Cryptography and Embedded System Security CRAESS_I

Xiaolu Hou

FIIT, STU xiaolu.hou @ stuba.sk

<ロ><回><日><日><日><日><日><日><日><日><日><日><日><日><日</td>1/140

Course Outline

- Abstract algebra and number theory
- Introduction to cryptography
- Symmetric block ciphers and their implementations
- RSA, RSA signatures, and their implementations
- Probability theory and introduction to SCA
- SPA and non-profiled DPA
- Profiled DPA
- SCA countermeasures
- FA on RSA and countermeasures
- FA on symmetric block ciphers
- FA countermeasures for symmetric block cipher
- Practical aspects of physical attacks
 - Invited speaker: Dr. Jakub Breier, Senior security manager, TTControl GmbH

Recommended reading

- Textbook
 - Sections 1.1 1.5

Lecture Outline

- Preliminaries
- Integers
- Groups
- Rings
- Fields
- Vector Spaces
- Modular Arithmetic
- Polynomial Rings

Abstract algebra and number theory

• Preliminaries

- Integers
- Groups
- Rings
- Fields
- Vector Spaces
- Modular Arithmetic
- Polynomial Rings

- \emptyset : empty set
- |S|: cardinality of S
- $a \in S$: a is an element in set S
- $a \notin S$: a is not an element in set S
- $S \subseteq T$: if $s \in S$, then $s \in T$, S is a subset of T
- S = T: $S \subseteq T$ and $T \subseteq S$
- The *power set* of a set S, denoted by 2^S , is the set of all subsets of S.

Let
$$T = \{ 0, 1, 2, 3 \}$$
 and $S = \{ 2, 3 \}$, then

- S ? T and T ? S.
- 2? S, 0? S.
- |S| = ?, |T| = ?.

•
$$2^S = ?$$
.

- Ø: empty set
- |S|: cardinality of S
- $a \in S$: a is an element in set S
- $a \notin S$: a is not an element in set S
- $S \subseteq T$: if $s \in S$, then $s \in T$, S is a subset of T
- S = T: $S \subseteq T$ and $T \subseteq S$
- The *power set* of a set S, denoted by 2^S , is the set of all subsets of S.

- Let $T=\{\ 0,1,2,3\ \}$ and $S=\{\ 2,3\ \},$ then
 - $S \subseteq T$ and $T \not\subseteq S$.
 - $2 \in S$, $0 \notin S$.

•
$$|S| = 2$$
, $|T| = 4$.

•
$$2^S = \{ \emptyset, S, \{ 2 \}, \{ 3 \} \}.$$

- Union: $A \cup B$
- Intersection: $A \cap B$
- Difference: $A B = \{ a \in A, a \notin B \}$
- Complement of A in S: $A^c = S A$
- Cartesian product $A \times B = \{ (a, b) \mid a \in A, b \in B \}$
 - ordered pairs

Example

•
$$A = \{ 0, 1, 2 \}, B = \{ 2, 3, 4 \}$$

• $A \cup B = \{ 0, 1, 2, 3, 4 \}$, $A \cap B = \{ 2 \}$

Example

- $A = \{ 2, 4, 6 \}$, $B = \{ 1, 3, 5 \}$, $S = A \cup B$
- A B =? Complement of A in S is ?

 $A \times B = ?$

- Union: $A \cup B$
- Intersection: $A \cap B$
- Difference: $A B = \{ a \in A, a \notin B \}$
- Complement of A in S: $A^c = S A$
- Cartesian product $A \times B = \{ (a, b) \mid a \in A, b \in B \}$
 - ordered pairs

Example

•
$$A = \{ 0, 1, 2 \}, B = \{ 2, 3, 4 \}$$

• $A \cup B = \{ 0, 1, 2, 3, 4 \}$, $A \cap B = \{ 2 \}$

Example

- $A=\{\,2,4,6\,\}$, $B=\{\,1,3,5\,\}$, $S=A\cup B$
- A B = A. Complement of A in S is B

 $A\times B=\left\{\ (2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3),(6,5)\ \right\}.$

Functions

Definition

A function/map $f: S \to T$ is a rule that assigns each element $s \in S$ a **unique** element $t \in T$.

- S domain of f; T codomain of f.
- If f(s) = t, then t is called the *image* of s, s is a *preimage* of t.
- For any $A \subseteq T$, preimage of A under f is

$$f^{-1}(A) := \{ s \in S \mid f(s) \in A \}$$

Example

Define

$$\begin{array}{rccc} f: \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x^2 \end{array}$$

where $\mathbb R$ is the set of real numbers. Then f has domain $\mathbb R$ and codomain $\mathbb R.$

Functions

Example Define

$$\begin{array}{rccc} f: \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x^2 \end{array}$$

where \mathbb{R} is the set of real numbers. Then f has domain \mathbb{R} and codomain \mathbb{R} . Let $A = \{1\} \subseteq \mathbb{R}$, the preimage of A under f is given by

$$f^{-1}(A) = ?$$

Let $B = \{-1\} \subseteq \mathbb{R}$, then $f^{-1}(B) = ?$

Functions – Example

Example

Define

$$\begin{array}{rccc} f: \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x^2 \end{array}$$

where \mathbb{R} is the set of real numbers. Then f has domain \mathbb{R} and codomain \mathbb{R} . Let $A = \{ 1 \} \subseteq \mathbb{R}$, the preimage of A under f is given by

$$f^{-1}(A) = \{ -1, 1 \}.$$

1 is the image of -1 and -1 is a preimage of 1. 1 is another preimage of 1. Let $B = \{-1\} \subseteq \mathbb{R}$, then $f^{-1}(B) = \emptyset$.

Functions

Definition

- A function $f: S \to T$ is called *onto* or *surjective* if given any $t \in T$, there exists $s \in S$, such that t = f(s).
- A function $f: S \to T$ is said to be *one-to-one* (written 1-1) or *injective* if for any $s_1, s_2 \in S$ such that $s_1 \neq s_2$, we have $f(s_1) \neq f(s_2)$.
- f is called 1-1 correspondence or bijective if f is 1-1 and onto.

Example

f is ?, g is ?

$$\begin{array}{rccc} f: \mathbb{R} & \to & \mathbb{R}_{\geq 0} \\ & x & \mapsto & x^2 \end{array}$$

$$g:\mathbb{R} \to \mathbb{R}$$

 $x \mapsto x$

Functions

Example

$$\begin{array}{rccc} f: \mathbb{R} & \to & \mathbb{R}_{\geq 0} \\ x & \mapsto & x^2, \end{array}$$

f is surjective as for any $y \in \mathbb{R}_{\geq 0}$, we can find a preimage of y by calculating $x = \sqrt{y}$. But f is not injective, since f(-1) = f(1) = 1.

$$g: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x.$$

It can be easily seen that g is bijective.

Inverse of a function

- When f is bijective, $f^{-1}: T \to S$ is a function it assigns each $t \in T$ a unique element $s \in S$.
- f^{-1} is called the *inverse* of f.

Example Define f

$$\begin{array}{rccc} f: \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x^3. \end{array}$$

Then, the inverse of f is ?

Inverse of a function

- When f is bijective, $f^{-1}: T \to S$ is a function it assigns each $t \in T$ a unique element $s \in S$.
- f^{-1} is called the *inverse* of f.

Example

 $\mathsf{Define}\ f$

$$\begin{array}{rccc} f: \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x^3. \end{array}$$

Then, the inverse of f exists and is given by

Definition

For two functions $f:T\to U,\ g:S\to T,$ the composition of f and g, denoted by $f\circ g,$ is the function

 $\begin{array}{rccc} f \circ g : S & \to & U \\ s & \mapsto & f(g(s)). \end{array}$

Example What is $f \circ g$?

$$\begin{array}{rccc} f: \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x^2, \end{array}$$
$$g: \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x^3 \end{array}$$

Remark

- $f: S \to S$
- We write $f \circ f \circ \cdots \circ f$ as f^n
- If f is bijective, we write $f^{-1} \circ f^{-1} \circ \dots \circ f^{-1}$ as f^{-m}

Example

Define

$$\begin{array}{rccc} f: \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x^2, \end{array}$$

then what is f^n ?

Remark

- $f: S \to S$
- We write $f \circ f \circ \cdots \circ f$ as f^n
- If f is bijective, we write $f^{-1}\circ f^{-1}\circ \cdots \circ f^{-1}$ as f^{-m}

Example

Define

$$\begin{array}{rccc} f: \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & x^2. \end{array}$$

then

Abstract algebra and number theory

- Preliminaries
- Integers
- Groups
- Rings
- Fields
- Vector Spaces
- Modular Arithmetic
- Polynomial Rings

Representation of a positive integer

• We write one hundred and twenty-three as 123 because

 $123 = 1 \times 100 + 2 \times 10 + 3 \times 1.$

Theorem

Let $b \ge 2$ be an integer. Then any $n \in \mathbb{Z}$, n > 0 can be expressed uniquely in the form

$$n = \sum_{i=0}^{\ell-1} a_i b^i,$$

where $0 \le a_i < b$ $(0 \le i < \ell)$, $a_{\ell-1} \ne 0$, and $\ell \ge 1$. $a_{\ell-1}a_{\ell-2} \dots a_1a_0$ is called a base—b representation for n. ℓ is called the length of n in base—b representation.

• b = 2, binary representation

Representation of a positive integer

Exa	mple																
							$3_1 \\ 4_1$	$L_0 = L_0 = L_0$?2 = ?2 =	=? ₁₆ =? ₁₆	•						
							60) ₁₀ =	$=?_{2}$	=?1	.6·						
	Base 10	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Base 16	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F

Table: Correspondence between decimal and hexadecimal (base b = 16) numerals.

Representation of a positive integer

Example

$$3_{10} = 11_2 = 3_{16}.$$

 $4_{10} = 100_2 = 4_{16}.$
 $60_{10} = 111100_2 = 3C_{16}.$

Base 10	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Base 16	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F

Table: Correspondence between decimal and hexadecimal (base b = 16) numerals.

