0, 1 & 0 = 0 & 1 = 0, 1 & 1 = 1.

The only nonzero element is 1, which has inverse 1 with respective to &. Thus
(F2,⊕,&) is a field.
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Example of a field

Example

We have also seen E = { a, b } with addition:

a+ a = a, a+ b = b+ a = b, b+ b = a.

and multiplication:
a · a = a, a · b = b · a = a, b · b = b.

(E,+, ·) is a commutative ring. The only nonzero element, i.e. the element not equal
to the additive identity, is ?, which has multiplicative inverse ?
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Example of a field

Example

We have also seen E = { a, b } with addition:

a+ a = a, a+ b = b+ a = b, b+ b = a.

and multiplication:
a · a = a, a · b = b · a = a, b · b = b.

(E,+, ·) is a commutative ring. The only nonzero element, i.e. the element not equal
to the additive identity, is b, which has multiplicative inverse b since b · b = b. Hence
(E,+, ·) is a field.
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Finite field

Definition

A field with finite many elements is called a finite field.

Example

(F2,⊕,&) is a finite field. (E,+, ·) is a finite field.
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Field isomorphism

Definition

Let (F,+F , ·F ), (E,+E , ·E) be two fields. F is said to be isomorphic to E, written
F ∼= E if there is a bijective function f : F → E such that for any a, b ∈ F ,

• f(a+F b) = f(a) +E f(b), and

• f(a ·F b) = f(a) ·E f(b).

Example

Let us consider the fields (F2,⊕,&) and (E,+, ·). Define f : F → E, such that

f(0) = a, f(1) = b.

f is bijective. f preserves both addition and multiplication. For example,

f(1⊕ 0) = f(1) = b, f(1) + f(0) = b+ a = b =⇒ f(1⊕ 0) = f(1) + f(0).

We have F2
∼= E.
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Finite field

• It can be shown that any finite field with two elements is always isomorphic to F2.

• The next theorem says that, in general, there is only one finite field up to
isomorphism.

Theorem
• A finite field K contains pn elements for a prime number p.

• For any prime p and any positive integer n, there exists, up to isomorphism, a
unique field with pn elements.

Remark

We will use Fpn to denote the unique finite field with pn elements.

Example

F2 = {0, 1}
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Bits

Definition
• Variables that range over F2 are called Boolean variables or bits.

• Addition of two bits is defined to be logical XOR , also called exclusive or.

• Multiplication of two bits is defined to be logical AND.

• When the value of a bit is changed, we say the bit is flipped.
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Definition

Definition (Vector space)

Let F be a field. A nonempty set V , together with two binary operations – vector
addition (denoted by +) and scalar multiplication by elements of F (a map
V × F → V ), is called a vector space over F if (V,+) is an abelian group and for any
v,w ∈ V and any a, b ∈ F , we have

• a(v +w) = av + aw.

• (a+ b)v = av + bv.

• a(bv) = (ab)v.

• 1v = v, where 1 is the multiplicative identity of F .

Elements of V are called vectors and elements of F are called scalars.

Example

The set of complex numbers C = { x+ iy | x, y ∈ R } is a vector space over R.
How are vector addition and scalar multiplication defined?
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Example of a vector space

Example

The set of complex numbers C = { x+ iy | x, y ∈ R } is a vector space over R. Note
that for any a1 + b1i, a2 + b2i ∈ C, vector addition is defined as

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i.

And for any a ∈ R, scalar multiplication by elements of R is defined as

a(a1 + b1i) = aa1 + ab1i.

The identity element for vector addition is ? Furthermore, for any a+ bi ∈ C, its
inverse with respect to vector addition is given by ?
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Example of a vector space

Example

The set of complex numbers C = { x+ iy | x, y ∈ R } is a vector space over R. Note
that for any a1 + b1i, a2 + b2i ∈ C, vector addition is defined as

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i.

And for any a ∈ R, scalar multiplication by elements of R is defined as

a(a1 + b1i) = aa1 + ab1i.

The identity element for vector addition is 0. Furthermore, for any a+ bi ∈ C, its
inverse with respect to vector addition is given by −a− bi.
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F n

• Let F be a field

• Let Fn = { (v0, v1, . . . , vn−1) | vi ∈ F ∀i } be the set of n−tuples over F .

• We define vector addition and scalar multiplication by elements of F
component-wise as follows

for any v = (v0, v1, . . . , vn−1) ∈ Fn, w = (w0, w1, . . . , wn−1) ∈ Fn, and any a ∈ F ,

v +w := (v0 + w0, v1 + w1, . . . , vn−1 + wn−1),

av := (av0, av1, . . . , avn−1).