Divisor and multiple

Theorem

If $m, n \in \mathbb{Z}$, n > 0, then $\exists q, r \in \mathbb{Z}$, such that $0 \leq r < n$ and n = qm + r.

q is called the *quotient* and r is called the *remainder*.

Definition

Given $m, n \in \mathbb{Z}$, if $m \neq 0$ and n = am for some integer a, we say that m divides n, written m|n. We call m a divisor of n and n a multiple of m. If m does not divide n, we write $m \nmid n$.

- 3|6, −2|4, 1|8, 5|5.
- 7 ∤ 9, 4 ∤ 6.
- All the positive divisors of 4 are 1, 2, 4.
- All the positive divisors of 6 are 1, 2, 3, 6.

Greatest common divisor

Definition

Take $m, n \in \mathbb{Z}$, $m \neq 0$ or $n \neq 0$, the greatest common divisor of m and n, denoted gcd(m, n), is given by $d \in \mathbb{Z}$ such that

- d > 0,
- d|m, d|n, and
- if c|m and c|n, then c|d.

- We have discussed that all positive divisors of 4 and 6 are 1,2,4 and 1,2,3,6 respectively. So $\gcd(4,6)=2.$
- All the positive divisors of 2 are 1 and 2. All the positive divisors of 3 are 1 and 3. So gcd(2,3) = 1.

Bézout's identity

Theorem (Bézout's identity)

For any $m, n \in \mathbb{Z}$, such that $m \neq 0$ or $n \neq 0$. gcd(m, n) exists and is unique. Moreover, $\exists s, t \in \mathbb{Z}$ such that gcd(m, n) = sm + tn.

$$gcd(4,6) = 2 = ? \times 4 + ? \times 6.$$

 $gcd(2,3) = 1 = ? \times 2 + ? \times 3.$

Bézout's identity

Theorem (Bézout's identity)

For any $m, n \in \mathbb{Z}$, such that $m \neq 0$ or $n \neq 0$. gcd(m, n) exists and is unique. Moreover, $\exists s, t \in \mathbb{Z}$ such that gcd(m, n) = sm + tn.

$$gcd(4,6) = 2 = (-1) \times 4 + 1 \times 6.$$

$$gcd(2,3) = 1 = (-4) \times 2 + 3 \times 3.$$

Euclidean algorithm

Theorem (Euclid's division)

Given $m, n \in \mathbb{Z}$, take q, r such that n = qm + r, then gcd(m, n) = gcd(m, r).

Thus, to find gcd(m,n), we can compute Euclid's division repeatedly until we get r=0.

Example

We can calculate gcd(120, 35) as follows:

$$120 = 35 \times 3 + 15 \quad \gcd(120, 35) = \gcd(35, 15), \\ 35 = 15 \times 2 + 5 \quad \gcd(35, 15) = ?$$

Euclidean algorithm

Theorem (Euclid's division)

Given $m, n \in \mathbb{Z}$, take q, r such that n = qm + r, then gcd(m, n) = gcd(m, r).

Thus, to find $\gcd(m,n),$ we can compute Euclid's division repeatedly until we get r=0.

Example

We can calculate gcd(120, 35) as follows:

$120 = 35 \times 3 + 15$	gcd(120, 35) = gcd(35, 15),
$35 = 15 \times 2 + 5$	gcd(35, 15) = gcd(15, 5),
$15 = 5 \times 3$	$gcd(15,5) = 5 \Longrightarrow gcd(120,35) = 5$

Example Find gcd(160, 21)

イロト 不得 トイヨト イヨト

Euclidean algorithm

Example

We can calculate $\gcd(160,21)$ using the Euclidean algorithm

$$\begin{array}{ll} 160 = 21 \times 7 + 13 & \gcd(160, 21) = \gcd(21, 13), \\ 21 = 13 \times 1 + 8 & \gcd(21, 13) = \gcd(13, 8), \\ 13 = 8 \times 1 + 5 & \gcd(13, 8) = \gcd(8, 5), \\ 8 = 5 \times 1 + 3 & \gcd(8, 5) = \gcd(5, 3), \\ 5 = 3 \times 1 + 2 & \gcd(5, 3) = \gcd(3, 2), \\ 3 = 2 \times 1 + 1 & \gcd(3, 2) = \gcd(2, 1), \\ 2 = 1 \times 2 & \gcd(2, 1) = 1 \Longrightarrow \gcd(160, 21) = 1 \end{array}$$

31 / 140

イロン イロン イヨン イヨン

Euclidean Algorithm

	Algorithm 1: Euclidean algorithm.
	Input: $m, n// m, n \in \mathbb{Z}$, $m \neq 0$
	Output: $gcd(m, n)$
1	while $m \neq 0$ do
2	r = m
3	m=n% m// remainder of n divided by m
4	n = r
5	return n

Extended Euclidean algorithm

Note

With the intermediate results we have from the Euclidean algorithm, we can also find s, t such that gcd(m, n) = sm + tn (Bézout's identity).

Example

We have calculated gcd(120, 35) as follows:

$$\begin{array}{ll} 120 = 35 \times 3 + 15 & \gcd(120, 35) = \gcd(35, 15), \\ 35 = 15 \times 2 + 5 & \gcd(35, 15) = \gcd(15, 5), \\ 15 = 5 \times 3 & \gcd(15, 5) = 5 \Longrightarrow \gcd(120, 35) = 5. \end{array}$$

Then

$$\begin{split} 5 &= 35 - 15 \times 2, \\ 15 &= 120 - 35 \times 3, \\ 5 &= 35 - (120 - 35 \times 3) \times 2 = 120 \times (-2) + 35 \times 7. \end{split}$$

イロン 不通 とく ヨン イヨン

Extended Euclidean algorithm

Example

We have calculated $\gcd(160,21)$ using the Euclidean algorithm

$$\begin{array}{ll} 160 = 21 \times 7 + 13 & \gcd(160, 21) = \gcd(21, 13), \\ 21 = 13 \times 1 + 8 & \gcd(21, 13) = \gcd(13, 8), \\ 13 = 8 \times 1 + 5 & \gcd(13, 8) = \gcd(8, 5), \\ 8 = 5 \times 1 + 3 & \gcd(8, 5) = \gcd(6, 5), \\ 5 = 3 \times 1 + 2 & \gcd(5, 3) = \gcd(3, 2), \\ 3 = 2 \times 1 + 1 & \gcd(3, 2) = \gcd(2, 1), \\ 2 = 1 \times 2 & \gcd(2, 1) = 1 \Longrightarrow \gcd(160, 21) = 1 \end{array}$$

Using the extended Euclidean algorithm, find integers s,t such that $\gcd(160,21)=s160+t35$

Extended Euclidean algorithm

Example

By the extended Euclidean algorithm,

$$\begin{array}{ll} 1 = 3 - 2, & 2 = 5 - 3, \\ 3 = 8 - 5, & 5 = 13 - 8, \\ 8 = 21 - 13, & 13 = 160 - 21 \times 7. \end{array}$$

We have

$$1 = 3 - (5 - 3) = 3 \times 2 - 5 = 8 \times 2 - 5 \times 3 = 8 \times 2 - (13 - 8) \times 3$$

= 8 \times 5 - 13 \times 3 = 21 \times 5 - 13 \times 8 = 21 \times 5 - (160 - 21 \times 7) \times 8
= (-8) \times 160 + 61 \times 21.

35 / 140

э.

ヘロト 人間 とくほとくほと

Prime numbers

Definition

- For $m, n \in \mathbb{Z}$ such that $m \neq 0$ or $n \neq 0$, m and n are said to be *relatively prime/coprime* if gcd(m, n) = 1.
- Given p∈ Z. p is said to be prime (or a prime number) if for any m∈ Z, either m is a multiple of p (i.e. p|m) or m and p are coprime (i.e. gcd(p,m) = 1).

- 4 and 9 are relatively prime.
- 8 and 6 are not coprime.
- 2, 3, 5, 7 are prime numbers.
- 6, 9, 21 are not prime numbers.
Prime factorization

Theorem (The Fundamental Theorem of Arithmetic) For any $n \in \mathbb{Z}$, n > 1, n can be written in the form

$$n = \prod_{i=1}^{k} p_i^{e_i},$$

where the exponents e_i are positive integers, p_1, p_2, \ldots, p_k are prime numbers that are pairwise distinct and unique up to permutation.

Example

$$20 = 2^2 \times 5$$
, $135 = 3^3 \times 5$.

Abstract algebra and number theory

- Preliminaries
- Integers
- Groups
- Rings
- Fields
- Vector Spaces
- Modular Arithmetic
- Polynomial Rings

Definition

Definition

A group (G,\cdot) is a non-empty set G with a binary operation \cdot satisfying the following conditions:

- G is closed under \cdot (closure property), $\forall g_1, g_2 \in G, g_1 \cdot g_2 \in G$.
- \cdot is associative, $\forall g_1, g_2, g_3 \in G$, $g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$.
- $\exists e \in G$, an identity element, such that $\forall g \in G$, $e \cdot g = g \cdot e = g$.
- Every $g \in G$ has an inverse $g^{-1} \in G$ such that $g \cdot g^{-1} = g^{-1} \cdot g = e$.

Example

- $(\mathbb{Z},+),$ the set of integers with addition is a group. The identity element is ?.
- Similarly, $(\mathbb{Q},+)$ and $(\mathbb{C},+)$ are groups.
- Is (\mathbb{Q}, \times) a group?
- How about $(\mathbb{Q} \setminus \{ 0 \}, \times)$?

メロン メロン メヨン メヨン 三日

Definition

Definition

A group (G,\cdot) is a non-empty set G with a binary operation \cdot satisfying the following conditions:

- G is closed under \cdot (closure property), $\forall g_1, g_2 \in G$, $g_1 \cdot g_2 \in G$.
- \cdot is associative, $\forall g_1, g_2, g_3 \in G$, $g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$.
- $\exists e \in G$, an identity element, such that $\forall g \in G$, $e \cdot g = g \cdot e = g$.
- Every $g \in G$ has an inverse $g^{-1} \in G$ such that $g \cdot g^{-1} = g^{-1} \cdot g = e$.