Theorem

Fn = { (v0, v1, . . . , vn−1) | vi ∈ F ∀i } together with vector addition and scalar
multiplication defined above is a vector space over F .
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Fn
2

Example

• Let F = F2, the unique finite field with two elements.

• Let n be a positive integer, it follows from the previous theorem that Fn
2 is a

vector space over F2.

• The identity element for vector addition is ?

• For any v = (v0, v1, . . . , vn−1) ∈ Fn
2 , the inverse of v with respect to vector

addition is ?
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Fn
2

Example

• Let F = F2, the unique finite field with 2 elements.

• Let n be a positive integer, it follows from the previous theorem that Fn
2 is a

vector space over F2.

• The identity element for vector addition is 0.

• For any v = (v0, v1, . . . , vn−1) ∈ Fn
2 , the inverse of v with respect to vector

addition is (−v0,−v1, . . . ,−vn−1) = v.
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Fn
2

• Recall that variables ranging over F2 are called bits. We have shown that
(F2,⊕,&) is a finite field, where ⊕ is logical XOR, and & is logical AND.

Definition

Vector addition in Fn
2 is called bitwise XOR, also denoted ⊕. Similarly, we define bitwise

AND between any two vectors v = (v0, v1, . . . , vn−1), w = (w0, w1, . . . , wn−1) from Fn
2

as follows:
v & w := (v0 & w0, v1 & w1, . . . , vn−1 & wn−1).

Another useful binary operation, logical OR, denoted ∨, on F2 is defined as follows:

0 ∨ 0 = 0, 1 ∨ 0 = 1, 0 ∨ 1 = 1, 1 ∨ 1 = 1.

It can also be extended to Fn
2 in a bitwise manner and we get bitwise OR.
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Fn
2

For simplicity, we sometimes write v0v1 . . . vn−1 instead of (v0, v1, . . . , vn−1).

Example

Let n = 3, take 111, 101 ∈ F3
2,

111⊕ 101 = 010

111 & 101 = 101

111 ∨ 101 = 111.
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Byte

Definition

A vector in Fn
2 is called an n-bit binary string. A 4−bit binary string is called a nibble.

An 8−bit binary string is called a byte.

Example

• 1010, 0011 ∈ F4
2 are two nibbles. Furthermore,

1010⊕ 0011 = 1001, 1010 & 0011 = 0010.

• 00101100 is a byte.

Remark

A byte can be considered as a base−2 representation/binary representation of an
integer. The value of this integer is between 0 and 255 or between 0016 and FF16 with
base−16 representation/hexadecimal representation.
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Congruent modulo n

• Let n > 1 be an integer.

• We are interested in the set { 0, 1, 2 . . . , n− 1 }.
• It can be considered as the set of possible remainders when dividing by n

• We will also associate each integer with one element in the set – namely the
remainder of this integer divided by n.

Formally, we define

Definition

If n|(b− a), then we say a is congruent to b modulo n, written a ≡ b mod n. n is
called the modulus.

Remark

Saying a is congruent to b modulo n is equivalent to saying that the remainder of a
divided by n is the same as the remainder of b divided by n.
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Congruence class

Definition

For any a ∈ Z, the congruence class of a modulo n, denoted a, is given by

a := { b | b ∈ Z, b ≡ a mod n } .

Lemma

Let Zn denote the set of all congruence classes of a ∈ Z modulo n. Then
Zn =

{
0, 1, . . . , n− 1

}
.

Example

Let n = 5. We have 1 = 6 = −4. Z5 =
{
0, 1, 2, 3, 4

}
.
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Addition and multiplication in Zn

Define addition on the set Zn as follows:

a+ b = a+ b.

Example

• Let n = 7, 3 + 2 = 5.

• Let n = 4, 2 + 2 = 4 = 0.

Define multiplication on Zn as follows

a · b = ab.

Example

Let n = 5,
−2 · 13 = 3 · 3 = 9 = 4
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Zn

Theorem

(Zn,+, ·), the set Zn together with addition multiplication defined just now is a
commutative ring.

Remark

For simplicity, we write a instead of a and to make sure there is no confusion we would
first say a ∈ Zn. In particular, Zn = { 0, 1, 2, . . . , n− 1 }. Furthermore, to emphasize
that multiplication or addition is done in Zn, we write ab mod n or a+ b mod n.

Example

Let n = 5, we write

4× 2 mod 5 = 8 mod 5 = 3, or 4× 2 ≡ 8 ≡ 3 mod 5.
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Multiplicative inverse in Zn

Lemma

For any a ∈ Zn, a ̸= 0, a has a multiplicative inverse, denoted a−1 mod n, if and only
if gcd(a, n) = 1.

Proof.

We provide part of the proof.
By Bézout’s identity, gcd(a, n) = sa+ tn for some s, t ∈ Z. If gcd(a, n) = 1, then
sa+ tn = 1, i.e. n|(1− sa).
By definition, sa ≡ 1 mod n, thus a−1 mod n = s.
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Zn

Corollary

Zn is a field if and only if n is prime.

Proof.

We know that Zn is a commutative ring.
By Definition of a field and the previous Lemma, Zn is a field if and only if for any
a ∈ Zn such that a ̸= 0, we have gcd(a, n) = 1, which is true if and only if n is a
prime.
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Find multiplicative inverse in Zn

• Recall that by the extended Euclidean algorithm, we can find integers s, t such
that

gcd(a, n) = sa+ tn

for any a, n ∈ Z.
• In particular, when gcd(a, n) = 1, we can find s, t such that 1 = as+ tn, which
gives as mod n = 1.

• Thus, we can find a−1 mod n = s mod n by the extended Euclidean algorithm.
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Example – Find multiplicative inverse in Zn

Example

We have calculated gcd(160, 21) = 1 using the Euclidean algorithm. By the extended
Euclidean algorithm,

1 = 3− 2, 2 = 5− 3,
3 = 8− 5, 5 = 13− 8,
8 = 21− 13, 13 = 160− 21× 7.

We have

1 = 3− (5− 3) = 3× 2− 5 = 8× 2− 5× 3 = 8× 2− (13− 8)× 3

= 8× 5− 13× 3 = 21× 5− 13× 8 = 21× 5− (160− 21× 7)× 8

= (−8)× 160 + 61× 21.

Thus
21−1 mod 160 =?
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Example – Find multiplicative inverse in Zn

Example

By the extended Euclidean algorithm,

1 = 3− 2, 2 = 5− 3,
3 = 8− 5, 5 = 13− 8,
8 = 21− 13, 13 = 160− 21× 7.

1 = 3− (5− 3) = 3× 2− 5 = 8× 2− 5× 3 = 8× 2− (13− 8)× 3

= 8× 5− 13× 3 = 21× 5− 13× 8 = 21× 5− (160− 21× 7)× 8

= (−8)× 160 + 61× 21.

Thus
21−1 mod 160 = 61.

Similarly
160−1 mod 21 =?
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Example – Find multiplicative inverse in Zn

Example

By the extended Euclidean algorithm,

1 = 3− 2, 2 = 5− 3,
3 = 8− 5, 5 = 13− 8,
8 = 21− 13, 13 = 160− 21× 7.

1 = 3− (5− 3) = 3× 2− 5 = 8× 2− 5× 3 = 8× 2− (13− 8)× 3

= 8× 5− 13× 3 = 21× 5− 13× 8 = 21× 5− (160− 21× 7)× 8

= (−8)× 160 + 61× 21.

Thus
21−1 mod 160 = 61.

Similarly
160−1 mod 21 = −8 mod 21 = 13.
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Z∗
n

Definition

Let Z∗
n denote the set of congruence classes in Zn which have multiplicative inverses:

Z∗
n := { a | a ∈ Zn, gcd(a, n) = 1 } .

The Euler’s totient function, φ, is a function defined on the set of integers bigger than
1 such that φ(n) gives the cardinality of Z∗

n:

φ(n) = |Z∗
n|.

Example

• Let n = 3, Z∗
3 = { 1, 2 }, φ(3) =?

• Let n = 4, Z∗
4 =? φ(4) =?

• Let n = p be a prime number, Z∗
p =? φ(p) =?

93 / 140



Z∗
n

Definition

Let Z∗
n denote the set of congruence classes in Zn which have multiplicative inverses:

Z∗
n := { a | a ∈ Zn, gcd(a, n) = 1 } .

The Euler’s totient function, φ, is a function defined on the set of integers bigger than
1 such that φ(n) gives the cardinality of Z∗

n:

φ(n) = |Z∗
n|.

Example

• Let n = 3, Z∗
3 = { 1, 2 }, φ(3) = 2.

• Let n = 4, Z∗
4 = { 1, 3 }, φ(4) = 2.

• Let n = p be a prime number, Z∗
p = Zp−{ 0 } = { 1, 2, . . . , p− 1 }, φ(p) = p− 1.
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Euler’s totient function

Theorem

For any n ∈ Z, n > 1,

if n =

k∏
i=1

peii , then φ(n) = n

k∏
i=1

(
1− 1

pi

)
, (1)

where pi are distinct primes.