Example

- $(\mathbb{Z},+)$, the set of integers with addition is a group. The identity element is 0.
- Similarly, $(\mathbb{Q},+)$ and $(\mathbb{C},+)$ are groups.
- (\mathbb{Q}, \times) is not a group. Because $0 \in \mathbb{Q}$ does not have an inverse with respect to multiplication.
- But $(\mathbb{Q} \setminus \{ 0 \}, \times)$ is a group. The identity element is 1.

Prove a set with a binary operation is a group

Let $G = \mathbb{R}^+$ be the set of positive real numbers and let \cdot be the multiplication of real numbers, denoted \times . We will show that (\mathbb{R}^+, \times) is a group.

- 1. \mathbb{R}^+ is closed under \times : for any $a_1, a_2 \in \mathbb{R}^+$, $a_1 \times a_2 \in \mathbb{R}$ and $a_1 \times a_2 > 0$, hence $a_1 \times a_2 \in \mathbb{R}^+$.
- 2. \times is associative: $\forall a_1, a_2, a_3 \in \mathbb{R}^+$, $a_1 \times (a_2 \times a_3) = (a_1 \times a_2) \times a_3$.
- 3. 1 is the identity element in \mathbb{R}^+ : $\forall a \in \mathbb{R}^+$, $1 \times a = a \times 1 = a$.
- 4. Take any $a \in \mathbb{R}^+$, $\frac{1}{a} \in \mathbb{R}$ and $\frac{1}{a} > 0$, so $\frac{1}{a} \in \mathbb{R}^+$. Moreover,

$$a \times \frac{1}{a} = \frac{1}{a} \times a = 1$$

hence $a^{-1} = \frac{1}{a} \in \mathbb{R}^+$ By definition, we have proved that, (\mathbb{R}^+, \times) is a group.

Definition

```
Let (G, \cdot) be a group. If \cdot is commutative, i.e.
```

$$\forall g_1, g_2 \in G, g_1 \cdot g_2 = g_2 \cdot g_1,$$

then the group is called *abelian*.

The name abelian is in honor of the great mathematician Niels Henrik Abel (1802-1829).

Example

The groups we have seen before, $(\mathbb{Z}, +)$, (\mathbb{R}^+, \times) , $(\mathbb{Q} \setminus \{0\}, \times)$, $(\mathbb{Q}, +)$, and $(\mathbb{C}, +)$ are all abelian groups.

Example

- $\mathcal{M}_{2\times 2}(\mathbb{R})$: 2 × 2 matrices with coefficients in \mathbb{R} .
- Matrix addition, denoted by +, is defined component-wise.

$$\begin{pmatrix} a_{00} & a_{10} \\ a_{01} & a_{11} \end{pmatrix} + \begin{pmatrix} b_{00} & b_{10} \\ b_{01} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} + b_{00} & a_{10} + b_{10} \\ a_{01} + b_{01} & a_{11} + b_{11} \end{pmatrix}$$

 $(\mathcal{M}_{2\times 2}(\mathbb{R}),+)$ is an abelian group:

- $\bullet\,$ closure, associativity and commutativity of + are easy to show
- The identity element is ?

• The inverse of matrix
$$egin{pmatrix} a_{00} & a_{10} \\ a_{01} & a_{11} \end{pmatrix}$$
 is ? Does it belong to the set?

Example

- $\mathcal{M}_{2\times 2}(\mathbb{R})$: 2×2 matrices with coefficients in \mathbb{R} .
- Matrix addition, denoted by +, is defined component-wise.

$$\begin{pmatrix} a_{00} & a_{10} \\ a_{01} & a_{11} \end{pmatrix} + \begin{pmatrix} b_{00} & b_{10} \\ b_{01} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00} + b_{00} & a_{10} + b_{10} \\ a_{01} + b_{01} & a_{11} + b_{11} \end{pmatrix}$$

 $(\mathcal{M}_{2\times 2}(\mathbb{R}),+)$ is an abelian group:

- $\bullet\,$ closure, associativity and commutativity of + are easy to show
- The identity element is the zero matrix $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. • The inverse of a matrix $\begin{pmatrix} a_{00} & a_{10} \\ a_{01} & a_{11} \end{pmatrix}$ is $\begin{pmatrix} -a_{00} & -a_{10} \\ -a_{01} & -a_{11} \end{pmatrix}$, which is also in $(\mathcal{M}_{2\times 2}(\mathbb{R}), +)$.

Example

Let $\mathbb{F}_2 := \{ 0, 1 \}$. We define *logical XOR*, denoted \oplus , in \mathbb{F}_2 as follows:

 $0\oplus 0=0,\quad 0\oplus 1=1\oplus 0=1,\quad 1\oplus 1=0.$

Closure, associativity, and commutativity can be directly seen from the definition. The identity element is ? and the inverse of the other element is ?

Example

Let $\mathbb{F}_2 := \{ 0, 1 \}$. We define *logical XOR*, denoted \oplus , in \mathbb{F}_2 as follows:

$$0\oplus 0=0, \quad 0\oplus 1=1\oplus 0=1, \quad 1\oplus 1=0.$$

Closure, associativity, and commutativity can be directly seen from the definition. The identity element is 0 and the inverse of 1 is 1. Hence (\mathbb{F}_2, \oplus) is an abelian group.

Example

Let $E = \{ a, b \}$, $a \neq b$. Define addition in E as follows:

$$a+a=a, \quad a+b=b+a=b, \quad b+b=a.$$

Closure, associativity, and commutativity can be directly seen from the definition. The identity element is ? and the inverse of the other element is ?

Example

Let $E = \{a, b\}$. Define addition in E as follows:

$$a+a=a, \quad a+b=b+a=b, \quad b+b=a.$$

Closure, associativity, and commutativity can be directly seen from the definition. The identity element is a and the inverse of b is b. Hence (E, +) is an abelian group.

Abstract algebra and number theory

- Preliminaries
- Integers
- Groups
- Rings
- Fields
- Vector Spaces
- Modular Arithmetic
- Polynomial Rings

Definition

Definition

A set R together with two binary operations $(R, +, \cdot)$ is a *ring* if (R, +) is an abelian group, and for any $a, b, c \in R$, the following conditions are satisfied:

- R is closed under \cdot (closure), $a \cdot b \in R$.
- \cdot is associative, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- The distributive laws holds: $a \cdot (b+c) = a \cdot b + a \cdot c$.
- The identity element for \cdot exists, which is different from the identity element for +.

Remark

The last condition in the definition implies that a set consisting of only 0 is not a ring.

Definition

If $a \cdot b = b \cdot a$ for all $a, b \in R$, R is a commutative ring.

Examples

Example

- We have seen that $(\mathbb{Z}, +)$ is an abelian group and the identity element is 0. It can be easily shown that $(\mathbb{Z}, +, \times)$ is a commutative ring. The identity element for \times is ?
- Similarly $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$ and $(\mathbb{C}, +, \times)$ are all commutative rings with ? as the identity element for + and ? as the identity element for \times .

Examples

Example

- We have seen that $(\mathbb{Z}, +)$ is an abelian group and the identity element is 0. It can be easily shown that $(\mathbb{Z}, +, \times)$ is a commutative ring. The identity element for \times is 1.
- Similarly $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$ and $(\mathbb{C}, +, \times)$ are all commutative rings with 0 as the identity element for + and 1 as the identity element for \times .

Notations

Remark

- For most cases, we will denote the identity element for + as 0 and the identity element for \cdot as 1.
- We normally refer to the operation + as addition, and 0 as *additive identity*. Similarly, we refer to the operation \cdot as multiplication and 1 as *multiplicative identity*.
- The inverse of an element $a \in R$ with respect to + is called the *additive inverse* of a, usually denoted by -a.
- For simplicity, we sometimes write ab instead of $a \cdot b$.
- When the operations in $(R,+,\cdot)$ are clear from the context, we omit them and write R.

Example

We have shown that $(\mathcal{M}_{2\times 2}(\mathbb{R}), +)$ is an abelian group. We recall matrix multiplication, denoted by \times , for 2×2 matrices: for any $\begin{pmatrix} a_{00} & a_{10} \\ a_{01} & a_{11} \end{pmatrix}$, $\begin{pmatrix} b_{00} & b_{10} \\ b_{01} & b_{11} \end{pmatrix}$ in $\mathcal{M}_{2\times 2}(\mathbb{R})$,

$$\begin{pmatrix} a_{00} & a_{10} \\ a_{01} & a_{11} \end{pmatrix} \times \begin{pmatrix} b_{00} & b_{10} \\ b_{01} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00}b_{00} + a_{10}b_{01} & a_{00}b_{10} + a_{10}b_{11} \\ a_{01}b_{00} + a_{11}b_{01} & a_{01}b_{10} + a_{11}b_{11} \end{pmatrix}$$

 $(\mathcal{M}_{2\times 2}(\mathbb{R}), +, \times)$ is a ring: associativity and distributive laws are easy to show. The identity element for \times is ? Is $(\mathcal{M}_{2\times 2}(\mathbb{R}), +, \times)$ a commutative ring? why?