Example

• Let n = 10. 10 = 2× 5. We can count the elements in Z10 that are coprime to 10
(there are four of them): Z10 = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } . By the above theorem,
we also have

φ(10) = 10×
(
1− 1

2

)
×
(
1− 1

5

)
= 4.
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Euler’s totient function

Example

• Let n = 120. 120 = 23 × 3× 5.

φ(120) =?

• Let n = pq, where p and q are two distinct primes. Then

φ(n) =?

• Let n = pk, where p is a prime and k ∈ Z, k ≥ 1, then

φ(pk) =?

• In particular, if p = 2,
φ(2k) =?
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Euler’s totient function

Example

• Let n = 120. 120 = 23 × 3× 5.

φ(120) = 120×
(
1− 1

2

)
×
(
1− 1

3

)
×
(
1− 1

5

)
= 32.

• Let n = pq, where p and q are two distinct primes. Then

φ(n) = pq

(
1− 1

p

)(
1− 1

q

)
= (p− 1)(q − 1).

• Let n = pk, where p is a prime and k ∈ Z, k ≥ 1, then

φ(pk) = pk
(
1− 1

p

)
= pk−1(p− 1).

• In particular, if p = 2,
φ(2k) = 2k−1. 97 / 140



Z∗
n

Lemma

(Z∗
n, ·), the set Z∗

n together with the multiplication defined in Zn, is an abelian group.

Recall multiplication in Zn:
a · b = ab.

Example

Let n = 5,
−2 · 13 = 3 · 3 = 9 = 4
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Euler’s Theorem

Theorem (Euler’s Theorem)

For any a ∈ Z, aφ(n) ≡ 1 mod n if gcd(a, n) = 1.

Example

Let n = 4. We have calculated that φ(4) = 2. And

32 = 9 ≡ 1 mod 4.

Let n = 10. we have calculated that φ(10) = 4. And

34 = 81 ≡ 1 mod 10.
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Fermat’s Little Theorem

Note that φ(p) = p− 1, a direct corollary of Euler’s Theorem is Fermat’s Little
Theorem.

Theorem (Fermat’s Little Theorem)

Let p be a prime. For any a ∈ Z, if p ∤ a, then ap−1 ≡ 1 mod p.

Example

• Let p = 3. 22 = 4 ≡ 1 mod 3.

• Let p = 5. 24 = 16 ≡ 1 mod 5.
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An ancient problem from the 3rd century

Sun Zi Suan Jing

“There is something whose amount is unknown. If we count by threes, 2 are remaining;
by fives, 3 are remaining; and by sevens, 2 are remaining. How many things are there?”

Translating to our notations, the question is

x ≡ 2 mod 3

x ≡ 3 mod 5

x ≡ 2 mod 7

x = ?

src: https://origin-view.inews.qq.com/a/20220129A09HWT00
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Solving a system of simultaneous linear congruences

Before answering the question, we provide the solution for a more general case. Let us
consider a system of simultaneous linear congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ ak mod mk,

where mi are pairwise coprime positive integers, i.e gcd(mi,mj) = 1 for i ̸= j.
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Solving a system of simultaneous linear congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ ak mod mk,

Define

m =

k∏
i=1

mi, Mi =
m

mi
, 1 ≤ i ≤ k.

Since mi are pairwise coprime, mi and Mi are coprime, and yi := M−1
i mod mi

exists. It can be computed by the extended Euclidean algorithm. Let

x =

k∑
i=1

aiyiMi mod m.

Then x is a solution.
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An ancient problem from the 3rd century

x ≡ 2 mod 3

x ≡ 3 mod 5

x ≡ 2 mod 7

x = ?

We have m1 = 3,m2 = 5,m3 = 7, a1 = 2, a2 = 3, a3 = 2,

m = 3× 5× 7 = 105,

M1 = 35 ≡ 2 mod 3, M2 = 21 ≡ 1 mod 5, M3 = 15 ≡ 1 mod 7.

y1 = M−1
1 mod 3 = 2, y2 = M−1

2 mod 5 = 1, y3 = M−1
3 mod 7 = 1.

x =

3∑
i=1

aiyiMi = 2×2×35+3×1×21+2×1×15 mod 105 = 233 mod 105 = 23 mod 105.
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m1,m2, . . . ,mk be pairwise coprime integers. For any a1, a2, . . . , ak ∈ Z, the
system of simultaneous congruences

x ≡ a1 mod m1, x ≡ a2 mod m2, . . . x ≡ ak mod mk

has a unique solution modulo m =
∏k

i=1mi.
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CRT – Example

Example

Find the unique solution x ∈ Z10 such that

x ≡ 10 mod 3, x ≡ 10 mod 5.

We have
m1 =?, m2 =?, a1 =?, a2 =?.

Hence
m =?, M1 =?, M2 =?, y1 =?, y2 =?.

And
x =?
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CRT – Example

Example

Find the unique solution x ∈ Z15 such that

x ≡ 10 mod 3, x ≡ 10 mod 5.

We have
m1 = 3, m2 = 5, a1 = a2 = 10.

Hence

m = 15, M1 = 5, M2 = 3, y1 = 5−1 mod 3 = 2, y2 = 3−1 mod 5 = 2.

And

x = a1y1M1 + a2y2M2 mod n = 10× 2× 5+ 10× 2× 3 mod 15 = 160 mod 15 = 10.
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CRT – Example

Example

p and q are distinct primes, n = pq, ap, aq ∈ Z. Find the unique x ∈ Zn such that

x ≡ ap mod p, x ≡ aq mod q.

We have
M1 = q, M2 = p,

yq := y1 = M−1
1 mod p = q−1 mod p, yp := y2 = M−1

2 mod q = p−1 mod q,

and
x = apyqq + aqypp mod n
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CRT – Example

Example

Take two distinct primes p, q, and let n = pq. By CRT, for any a ∈ Zn, there is a
unique solution x ∈ Zn such that

x ≡ a mod p, x ≡ a mod q.

Since a ≡ a mod p and a ≡ a mod q, the unique solution is given by x = a ∈ Zn.
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Definition
• We will introduce another example of a commutative ring – polynomial ring.

• Let (F,+, ·) be a field with additive identity 0 and multiplicative identity 1.

Definition
• Define

F [x] :=

{
n∑

i=0

aix
i

∣∣∣∣∣ ai ∈ F, n ≥ 0

}
.

An element f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ F [x] is called a
polynomial over F .

• If an ̸= 0, we define degree of f(x), denoted deg(f(x)), to be n. Following the
convention, we define deg(0) = −∞.

Example

Let F = R, then f(x) = x+ 1 ∈ R[x] is a polynomial over R and deg(f(x)) =?
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Polynomials
• We will introduce another example of a commutative, ring – polynomial ring.

• Let (F,+, ·) be a field with additive identity 0 and multiplicative identity 1.

Definition
• Define

F [x] :=

{
n∑

i=0

aix
i

∣∣∣∣∣ ai ∈ F, n ≥ 0

}
.

An element f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ F [x] is called a
polynomial over F .

• If an ̸= 0, we define degree of f(x), denoted deg(f(x)), to be n. Following the
convention, we define deg(0) = −∞.

Example

Let F = R, then f(x) = x+ 1 ∈ R[x] is a polynomial over R and deg(f(x)) = 1.
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Addition and multiplication
f(x) = anx

n + an−1x
n−1 + · · ·+ a0,

g(x) = bmxm + bm−1x
m−1 + · · ·+ b0 in F [x]

Without loss of generality, let us assume n ≥ m, write

g(x) = bnx
n + bn−1x

n−1 + · · ·+ b0,

where bi = 0 for i > m. Then

f(x) +F [x] g(x) := cnx
n + cn−1x

n−1 + · · ·+ c0, where ci = ai + bi.

And

f(x)×F [x] g(x) := dnx
n + dn−1x

n−1 + · · ·+ d0, where di =

i∑
j=0

ajbi−j .

Example

Let F = R. Take f(x) = x+ 1, g(x) = x in R[x],

f(x) +R[x] g(x) = 2x+ 1, f(x)×R[x] g(x) = x2 + x.
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Polynomial ring

Theorem

With the addition +F [x] and multiplication ×F [x] defined before, (F [x],+F [x],×F [x]) is
a commutative ring. It is called the polynomial ring over F .

• The identity element for +F [x] is 0 – the identity element for + in F .

• The identity element for ×F [x] is 1 – the identity element for · in F .

• For simplicity, we will write f(x)g(x) and f(x) + g(x) instead of f(x)×F [x] g(x)
and f(x) +F [x] g(x).

Example

Let F = R, R[x] is a ring. The identity element for multiplication is 1. The identity
element for addition is 0.
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Division Algorithm

Theorem (Division Algorithm)

For any f(x), g(x) ∈ F [x], if deg(f(x)) ≥ 1, there exists s(x), r(x) ∈ F [x] such that
deg(r(x)) < deg(f(x)) and

g(x) = s(x)f(x) + r(x).

r(x) is called the remainder and s(x) is called the quotient.

Definition

Let f(x), g(x) ∈ F [x], if f(x) ̸= 0 and g(x) = s(x)f(x) for some s(x) ∈ F [x], then we
say f(x) divides g(x), written f(x)|g(x).