Example

We have shown that $(\mathcal{M}_{2\times 2}(\mathbb{R}), +)$ is an abelian group. We recall matrix multiplication, denoted by \times , for 2×2 matrices: for any $\begin{pmatrix} a_{00} & a_{10} \\ a_{01} & a_{11} \end{pmatrix}$, $\begin{pmatrix} b_{00} & b_{10} \\ b_{01} & b_{11} \end{pmatrix}$ in $\mathcal{M}_{2\times 2}(\mathbb{R})$,

$$\begin{pmatrix} a_{00} & a_{10} \\ a_{01} & a_{11} \end{pmatrix} \times \begin{pmatrix} b_{00} & b_{10} \\ b_{01} & b_{11} \end{pmatrix} = \begin{pmatrix} a_{00}b_{00} + a_{10}b_{01} & a_{00}b_{10} + a_{10}b_{11} \\ a_{01}b_{00} + a_{11}b_{01} & a_{01}b_{10} + a_{11}b_{11} \end{pmatrix}$$

 $(\mathcal{M}_{2\times 2}(\mathbb{R}),+,\times)$ is a ring: associativity and distributive laws are easy to show. The identity element for \times is the 2×2 identity matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. We note that $(\mathcal{M}_{2\times 2}(\mathbb{R}),+,\times)$ is not a commutative ring. For example,

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \text{ but } \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

55 / 140

Example

Recall an example of a group we have seen: $\mathbb{F}_2 = \{0, 1\}$, *logical XOR*, denoted \oplus ,

```
0\oplus 0=0, \quad 0\oplus 1=1\oplus 0=1, \quad 1\oplus 1=0.
```

 (\mathbb{F}_2, \oplus) is an abelian group. Let us define *logical AND*, denoted &, in \mathbb{F}_2 as follows:

$$0 \& 0 = 0, \quad 1 \& 0 = 0 \& 1 = 0, \quad 1 \& 1 = 1.$$

Closure of \mathbb{F}_2 with respect to &, associativity and commutativity of &, and the distributive laws are easy to see from the definitions. The identity element for & is ? $(\mathbb{F}_2, \oplus, \&)$ is a commutative ring.

Example

Recall an example of a group we have seen: $\mathbb{F}_2 = \{0, 1\}$, *logical XOR*, denoted \oplus ,

```
0\oplus 0=0, \quad 0\oplus 1=1\oplus 0=1, \quad 1\oplus 1=0.
```

 (\mathbb{F}_2, \oplus) is an abelian group. Let us define *logical AND*, denoted &, in \mathbb{F}_2 as follows:

$$0 \& 0 = 0, \quad 1 \& 0 = 0 \& 1 = 0, \quad 1 \& 1 = 1.$$

Closure of \mathbb{F}_2 with respect to &, associativity and commutativity of &, and the distributive laws are easy to see from the definitions. The identity element for & is 1. $(\mathbb{F}_2, \oplus, \&)$ is a commutative ring.

Example

We have also seen $E = \{a, b\}$ with addition:

$$a+a=a$$
, $a+b=b+a=b$, $b+b=a$.

(E, +) is an abelian group. Define multiplication in E as follows:

$$a \cdot a = a$$
, $a \cdot b = b \cdot a = a$, $b \cdot b = b$.

Closure of E with respect to \cdot , associativity of \cdot , commutativity of \cdot , and the distributive laws are easy to see from the definitions. The identity element for \cdot is ?

Example

We have also seen $E = \{a, b\}$ with addition:

$$a + a = a$$
, $a + b = b + a = b$, $b + b = a$.

(E, +) is an abelian group. Define multiplication in E as follows:

$$a \cdot a = a, \quad a \cdot b = b \cdot a = a, \quad b \cdot b = b.$$

Closure of E with respect to \cdot , associativity of \cdot , commutativity of \cdot , and the distributive laws are easy to see from the definitions. The identity element for \cdot is b. Thus $(E, +, \cdot)$ is a commutative ring.

Abstract algebra and number theory

- Preliminaries
- Integers
- Groups
- Rings
- Fields
- Vector Spaces
- Modular Arithmetic
- Polynomial Rings

Definition

Definition

Let $(R, +, \cdot)$ be a ring with identity element 0 for + and identity element 1 for \cdot . Let $a, b \in R$. If $a \cdot b = b \cdot a = 1$, a (also b) is said to be *invertible* and it is called a *unit*.

Definition

A field is a commutative ring in which every non-zero element is invertible.

Example

- $(\mathbb{Q},+,\times),$ $(\mathbb{R},+,\times)$ and $(\mathbb{C},+,\times)$ are all fields.
- $(\mathbb{Z}, +, \times)$ is not a field, why?

Definition

Definition

Let $(R, +, \cdot)$ be a ring with identity element 0 for + and identity element 1 for \cdot . Let $a, b \in R$. If $a \cdot b = b \cdot a = 1$, a (also b) is said to be *invertible* and it is called a *unit*.

Definition

A field is a commutative ring in which every non-zero element is invertible.

Example

- $(\mathbb{Q},+,\times),$ $(\mathbb{R},+,\times)$ and $(\mathbb{C},+,\times)$ are all fields.
- $(\mathbb{Z}, +, \times)$ is not a field. For example, $2 \in \mathbb{Z}$ is not invertible and $2 \neq 0$.

Multiplicative inverse

- By definition, for any $a \in F$, $a \neq 0$ there exists $b \in F$ such that ab = ba = 1.
- Then b is called the *multiplicative inverse* of a.
- It is easy to show that the multiplicative inverse of an element a is unique: let $b,c\in F$ be such that

$$ab = ac = 1.$$

Multiplying by b on the left, we get

$$bab = bac = b \Longrightarrow b = c = b.$$

• We will denote the multiplicative inverse of a nonzero element $a \in F$ by a^{-1} .

Example

Recall an example of a commutative ring we have seen: $\mathbb{F}_2=\{\ 0,1\ \}$, logical XDR, denoted \oplus ,

$$0 \oplus 0 = 0, \quad 0 \oplus 1 = 1 \oplus 0 = 1, \quad 1 \oplus 1 = 0.$$

logical AND, denoted &,

$$0 \& 0 = 0, \quad 1 \& 0 = 0 \& 1 = 0, \quad 1 \& 1 = 1.$$

The only nonzero element is ?, which has inverse ? with respective to &.

Example

Recall an example of a commutative ring we have seen: $\mathbb{F}_2 = \{ 0, 1 \}$, *logical XOR*, denoted \oplus ,

$$0\oplus 0=0, \quad 0\oplus 1=1\oplus 0=1, \quad 1\oplus 1=0.$$

logical AND, denoted &,

$$0 \& 0 = 0, \quad 1 \& 0 = 0 \& 1 = 0, \quad 1 \& 1 = 1.$$

The only nonzero element is 1, which has inverse 1 with respective to &. Thus $(\mathbb{F}_2,\oplus,\&)$ is a field.

<ロ > < 回 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 へ (~ 65 / 140

Example

We have also seen $E = \{a, b\}$ with addition:

$$a+a=a, \quad a+b=b+a=b, \quad b+b=a.$$

and multiplication:

$$a \cdot a = a$$
, $a \cdot b = b \cdot a = a$, $b \cdot b = b$.

 $(E, +, \cdot)$ is a commutative ring. The only nonzero element, i.e. the element not equal to the additive identity, is ?, which has multiplicative inverse ?

Example

We have also seen $E = \{a, b\}$ with addition:

$$a+a=a$$
, $a+b=b+a=b$, $b+b=a$.

and multiplication:

$$a \cdot a = a$$
, $a \cdot b = b \cdot a = a$, $b \cdot b = b$.

 $(E, +, \cdot)$ is a commutative ring. The only nonzero element, i.e. the element not equal to the additive identity, is b, which has multiplicative inverse b since $b \cdot b = b$. Hence $(E, +, \cdot)$ is a field.

Finite field

Definition

A field with finite many elements is called a *finite field*.

Example

 $(\mathbb{F}_2,\oplus,\&)$ is a finite field. $(E,+,\cdot)$ is a finite field.

Field isomorphism

Definition

Let $(F, +_F, \cdot_F), (E, +_E, \cdot_E)$ be two fields. F is said to be *isomorphic* to E, written $F \cong E$ if there is a bijective function $f: F \to E$ such that for any $a, b \in F$,

- $f(a +_F b) = f(a) +_E f(b)$, and
- $f(a \cdot_F b) = f(a) \cdot_E f(b).$

Example

Let us consider the fields $(\mathbb{F}_2, \oplus, \&)$ and $(E, +, \cdot)$. Define $f: F \to E$, such that

$$f(0) = a, \quad f(1) = b.$$

f is bijective. f preserves both addition and multiplication. For example,

$$f(1 \oplus 0) = f(1) = b, \ f(1) + f(0) = b + a = b \Longrightarrow f(1 \oplus 0) = f(1) + f(0).$$

We have $\mathbb{F}_2 \cong E$.

Finite field

- It can be shown that any finite field with two elements is always isomorphic to \mathbb{F}_2 .
- The next theorem says that, in general, there is only one finite field up to isomorphism.

Theorem

- A finite field K contains p^n elements for a prime number p.
- For any prime p and any positive integer n, there exists, up to isomorphism, a unique field with p^n elements.

Remark

We will use \mathbb{F}_{p^n} to denote the unique finite field with p^n elements.

Example

 $\mathbb{F}_2 = \{0, 1\}$

A D > A D > A D > A D >

Bits

Definition

- Variables that range over \mathbb{F}_2 are called *Boolean variables* or *bits*.
- Addition of two bits is defined to be logical XOR , also called *exclusive or*.
- Multiplication of two bits is defined to be logical AND.
- When the value of a bit is changed, we say the bit is *flipped*.

Abstract algebra and number theory

- Preliminaries
- Integers
- Groups
- Rings
- Fields
- Vector Spaces
- Modular Arithmetic
- Polynomial Rings
Definition

Definition (Vector space)

Let F be a field. A nonempty set V, together with two binary operations – vector addition (denoted by +) and scalar multiplication by elements of F (a map $V \times F \rightarrow V$), is called a vector space over F if (V, +) is an abelian group and for any $v, w \in V$ and any $a, b \in F$, we have

•
$$a(\boldsymbol{v} + \boldsymbol{w}) = a\boldsymbol{v} + a\boldsymbol{w}$$
.

•
$$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$$
.

•
$$a(b\boldsymbol{v}) = (ab)\boldsymbol{v}$$
.

• 1v = v, where 1 is the multiplicative identity of F.

Elements of V are called vectors and elements of F are called scalars.

Example

The set of complex numbers $\mathbb{C} = \{ x + iy \mid x, y \in \mathbb{R} \}$ is a vector space over \mathbb{R} . How are vector addition and scalar multiplication defined?