Example

Take g(x) = 4x5 + x3, f(x) = x3 ∈ F3[x], then g(x) = f(x)(4x2 + 1) and f(x)|g(x).
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Irreducible polynomial

Definition

A polynomial f(x) ∈ F [x] of positive degree is said to be reducible (over F ) if there
exist g(x), h(x) ∈ F [x] such that

deg(g(x)) < deg(f(x)), deg(h(x)) < deg(f(x)), and f(x) = g(x)h(x).

Otherwise, it is said to be irreducible (over F ).

Example

Let F = F2. All the polynomials of degree 2 are x2, x2 + 1, x2 + x+ 1, x2 + x. Which
polynomials are reducible?

Remark

f(x) ∈ F [x] of degree 2 or 3 is reducible over F if and only if it has a root in F a.

aAn element a ∈ F is a root of f(x) if f(a) = 0.
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Irreducible polynomial

Definition

A polynomial f(x) ∈ F [x] of positive degree is said to be reducible (over F ) if there
exist g(x), h(x) ∈ F [x] such that

deg(g(x)) < deg(f(x)), deg(h(x)) < deg(f(x)), and f(x) = g(x)h(x).

Otherwise, it is said to be irreducible (over F ).

Example

Let F = F2. All the polynomials of degree 2 are x2, x2 + 1, x2 + x+ 1, x2 + x. The
only irreducible polynomial of degree 2 is x2 + x+ 1.

x2 = x · x, x2 + 1 = (x+ 1)2, x2 + x = x(x+ 1)
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Congruence modulo f(x)

Definition

For any g(x), h(x) ∈ F [x], if f(x)|(g(x)− h(x)), we say h(x) is congruent to g(x)
modulo f(x), written g(x) ≡ h(x) mod f(x).

Congruence class of g(x) modulo f(x) is given by { h(x) | h(x) ≡ g(x) mod f(x) } .

Lemma

Suppose f(x) has degree n, where n ≥ 1. Let F [x]/(f(x)) denote the set of all
congruence classes of g(x) ∈ F [x] modulo f(x). Then

F [x]/(f(x)) =

{
n−1∑
i=0

aix
i

∣∣∣∣∣ ai ∈ F for 0 ≤ i < n

}
.

Example

Let f(x) = x2 + x+ 1 ∈ F2[x]. F2[x]/(f(x)) =?
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Congruence modulo f(x)

Example

Let f(x) = x2 + x+ 1 ∈ F2[x]. Then

F2[x]/(f(x)) = { 0, 1, x, x+ 1 } .

Similarly, let g(x) = x2 ∈ F2[x]. Then

F2[x]/(g(x)) = { 0, 1, x, x+ 1 } .

F2[x]/(f(x)) and F2[x]/(g(x)) contain equivalent classes generated by the same
polynomials.
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Addition and multiplication in F [x]/(f(x))

• Naturally, for any g(x), h(x) ∈ F [x]/(f(x)), same as in for Zn, addition and
multiplication in F [x]/(f(x)) are computed modulo f(x).

Example

Let F = F2, f(x) = x2 + x+ 1 ∈ F2[x], g(x) = x ∈ F2[x]/(f(x)), and
h(x) = x ∈ F2[x]/(f(x)). We have

g(x) + h(x) mod f(x) =?
g(x)h(x) mod f(x) =?
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Addition and multiplication in F [x]/(f(x))

• Naturally, for any g(x), h(x) ∈ F [x]/(f(x)), same as in for Zn, addition and
multiplication in F [x]/(f(x)) are computed modulo f(x).

Example

Let F = F2, f(x) = x2 + x+ 1 ∈ F2[x], g(x) = x ∈ F2[x]/(f(x)), and
h(x) = x ∈ F2[x]/(f(x)). We have

g(x) + h(x) mod f(x) = x+ x mod f(x) = 0,
g(x)h(x) mod f(x) = x2 mod f(x) = x+ 1.
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Fpn

Theorem
• Together with addition and multiplication modulo f(x), F [x]/(f(x)) is a

commutative ring.

• It is a field if and only if f(x) is irreducible.

• Let p be a prime, and let f(x) ∈ Fp[x] be an irreducible polynomial of
deg(f(x)) = n. Then Fp[x]/(f(x)) ∼= Fpn .

Example

Let f(x) = x2 + x+ 1 ∈ F2[x], by the above theorem, F2[x]/(f(x)) ∼= ?

122 / 140



Fpn

Theorem
• Together with addition and multiplication modulo f(x), F [x]/(f(x)) is a

commutative ring.

• It is a field if and only if f(x) is irreducible.

• Let p be a prime, and let f(x) ∈ Fp[x] be an irreducible polynomial of
deg(f(x)) = n. Then Fp[x]/(f(x)) ∼= Fpn .

Example

Let f(x) = x2 + x+ 1 ∈ F2[x], by the above theorem, F2[x]/(f(x)) ∼= F22 .
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Similarity to integers

Zn F [x]/(f(x))
a+ b := (a+ b) mod n g(x) + h(x) := (g(x) + h(x)) mod f(x)
a · b := (a · b) mod n g(x) · h(x) := (g(x) · h(x)) mod f(x)
Zn is a ring F [x]/(f(x)) is a ring
Zn is a field ⇐⇒ n is prime F [x]/(f(x)) is a field ⇐⇒ f(x) is irreducible

• Additive identity and multiplicative identity in F [x]/(f(x)) are the same as those
in F .

• Multiplicative inverse can be found using the extended Euclidean algorithm
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F28

• Let f(x) = x8 + x4 + x3 + x+ 1 ∈ F2[x].

• It can be shown that f(x) is irreducible over F2

• Based on the previous results, we know that

F2[x]/(f(x)) =

{
7∑

i=0

bix
i

∣∣∣∣∣ bi ∈ F2 ∀i

}
,

and
F2[x]/(f(x)) ∼= F28 .

125 / 140



Bytes

• We note that any

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 ∈ F2[x]/(f(x))

can be stored as a byte b7b6b5b4b3b2b1b0 ∈ F8
2

• Define φ:

φ : F2[x]/(f(x)) → F8
2

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 7→ b7b6b5b4b3b2b1b0

• φ is bijective

Example

• x6 + x4 + x2 + x+ 1 ∈ F2[x]/(f(x)) corresponds to 010101112 = 5716

• x7 + x+ 1 ∈ F2[x]/(f(x)) corresponds to 100000112 = 8316.
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Addition and multiplication between bytes
With addition and multiplication modulo f(x) in F2[x]/(f(x)), we can define the
corresponding addition and multiplication between bytes.

Definition

For any two bytes v = v7v6 . . . v1v0 and w = w7w6 . . . w1w0, let
gv(x) = v7x

7 + v6x
6 + · · ·+ v1x+ v0 and gw(x) = w7x

7 +w6x
6 + · · ·+w1x+w0 be

the corresponding polynomials in F2[x]/(f(x)). We define

v +w = gv(x) + gw(x) mod f(x), v ×w = gv(x)gw(x) mod f(x).

Example

f(x) = x8 + x4 + x3 + x+ 1. Compute the sum and product between

x6 + x4 + x2 + x+ 1 ∈ F2[x]/(f(x)) i.e. 010101112 = 5716

and
x7 + x+ 1 ∈ F2[x]/(f(x)) i.e. 100000112 = 8316
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Addition and multiplication between bytes

Example

f(x) = x8 + x4 + x3 + x+ 1.

5716 + 8316 = (x6 + x4 + x2 + x+ 1) + (x7 + x+ 1) mod f(x)

= x7 + x6 + x4 + x2 mod f(x) = 110101002 = D416.
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Addition and multiplication between bytes

Example

f(x) = x8 + x4 + x3 + x+ 1.

5716 × 8316 = (x6 + x4 + x2 + x+ 1)(x7 + x+ 1)

(x6 + x4 + x2 + x+ 1)(x7 + x+ 1) = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1,

x8 = x4 + x3 + x+ 1 mod f(x)

x9 = x5 + x4 + x2 + x mod f(x)

x11 = x7 + x6 + x4 + x3 mod f(x)

x13 = x9 + x8 + x6 + x5 mod f(x).

x13+x11+x9+x8+x6+x5+x4+x3+1 = x11+x4+x3+1 = x7+x6+1 mod f(x).

5716 × 8316 = 110000012 = C116.
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Addition between bytes

For any

g(x) =

n−1∑
i=0

aix
i, h(x) =

n−1∑
i=0

bix
i

from F2[x]/(f(x)), we have

g(x) + h(x) mod f(x) =

n−1∑
i=0

cix
i, where ci = ai + bi mod 2.

Recall that a byte is also a vector in F8
2, we have defined vector addition as bitwise

XOR, and
v +F8

2
w = u = u7u6 . . . u1u0, where ui = vi ⊕ wi.

We note that a+ b mod 2 = a⊕ b for a, b ∈ F2. Thus, our definition of addition
between two bytes agrees with the vector addition between two vectors in F8

2.
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Multiplication by 02

f(x) = x8 + x4 + x3 + x+ 1.