Example of a vector space

Example

The set of complex numbers $\mathbb{C} = \{ x + iy \mid x, y \in \mathbb{R} \}$ is a vector space over \mathbb{R} . Note that for any $a_1 + b_1i, a_2 + b_2i \in \mathbb{C}$, vector addition is defined as

$$(a_1 + b_1i) + (a_2 + b_2i) = (a_1 + a_2) + (b_1 + b_2)i.$$

And for any $a \in \mathbb{R}$, scalar multiplication by elements of \mathbb{R} is defined as

$$a(a_1 + b_1 i) = aa_1 + ab_1 i.$$

The identity element for vector addition is ? Furthermore, for any $a + bi \in \mathbb{C}$, its inverse with respect to vector addition is given by ?

Example of a vector space

Example

The set of complex numbers $\mathbb{C} = \{ x + iy \mid x, y \in \mathbb{R} \}$ is a vector space over \mathbb{R} . Note that for any $a_1 + b_1i, a_2 + b_2i \in \mathbb{C}$, vector addition is defined as

$$(a_1 + b_1i) + (a_2 + b_2i) = (a_1 + a_2) + (b_1 + b_2)i.$$

And for any $a \in \mathbb{R}$, scalar multiplication by elements of \mathbb{R} is defined as

$$a(a_1 + b_1 i) = aa_1 + ab_1 i.$$

The identity element for vector addition is 0. Furthermore, for any $a + bi \in \mathbb{C}$, its inverse with respect to vector addition is given by -a - bi.

F^n

- Let F be a field
- Let $F^n = \{ (v_0, v_1, \dots, v_{n-1}) \mid v_i \in F \ \forall i \}$ be the set of n-tuples over F.
- We define vector addition and scalar multiplication by elements of *F* component-wise as follows

for any $oldsymbol{v}=(v_0,v_1,\ldots,v_{n-1})\in F^n$, $oldsymbol{w}=(w_0,w_1,\ldots,w_{n-1})\in F^n$, and any $a\in F$,

$$v + w := (v_0 + w_0, v_1 + w_1, \dots, v_{n-1} + w_{n-1}),$$

 $a\boldsymbol{v} := (av_0, av_1, \dots, av_{n-1}).$

Theorem

 $F^n = \{ (v_0, v_1, \dots, v_{n-1}) \mid v_i \in F \ \forall i \}$ together with vector addition and scalar multiplication defined above is a vector space over F.

Example

- Let $F = \mathbb{F}_2$, the unique finite field with two elements.
- Let n be a positive integer, it follows from the previous theorem that \mathbb{F}_2^n is a vector space over \mathbb{F}_2 .
- The identity element for vector addition is ?
- For any $v = (v_0, v_1, \dots, v_{n-1}) \in \mathbb{F}_2^n$, the inverse of v with respect to vector addition is ?

Example

- Let $F = \mathbb{F}_2$, the unique finite field with 2 elements.
- Let n be a positive integer, it follows from the previous theorem that \mathbb{F}_2^n is a vector space over \mathbb{F}_2 .
- The identity element for vector addition is 0.
- For any $v = (v_0, v_1, \dots, v_{n-1}) \in \mathbb{F}_2^n$, the inverse of v with respect to vector addition is $(-v_0, -v_1, \dots, -v_{n-1}) = v$.

• Recall that variables ranging over \mathbb{F}_2 are called bits. We have shown that $(\mathbb{F}_2, \oplus, \&)$ is a finite field, where \oplus is logical XOR, and & is logical AND.

Definition

Vector addition in \mathbb{F}_2^n is called *bitwise XOR*, also denoted \oplus . Similarly, we define *bitwise AND* between any two vectors $\boldsymbol{v} = (v_0, v_1, \dots, v_{n-1})$, $\boldsymbol{w} = (w_0, w_1, \dots, w_{n-1})$ from \mathbb{F}_2^n as follows:

$$v \& w := (v_0 \& w_0, v_1 \& w_1, \dots, v_{n-1} \& w_{n-1}).$$

Another useful binary operation, logical OR, denoted \lor , on \mathbb{F}_2 is defined as follows:

$$0 \lor 0 = 0, \quad 1 \lor 0 = 1, \quad 0 \lor 1 = 1, \quad 1 \lor 1 = 1.$$

It can also be extended to \mathbb{F}_2^n in a bitwise manner and we get *bitwise OR*.

For simplicity, we sometimes write $v_0v_1 \dots v_{n-1}$ instead of $(v_0, v_1, \dots, v_{n-1})$.

Example Let n = 3, take $111, 101 \in \mathbb{F}_2^3$, $111 \oplus 101 = 010$ 111 & 101 = 101 $111 \lor 101 = 111$.

Definition

A vector in \mathbb{F}_2^n is called an *n*-bit binary string. A 4-bit binary string is called a *nibble*. An 8-bit binary string is called a *byte*.

Example

• $1010,0011 \in \mathbb{F}_2^4$ are two nibbles. Furthermore,

 $1010 \oplus 0011 = 1001, \quad 1010 \ \& \ 0011 = 0010.$

• 00101100 is a byte.

Remark

A byte can be considered as a base-2 representation/binary representation of an integer. The value of this integer is between 0 and 255 or between 00_{16} and FF_{16} with base-16 representation/hexadecimal representation.

Abstract algebra and number theory

- Preliminaries
- Integers
- Groups
- Rings
- Fields
- Vector Spaces
- Modular Arithmetic
- Polynomial Rings

${\rm Congruent}\ {\rm modulo}\ n$

- Let n > 1 be an integer.
- We are interested in the set $\{0, 1, 2..., n-1\}$.
- $\bullet\,$ It can be considered as the set of possible remainders when dividing by n
- We will also associate each integer with one element in the set namely the remainder of this integer divided by n.

Formally, we define

Definition

If n|(b-a), then we say a is congruent to b modulo n, written $a \equiv b \mod n$. n is called the *modulus*.

Remark

Saying a is congruent to b modulo n is equivalent to saying that the remainder of a divided by n is the same as the remainder of b divided by n.

Congruence class

Definition

For any $a \in \mathbb{Z}$, the congruence class of a modulo n, denoted \overline{a} , is given by

$$\overline{a} := \{ b \mid b \in \mathbb{Z}, b \equiv a \mod n \}.$$

Lemma

Let \mathbb{Z}_n denote the set of all congruence classes of $a \in \mathbb{Z}$ modulo n. Then $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}.$

Example

Let n = 5. We have $\overline{1} = \overline{6} = \overline{-4}$. $\mathbb{Z}_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$.

Addition and multiplication in \mathbb{Z}_n

Define addition on the set \mathbb{Z}_n as follows:

$$\overline{a} + \overline{b} = \overline{a+b}.$$

Example

- Let n = 7, $\overline{3} + \overline{2} = \overline{5}$.
- Let n = 4, $\overline{2} + \overline{2} = \overline{4} = \overline{0}$.

Define multiplication on \mathbb{Z}_n as follows

$$\overline{a} \cdot \overline{b} = \overline{ab}.$$

Example

Let n = 5,

$$\overline{-2} \cdot \overline{13} = \overline{3} \cdot \overline{3} = \overline{9} = \overline{4}$$

イロン イヨン イヨン

Theorem

 $(\mathbb{Z}_n, +, \cdot)$, the set \mathbb{Z}_n together with addition multiplication defined just now is a commutative ring.

Remark

For simplicity, we write a instead of \overline{a} and to make sure there is no confusion we would first say $a \in \mathbb{Z}_n$. In particular, $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$. Furthermore, to emphasize that multiplication or addition is done in \mathbb{Z}_n , we write $ab \mod n$ or $a + b \mod n$.

Example

Let n = 5, we write

$$4 \times 2 \mod 5 = 8 \mod 5 = 3$$
, or $4 \times 2 \equiv 8 \equiv 3 \mod 5$.

<ロト <回ト < 言ト < 言ト < 言ト 言 の Q () 86 / 140

Multiplicative inverse in \mathbb{Z}_n

Lemma

For any $a \in \mathbb{Z}_n$, $a \neq 0$, a has a multiplicative inverse, denoted $a^{-1} \mod n$, if and only if gcd(a, n) = 1.

Proof.

We provide part of the proof. By Bézout's identity, gcd(a, n) = sa + tn for some $s, t \in \mathbb{Z}$. If gcd(a, n) = 1, then sa + tn = 1, i.e. n|(1 - sa). By definition, $sa \equiv 1 \mod n$, thus $a^{-1} \mod n = s$.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

Corollary

 \mathbb{Z}_n is a field if and only if n is prime.

Proof.

We know that \mathbb{Z}_n is a commutative ring. By Definition of a field and the previous Lemma, \mathbb{Z}_n is a field if and only if for any $a \in \mathbb{Z}_n$ such that $a \neq 0$, we have gcd(a, n) = 1, which is true if and only if n is a prime.

Find multiplicative inverse in \mathbb{Z}_n

• Recall that by the extended Euclidean algorithm, we can find integers $\boldsymbol{s}, \boldsymbol{t}$ such that

$$gcd(a,n) = sa + tn$$

for any $a, n \in \mathbb{Z}$.

- In particular, when gcd(a, n) = 1, we can find s, t such that 1 = as + tn, which gives $as \mod n = 1$.
- Thus, we can find $a^{-1} \mod n = s \mod n$ by the extended Euclidean algorithm.

Example – Find multiplicative inverse in \mathbb{Z}_n

Example

We have calculated $\gcd(160,21)=1$ using the Euclidean algorithm. By the extended Euclidean algorithm,

$$1 = 3 - 2, \qquad 2 = 5 - 3, \\3 = 8 - 5, \qquad 5 = 13 - 8, \\8 = 21 - 13, \qquad 13 = 160 - 21 \times 7.$$

We have

$$1 = 3 - (5 - 3) = 3 \times 2 - 5 = 8 \times 2 - 5 \times 3 = 8 \times 2 - (13 - 8) \times 3$$

= 8 \times 5 - 13 \times 3 = 21 \times 5 - 13 \times 8 = 21 \times 5 - (160 - 21 \times 7) \times 8
= (-8) \times 160 + 61 \times 21.