We will compute the formula for a byte multiplied by 0216 = x. Take any
g(x) = b7x

7 + b6x
6 + · · ·+ b1x+ b0 ∈ F2[x]/(f(x))

g(x)x mod f(x)

= (b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0)x mod f(x)

= b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x mod f(x)

= b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x+ b7x
4 + b7x

3 + b7x+ b7 mod f(x)

= b6x
7 + b5x

6 + b4x
5 + (b3 + b7)x

4 + (b2 + b7)x
3 + b1x

2 + (b0 + b7)x+ b7 mod f(x).

Thus, for any byte b7b6 . . . b1b0, multiplication by 0216 is equivalent to left shift by 1
and XOR with 000110112 = 1B16 if b7 = 1.
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Multiplication by 02

For any byte b7b6 . . . b1b0, multiplication by 0216 is equivalent to left shift by 1 and
XOR with 000110112 = 1B16 if b7 = 1.

Example
• 5716 = 010101112, 0216 × 5716 = 10101110 = AE16.

• 8316 = 100000112, 0216 × 8316 =?

• D416 = 110101002, 0216 × D416 =?
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Multiplication by 02

Example
• 5716 = 010101112, 0216 × 5716 = 10101110 = AE16.

• 8316 = 100000112, 0216 × 8316 = 000001102 ⊕ 000110112 = 000111012 = 1D16.

• D416 = 110101002, 0216 × D416 = 101010002 ⊕ 000110112 = 101100112 = B316.
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Multiplication by 03
Let us compute the multiplication of a byte by 0316 = x+ 1. Take any
h(x) = b7x

7 + b6x
6 + · · ·+ b1x+ b0 ∈ F2[x]/(f(x)), then

h(x)(x+ 1) mod f(x) = h(x)x+ h(x) mod f(x).

Thus, for any byte b7b6 . . . b1b0, multiplication by 0316 is equivalent to first multiplying
by 0216 (left shift by 1 and XOR with 000110112 = 1B16 if b7 = 1) and then XOR with
the byte itself (b7b6 . . . b1b0).

Example

We have computed

0216 × 5716 = AE16, 0216 × 8316 = 1D16, 0216 × D416 = B316.

We have

• 0316 × 5716 = AE16 ⊕ 5716 = 10101110⊕ 01010111 = F916.

• 0316 × 8316 = 1D16 ⊕ 8316 = 9E16.

• 0316 × D416 = B316 ⊕ D416 = 6716. 134 / 140



Inverse of a byte as an element in F2[x]/(f(x)).

f(x) = x8 + x4 + x3 + x+ 1.

As mentioned before, multiplicative inverse of g(x) ∈ F2[x]/(f(x)) can be found using
the extended Euclidean algorithm

Example

0316 = 000000112 = x+ 1. By the Euclidean algorithm,

f(x) = (x+ 1)(x7 + x6 + x5 + x4 + x2 + x) + 1 =⇒ gcd(f(x), (x+ 1)) = 1.
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Long division

In primary school, we learned to do long division for calculating the quotient and
remainder of dividing one integer by another integer. For example, to compute

1346 = 25× q + r,

we can write

25 1346
53

125

96
75

21

and we get q = 53, r = 21.
Similarly, let us take two polynomials f(x), g(x) ∈ F [x], where F is a field. We can
also compute f(x) divided by g(x) using long division.
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Long division

Let
f(x) = x8 + x4 + x3 + x+ 1 ∈ F2[x], g(x) = x+ 1 ∈ F2[x].

We have
x7 + ?

x+ 1))x8 + x4 + x3 + x+1

x8 + x7
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Long division

x7 + x6 + x5 + x4 + x2 + x + 1

x+ 1))x8 + x4 + x3 + x + 1

x8 + x7

x7 + x4 + x3 + x + 1

x7 + x6

x6 + x4 + x3 + x + 1

x6 + x5

x5 + x4 + x3 + x+ 1

x5 + x4

x3 + x + 1

x3 + x2

x2 + x+ 1

x2 + x

1

f(x) = (x+1)(x7+x6+x5+x4+x2+x+1)+1.
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Inverse of a byte as an element in F2[x]/(f(x)).

f(x) = x8 + x4 + x3 + x+ 1.

As mentioned before, multiplicative inverse of g(x) ∈ F2[x]/(f(x)) can be found using
the extended Euclidean algorithm

Example

0316 = 000000112 = x+ 1. By the Euclidean algorithm,

f(x) = (x+ 1)(x7 + x6 + x5 + x4 + x2 + x) + 1 =⇒ gcd(f(x), (x+ 1)) = 1.

By the extended Euclidean algorithm,

1 = f(x) + (x+ 1)(x7 + x6 + x5 + x4 + x2 + x).

We have

03−1
16 = (x+ 1)−1 mod f(x) = x7 + x6 + x5 + x4 + x2 + x = 111101102 = F616.
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Assignment 1

• Read textbook
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