Thus

$$21^{-1} \mod 160 = ?$$

90/140

3

イロン 不可と イヨン イロン

Example – Find multiplicative inverse in \mathbb{Z}_n

Example

1

By the extended Euclidean algorithm,

$$\begin{array}{ll} 1 = 3 - 2, & 2 = 5 - 3, \\ 3 = 8 - 5, & 5 = 13 - 8, \\ 8 = 21 - 13, & 13 = 160 - 21 \times 7. \end{array}$$

$$= 3 - (5 - 3) = 3 \times 2 - 5 = 8 \times 2 - 5 \times 3 = 8 \times 2 - (13 - 8) \times 3$$
$$= 8 \times 5 - 13 \times 3 = 21 \times 5 - 13 \times 8 = 21 \times 5 - (160 - 21 \times 7) \times 8$$
$$= (-8) \times 160 + 61 \times 21.$$

Thus

 $21^{-1} \mod 160 = 61.$

Similarly

 $160^{-1} \mod 21 =?$

Example – Find multiplicative inverse in \mathbb{Z}_n

Example

By the extended Euclidean algorithm,

$$\begin{array}{ll} 1 = 3 - 2, & 2 = 5 - 3, \\ 3 = 8 - 5, & 5 = 13 - 8, \\ 8 = 21 - 13, & 13 = 160 - 21 \times 7. \end{array}$$

$$= 3 - (5 - 3) = 3 \times 2 - 5 = 8 \times 2 - 5 \times 3 = 8 \times 2 - (13 - 8) \times 3$$
$$= 8 \times 5 - 13 \times 3 = 21 \times 5 - 13 \times 8 = 21 \times 5 - (160 - 21 \times 7) \times 8$$
$$= (-8) \times 160 + 61 \times 21.$$

Thus

$$21^{-1} \mod 160 = 61.$$

Similarly

$$160^{-1} \mod 21 = -8 \mod 21 = 13.$$

Definition

Let \mathbb{Z}_n^* denote the set of congruence classes in \mathbb{Z}_n which have multiplicative inverses:

$$\mathbb{Z}_n^* := \{ a \mid a \in \mathbb{Z}_n, \gcd(a, n) = 1 \}.$$

The *Euler's totient function*, φ , is a function defined on the set of integers bigger than 1 such that $\varphi(n)$ gives the cardinality of \mathbb{Z}_n^* :

$$\varphi(n) = |\mathbb{Z}_n^*|.$$

Example

- Let n = 3, $\mathbb{Z}_3^* = \{ 1, 2 \}$, $\varphi(3) = ?$
- Let n = 4, $\mathbb{Z}_4^* = ? \ \varphi(4) = ?$
- Let n = p be a prime number, $\mathbb{Z}_p^* = ? \ \varphi(p) = ?$

イロン 不良 とうほう イロン 一日

Definition

Let \mathbb{Z}_n^* denote the set of congruence classes in \mathbb{Z}_n which have multiplicative inverses:

$$\mathbb{Z}_n^* := \{ a \mid a \in \mathbb{Z}_n, \gcd(a, n) = 1 \}.$$

The *Euler's totient function*, φ , is a function defined on the set of integers bigger than 1 such that $\varphi(n)$ gives the cardinality of \mathbb{Z}_n^* :

$$\varphi(n) = |\mathbb{Z}_n^*|.$$

Example

- Let n = 3, $\mathbb{Z}_3^* = \{ 1, 2 \}$, $\varphi(3) = 2$.
- Let n = 4, $\mathbb{Z}_4^* = \{ 1, 3 \}$, $\varphi(4) = 2$.
- Let n = p be a prime number, $\mathbb{Z}_p^* = \mathbb{Z}_p \{ 0 \} = \{ 1, 2, \dots, p-1 \}$, $\varphi(p) = p-1$.

Euler's totient function

Theorem

For any $n \in \mathbb{Z}$, n > 1,

if
$$n = \prod_{i=1}^{k} p_i^{e_i}$$
, then $\varphi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right)$, (1)

where p_i are distinct primes.

Example

• Let n = 10. $10 = 2 \times 5$. We can count the elements in \mathbb{Z}_{10} that are coprime to 10 (there are four of them): $\mathbb{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. By the above theorem, we also have

$$\varphi(10) = 10 \times \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{5}\right) = 4.$$

Euler's totient function

Example

• Let n = 120. $120 = 2^3 \times 3 \times 5$.

$$\varphi(120) = ?$$

• Let n = pq, where p and q are two distinct primes. Then

$$\varphi(n) = ?$$

• Let $n = p^k$, where p is a prime and $k \in \mathbb{Z}$, $k \ge 1$, then

$$\varphi(p^k) = ?$$

• In particular, if p = 2,

$$\varphi(2^k) =$$

?

イロン 不可と イヨン イロン

Euler's totient function

Example

• Let
$$n = 120$$
. $120 = 2^3 \times 3 \times 5$.

$$\varphi(120) = 120 \times \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{3}\right) \times \left(1 - \frac{1}{5}\right) = 32.$$

• Let n = pq, where p and q are two distinct primes. Then

$$\varphi(n) = pq\left(1 - \frac{1}{p}\right)\left(1 - \frac{1}{q}\right) = (p-1)(q-1).$$

• Let $n = p^k$, where p is a prime and $k \in \mathbb{Z}$, $k \ge 1$, then

$$\varphi(p^k) = p^k \left(1 - \frac{1}{p}\right) = p^{k-1}(p-1).$$

• In particular, if p = 2,

 $\varphi(2^k) = 2^{k-1}.$ 97/140

Lemma

 (\mathbb{Z}_n^*, \cdot) , the set \mathbb{Z}_n^* together with the multiplication defined in \mathbb{Z}_n , is an abelian group.

Recall multiplication in \mathbb{Z}_n :

$$\overline{a} \cdot \overline{b} = \overline{ab}.$$

Example

Let n = 5,

$$\overline{-2} \cdot \overline{13} = \overline{3} \cdot \overline{3} = \overline{9} = \overline{4}$$

<ロト<団ト<主

・

Euler's Theorem

Theorem (Euler's Theorem)

For any
$$a \in \mathbb{Z}$$
, $a^{\varphi(n)} \equiv 1 \mod n$ if $gcd(a, n) = 1$.

Example

Let n = 4. We have calculated that $\varphi(4) = 2$. And

 $3^2 = 9 \equiv 1 \mod 4.$

Let n = 10. we have calculated that $\varphi(10) = 4$. And

 $3^4 = 81 \equiv 1 \mod 10.$

<ロト < 部 > < 言 > < 言 > 言 の < で 99 / 140

Fermat's Little Theorem

Note that $\varphi(p)=p-1,$ a direct corollary of Euler's Theorem is Fermat's Little Theorem.

Theorem (Fermat's Little Theorem)

Let p be a prime. For any $a \in \mathbb{Z}$, if $p \nmid a$, then $a^{p-1} \equiv 1 \mod p$.

Example

- Let p = 3. $2^2 = 4 \equiv 1 \mod 3$.
- Let p = 5. $2^4 = 16 \equiv 1 \mod 5$.

An ancient problem from the 3rd century

Sun Zi Suan Jing

"There is something whose amount is unknown. If we count by threes, 2 are remaining; by fives, 3 are remaining; and by sevens, 2 are remaining. How many things are there?"

Translating to our notations, the question is

 $x \equiv 2 \mod 3$ $x \equiv 3 \mod 5$ $x \equiv 2 \mod 7$ x = ?

Solving a system of simultaneous linear congruences

Before answering the question, we provide the solution for a more general case. Let us consider a system of simultaneous linear congruences

 $x \equiv a_1 \mod m_1$ $x \equiv a_2 \mod m_2$ \vdots $x \equiv a_k \mod m_k,$

where m_i are pairwise coprime positive integers, i.e $gcd(m_i, m_j) = 1$ for $i \neq j$.

Solving a system of simultaneous linear congruences

$$x \equiv a_1 \mod m_1$$
$$x \equiv a_2 \mod m_2$$
$$\vdots$$
$$x \equiv a_k \mod m_k,$$

Define

$$m = \prod_{i=1}^{k} m_i, \quad M_i = \frac{m}{m_i}, \quad 1 \le i \le k.$$

Since m_i are pairwise coprime, m_i and M_i are coprime, and $y_i := M_i^{-1} \mod m_i$ exists. It can be computed by the extended Euclidean algorithm. Let

$$x = \sum_{i=1}^{k} a_i y_i M_i \mod m.$$

Then x is a solution.

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の へ ()・ 103 / 140

An ancient problem from the 3rd century

$$x \equiv 2 \mod 3$$
$$x \equiv 3 \mod 5$$
$$x \equiv 2 \mod 7$$
$$x = ?$$

We have $m_1 = 3, m_2 = 5, m_3 = 7, a_1 = 2, a_2 = 3, a_3 = 2$,

$$m = 3 \times 5 \times 7 = 105,$$

$$M_1 = 35 \equiv 2 \mod 3, \quad M_2 = 21 \equiv 1 \mod 5, \quad M_3 = 15 \equiv 1 \mod 7.$$

$$y_1 = M_1^{-1} \mod 3 = 2, \quad y_2 = M_2^{-1} \mod 5 = 1, \quad y_3 = M_3^{-1} \mod 7 = 1.$$

$$x = \sum_{i=1}^3 a_i y_i M_i = 2 \times 2 \times 35 + 3 \times 1 \times 21 + 2 \times 1 \times 15 \mod 105 = 233 \mod 105 = 23 \mod 105.$$

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m_1, m_2, \ldots, m_k be pairwise coprime integers. For any $a_1, a_2, \ldots, a_k \in \mathbb{Z}$, the system of simultaneous congruences

$$x \equiv a_1 \mod m_1, \quad x \equiv a_2 \mod m_2, \quad \dots \quad x \equiv a_k \mod m_k$$

has a unique solution modulo $m = \prod_{i=1}^{k} m_i$.

CRT – Example

Example

Find the unique solution $x \in \mathbb{Z}_{10}$ such that

$$x \equiv 10 \mod 3, \quad x \equiv 10 \mod 5.$$

We have

$$m_1 =?, m_2 =?, a_1 =?, a_2 =?.$$

Hence

$$m = ?, \quad M_1 = ?, \quad M_2 = ?, \quad y_1 = ?, \quad y_2 = ?.$$

And

$$x = ?$$

<ロト < 回 ト < 目 ト < 目 ト < 目 ト 目 の Q () 106 / 140

CRT – Example

Example

Find the unique solution $x \in \mathbb{Z}_{15}$ such that

$$x \equiv 10 \mod 3, \quad x \equiv 10 \mod 5.$$

We have

$$m_1 = 3, \quad m_2 = 5, \quad a_1 = a_2 = 10.$$

Hence

$$m = 15$$
, $M_1 = 5$, $M_2 = 3$, $y_1 = 5^{-1} \mod 3 = 2$, $y_2 = 3^{-1} \mod 5 = 2$.

And

 $x = a_1 y_1 M_1 + a_2 y_2 M_2 \mod n = 10 \times 2 \times 5 + 10 \times 2 \times 3 \mod 15 = 160 \mod 15 = 10.$

CRT – Example

Example

p and q are distinct primes, n = pq, $a_p, a_q \in \mathbb{Z}$. Find the unique $x \in \mathbb{Z}_n$ such that

$$x \equiv a_p \mod p, \quad x \equiv a_q \mod q.$$

We have

$$M_1 = q, \quad M_2 = p,$$

$$y_q := y_1 = M_1^{-1} \mod p = q^{-1} \mod p, \ y_p := y_2 = M_2^{-1} \mod q = p^{-1} \mod q,$$

and

 $x = a_p y_q q + a_q y_p p \mod n$

・ロト ・四ト ・ヨト ・ヨト ・ヨー

108 / 140
CRT – Example

Example

Take two distinct primes p, q, and let n = pq. By CRT, for any $a \in \mathbb{Z}_n$, there is a unique solution $x \in \mathbb{Z}_n$ such that

$$x \equiv a \mod p, \quad x \equiv a \mod q.$$

Since $a \equiv a \mod p$ and $a \equiv a \mod q$, the unique solution is given by $x = a \in \mathbb{Z}_n$.

Abstract algebra and number theory

- Preliminaries
- Integers
- Groups
- Rings
- Fields
- Vector Spaces
- Modular Arithmetic
- Polynomial Rings

Definition

- We will introduce another example of a commutative ring polynomial ring.
- Let $(F, +, \cdot)$ be a field with additive identity 0 and multiplicative identity 1.

Definition

• Define

$$F[x] := \left\{ \sum_{i=0}^{n} a_i x^i \mid a_i \in F, n \ge 0 \right\}.$$

An element $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in F[x]$ is called a *polynomial over* F.

• If $a_n \neq 0$, we define *degree of* f(x), denoted $\deg(f(x))$, to be n. Following the convention, we define $\deg(0) = -\infty$.

Let
$$F = \mathbb{R}$$
, then $f(x) = x + 1 \in \mathbb{R}[x]$ is a polynomial over \mathbb{R} and $\deg(f(x)) = ?$

Polynomials

- We will introduce another example of a commutative, ring polynomial ring.
- Let $(F, +, \cdot)$ be a field with additive identity 0 and multiplicative identity 1.

Definition

• Define

$$F[x] := \left\{ \sum_{i=0}^{n} a_i x^i \mid a_i \in F, n \ge 0 \right\}.$$

An element $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in F[x]$ is called a *polynomial over* F.

• If $a_n \neq 0$, we define *degree of* f(x), denoted $\deg(f(x))$, to be n. Following the convention, we define $\deg(0) = -\infty$.

Let
$$F = \mathbb{R}$$
, then $f(x) = x + 1 \in \mathbb{R}[x]$ is a polynomial over \mathbb{R} and $\deg(f(x)) = 1$.

Addition and multiplication

$$\begin{split} f(x) &= a_n x^n + a_{n-1} x^{n-1} + \dots + a_0, \\ g(x) &= b_m x^m + b_{m-1} x^{m-1} + \dots + b_0 \text{ in } F[x] \\ \text{Without loss of generality, let us assume } n \geq m \text{, write} \end{split}$$

$$g(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_0,$$

where $b_i = 0$ for i > m. Then

$$f(x) +_{F[x]} g(x) := c_n x^n + c_{n-1} x^{n-1} + \dots + c_0$$
, where $c_i = a_i + b_i$.

And

$$f(x) \times_{F[x]} g(x) := d_n x^n + d_{n-1} x^{n-1} + \dots + d_0$$
, where $d_i = \sum_{j=0}^i a_j b_{i-j}$.

Let
$$F = \mathbb{R}$$
. Take $f(x) = x + 1, g(x) = x$ in $\mathbb{R}[x]$,
 $f(x) +_{\mathbb{R}[x]} g(x) = 2x + 1, \quad f(x) \times_{\mathbb{R}[x]} g(x) = x^2 + x.$

Polynomial ring

Theorem

With the addition $+_{F[x]}$ and multiplication $\times_{F[x]}$ defined before, $(F[x], +_{F[x]}, \times_{F[x]})$ is a commutative ring. It is called the polynomial ring over F.

- The identity element for $+_{F[x]}$ is 0 the identity element for + in F.
- The identity element for $\times_{F[x]}$ is 1 the identity element for \cdot in F.
- For simplicity, we will write f(x)g(x) and f(x) + g(x) instead of $f(x) \times_{F[x]} g(x)$ and $f(x) +_{F[x]} g(x)$.

Example

Let $F = \mathbb{R}$, $\mathbb{R}[x]$ is a ring. The identity element for multiplication is 1. The identity element for addition is 0.

Division Algorithm

Theorem (Division Algorithm)

For any $f(x), g(x) \in F[x]$, if $\deg(f(x)) \ge 1$, there exists $s(x), r(x) \in F[x]$ such that $\deg(r(x)) < \deg(f(x))$ and

$$g(x) = s(x)f(x) + r(x).$$

r(x) is called the remainder and s(x) is called the quotient.

Definition

Let $f(x), g(x) \in F[x]$, if $f(x) \neq 0$ and g(x) = s(x)f(x) for some $s(x) \in F[x]$, then we say f(x) divides g(x), written f(x)|g(x).

Example

Take
$$g(x) = 4x^5 + x^3$$
, $f(x) = x^3 \in \mathbb{F}_3[x]$, then $g(x) = f(x)(4x^2 + 1)$ and $f(x)|g(x)$.

イロン 不良 とくほう イロン 一日

Irreducible polynomial

Definition

A polynomial $f(x) \in F[x]$ of positive degree is said to be *reducible (over* F) if there exist $g(x), h(x) \in F[x]$ such that

 $\deg(g(x)) < \deg(f(x)), \ \deg(h(x)) < \deg(f(x)), \ \text{and} \ f(x) = g(x)h(x).$

Otherwise, it is said to be *irreducible (over* F).

Example

Let $F = \mathbb{F}_2$. All the polynomials of degree 2 are $x^2, x^2 + 1, x^2 + x + 1, x^2 + x$. Which polynomials are reducible?

Remark

 $f(x) \in F[x]$ of degree 2 or 3 is reducible over F if and only if it has a root in F^a .

^aAn element $a \in F$ is a *root* of f(x) if f(a) = 0.

Irreducible polynomial

Definition

A polynomial $f(x) \in F[x]$ of positive degree is said to be *reducible (over* F) if there exist $g(x), h(x) \in F[x]$ such that

 $\deg(g(x)) < \deg(f(x)), \ \deg(h(x)) < \deg(f(x)), \ \text{and} \ f(x) = g(x)h(x).$

Otherwise, it is said to be *irreducible (over* F).

Example

Let $F = \mathbb{F}_2$. All the polynomials of degree 2 are $x^2, x^2 + 1, x^2 + x + 1, x^2 + x$. The only irreducible polynomial of degree 2 is $x^2 + x + 1$.

$$x^{2} = x \cdot x, \ x^{2} + 1 = (x+1)^{2}, \ x^{2} + x = x(x+1)$$

Congruence modulo f(x)

Definition

For any $g(x), h(x) \in F[x]$, if f(x)|(g(x) - h(x)), we say h(x) is congruent to g(x) modulo f(x), written $g(x) \equiv h(x) \mod f(x)$.

Congruence class of g(x) modulo f(x) is given by $\{ h(x) \mid h(x) \equiv g(x) \mod f(x) \}$.

Lemma

Suppose f(x) has degree n, where $n \ge 1$. Let F[x]/(f(x)) denote the set of all congruence classes of $g(x) \in F[x]$ modulo f(x). Then

$$F[x]/(f(x)) = \left\{ \sum_{i=0}^{n-1} a_i x^i \ \left| \ a_i \in F \text{ for } 0 \le i < n \right. \right\}.$$

Example

Let
$$f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$$
. $\mathbb{F}_2[x]/(f(x)) = ?$

 $\mathbf{v} = \mathbf{v} =$

Congruence modulo f(x)

Example

Let $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$. Then

 $\mathbb{F}_2[x]/(f(x)) = \{0, 1, x, x+1\}.$

Similarly, let $g(x) = x^2 \in \mathbb{F}_2[x]$. Then

$$\mathbb{F}_2[x]/(g(x)) = \{0, 1, x, x+1\}.$$

 $\mathbb{F}_2[x]/(f(x))$ and $\mathbb{F}_2[x]/(g(x))$ contain equivalent classes generated by the same polynomials.

Addition and multiplication in F[x]/(f(x))

• Naturally, for any $g(x), h(x) \in F[x]/(f(x))$, same as in for \mathbb{Z}_n , addition and multiplication in F[x]/(f(x)) are computed modulo f(x).

Example

Let $F = \mathbb{F}_2$, $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$, $g(x) = x \in \mathbb{F}_2[x]/(f(x))$, and $h(x) = x \in \mathbb{F}_2[x]/(f(x))$. We have

 $g(x) + h(x) \mod f(x) =?$ $g(x)h(x) \mod f(x) =?$

Addition and multiplication in F[x]/(f(x))

• Naturally, for any $g(x), h(x) \in F[x]/(f(x))$, same as in for \mathbb{Z}_n , addition and multiplication in F[x]/(f(x)) are computed modulo f(x).

Let
$$F = \mathbb{F}_2$$
, $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$, $g(x) = x \in \mathbb{F}_2[x]/(f(x))$, and $h(x) = x \in \mathbb{F}_2[x]/(f(x))$. We have

$$g(x) + h(x) \mod f(x) = x + x \mod f(x) = 0,$$

 $g(x)h(x) \mod f(x) = x^2 \mod f(x) = x + 1.$

Theorem

- Together with addition and multiplication modulo f(x), F[x]/(f(x)) is a commutative ring.
- It is a field if and only if f(x) is irreducible.
- Let p be a prime, and let $f(x) \in \mathbb{F}_p[x]$ be an irreducible polynomial of $\deg(f(x)) = n$. Then $\mathbb{F}_p[x]/(f(x)) \cong \mathbb{F}_{p^n}$.

Let
$$f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$$
, by the above theorem, $\mathbb{F}_2[x]/(f(x)) \cong ?$

Theorem

- Together with addition and multiplication modulo f(x), F[x]/(f(x)) is a commutative ring.
- It is a field if and only if f(x) is irreducible.
- Let p be a prime, and let $f(x) \in \mathbb{F}_p[x]$ be an irreducible polynomial of $\deg(f(x)) = n$. Then $\mathbb{F}_p[x]/(f(x)) \cong \mathbb{F}_{p^n}$.

Let
$$f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$$
, by the above theorem, $\mathbb{F}_2[x]/(f(x)) \cong \mathbb{F}_{2^2}$.

Similarity to integers

$$\begin{array}{ll} \mathbb{Z}_n & F[x]/(f(x)) \\ a+b:=(a+b) \bmod n & g(x)+h(x):=(g(x)+h(x)) \bmod f(x) \\ a\cdot b:=(a\cdot b) \bmod n & g(x)\cdot h(x):=(g(x)\cdot h(x)) \bmod f(x) \\ \mathbb{Z}_n \text{ is a ring} & F[x]/(f(x)) \text{ is a ring} \\ \mathbb{Z}_n \text{ is a field} \iff n \text{ is prime} & F[x]/(f(x)) \text{ is a field} \iff f(x) \text{ is irreducible} \end{array}$$

- Additive identity and multiplicative identity in F[x]/(f(x)) are the same as those in F.
- Multiplicative inverse can be found using the extended Euclidean algorithm

\mathbb{F}_{2^8}

- Let $f(x) = x^8 + x^4 + x^3 + x + 1 \in \mathbb{F}_2[x]$.
- It can be shown that f(x) is irreducible over \mathbb{F}_2
- Based on the previous results, we know that

$$\mathbb{F}_2[x]/(f(x)) = \left\{ \left| \sum_{i=0}^7 b_i x^i \right| \mid b_i \in \mathbb{F}_2 \ \forall i \right\},\$$

and

$$\mathbb{F}_2[x]/(f(x)) \cong \mathbb{F}_{2^8}.$$

Bytes

• We note that any

 $b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0 \in \mathbb{F}_2[x]/(f(x))$

can be stored as a byte $b_7b_6b_5b_4b_3b_2b_1b_0\in\mathbb{F}_2^8$

• Define φ :

$$\varphi : \mathbb{F}_2[x]/(f(x)) \to \mathbb{F}_2^8$$

$$b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0 \mapsto b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$$

• φ is bijective

Example

- $x^6 + x^4 + x^2 + x + 1 \in \mathbb{F}_2[x]/(f(x))$ corresponds to $01010111_2 = 57_{16}$
- $x^7 + x + 1 \in \mathbb{F}_2[x]/(f(x))$ corresponds to $10000011_2 = 83_{16}$.

Addition and multiplication between bytes

With addition and multiplication modulo f(x) in $\mathbb{F}_2[x]/(f(x))$, we can define the corresponding addition and multiplication between bytes.

Definition

For any two bytes $v = v_7 v_6 \dots v_1 v_0$ and $w = w_7 w_6 \dots w_1 w_0$, let $g_v(x) = v_7 x^7 + v_6 x^6 + \dots + v_1 x + v_0$ and $g_w(x) = w_7 x^7 + w_6 x^6 + \dots + w_1 x + w_0$ be the corresponding polynomials in $\mathbb{F}_2[x]/(f(x))$. We define

$$\boldsymbol{v} + \boldsymbol{w} = g_{\boldsymbol{v}}(x) + g_{\boldsymbol{w}}(x) \bmod f(x), \quad \boldsymbol{v} \times \boldsymbol{w} = g_{\boldsymbol{v}}(x)g_{\boldsymbol{w}}(x) \bmod f(x)$$

Example

 $f(x) = x^8 + x^4 + x^3 + x + 1$. Compute the sum and product between

$$x^6 + x^4 + x^2 + x + 1 \in \mathbb{F}_2[x]/(f(x))$$
 i.e. $01010111_2 = 57_{16}$

and

$$x^7 + x + 1 \in \mathbb{F}_2[x]/(f(x))$$
 i.e. $10000011_2 = 83_{16}$

Addition and multiplication between bytes

$$f(x) = x^8 + x^4 + x^3 + x + 1.$$

$$57_{16} + 83_{16} = (x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) \mod f(x)$$

$$= x^7 + x^6 + x^4 + x^2 \mod f(x) = 11010100_2 = D4_{16}.$$

Addition and multiplication between bytes

$$f(x) = x^8 + x^4 + x^3 + x + 1.$$

$$\begin{aligned} 57_{16}\times 83_{16} &= (x^6+x^4+x^2+x+1)(x^7+x+1)\\ (x^6+x^4+x^2+x+1)(x^7+x+1) &= x^{13}+x^{11}+x^9+x^8+x^6+x^5+x^4+x^3+1,\\ x^8 &= x^4+x^3+x+1 \bmod f(x)\\ x^9 &= x^5+x^4+x^2+x \bmod f(x)\\ x^{11} &= x^7+x^6+x^4+x^3 \bmod f(x)\\ x^{13} &= x^9+x^8+x^6+x^5 \bmod f(x). \end{aligned}$$

Addition between bytes

For any

$$g(x) = \sum_{i=0}^{n-1} a_i x^i, \quad h(x) = \sum_{i=0}^{n-1} b_i x^i$$

from $\mathbb{F}_2[x]/(f(x))$, we have

$$g(x) + h(x) \mod f(x) = \sum_{i=0}^{n-1} c_i x^i$$
, where $c_i = a_i + b_i \mod 2$.

Recall that a byte is also a vector in $\mathbb{F}_2^8,$ we have defined vector addition as bitwise XOR, and

$$\boldsymbol{v} +_{\mathbb{F}_2^8} \boldsymbol{w} = \boldsymbol{u} = u_7 u_6 \dots u_1 u_0, \text{ where } u_i = v_i \oplus w_i.$$

We note that $a + b \mod 2 = a \oplus b$ for $a, b \in \mathbb{F}_2$. Thus, our definition of addition between two bytes agrees with the vector addition between two vectors in \mathbb{F}_2^8 .

$$f(x) = x^8 + x^4 + x^3 + x + 1$$

We will compute the formula for a byte multiplied by $02_{16} = x$. Take any $g(x) = b_7 x^7 + b_6 x^6 + \cdots + b_1 x + b_0 \in \mathbb{F}_2[x]/(f(x))$

$$\begin{aligned} g(x)x \mod f(x) \\ &= (b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0)x \mod f(x) \\ &= b_7x^8 + b_6x^7 + b_5x^6 + b_4x^5 + b_3x^4 + b_2x^3 + b_1x^2 + b_0x \mod f(x) \\ &= b_6x^7 + b_5x^6 + b_4x^5 + b_3x^4 + b_2x^3 + b_1x^2 + b_0x + b_7x^4 + b_7x^3 + b_7x + b_7 \mod f(x) \\ &= b_6x^7 + b_5x^6 + b_4x^5 + (b_3 + b_7)x^4 + (b_2 + b_7)x^3 + b_1x^2 + (b_0 + b_7)x + b_7 \mod f(x). \end{aligned}$$

Thus, for any byte $b_7b_6...b_1b_0$, multiplication by 02₁₆ is equivalent to left shift by 1 and XOR with $00011011_2 = 1B_{16}$ if $b_7 = 1$.

For any byte $b_7b_6...b_1b_0$, multiplication by 02_{16} is equivalent to left shift by 1 and XOR with $00011011_2 = 1B_{16}$ if $b_7 = 1$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト - ヨ - -

132 / 140

- $57_{16} = 01010111_2$, $02_{16} \times 57_{16} = 10101110 = AE_{16}$.
- $83_{16} = 10000011_2$, $02_{16} \times 83_{16} = ?$
- $D4_{16} = 11010100_2$, $O2_{16} \times D4_{16} = ?$

- $57_{16} = 01010111_2$, $02_{16} \times 57_{16} = 10101110 = AE_{16}$.
- $83_{16} = 10000011_2$, $02_{16} \times 83_{16} = 00000110_2 \oplus 00011011_2 = 00011101_2 = 1D_{16}$.
- $D4_{16} = 11010100_2$, $02_{16} \times D4_{16} = 10101000_2 \oplus 00011011_2 = 10110011_2 = B3_{16}$.

Let us compute the multiplication of a byte by $03_{16} = x + 1$. Take any $h(x) = b_7 x^7 + b_6 x^6 + \dots + b_1 x + b_0 \in \mathbb{F}_2[x]/(f(x))$, then

 $h(x)(x+1) \bmod f(x) = h(x)x + h(x) \bmod f(x).$

Thus, for any byte $b_7b_6...b_1b_0$, multiplication by 03_{16} is equivalent to first multiplying by 02_{16} (left shift by 1 and XOR with $00011011_2 = 1B_{16}$ if $b_7 = 1$) and then XOR with the byte itself $(b_7b_6...b_1b_0)$.

Example

We have computed

 $02_{16}\times 57_{16} = \texttt{AE}_{16}, \quad 02_{16}\times \texttt{B3}_{16} = \texttt{1D}_{16}, \quad \texttt{02}_{16}\times \texttt{D4}_{16} = \texttt{B3}_{16}.$

We have

• $03_{16} \times 57_{16} = AE_{16} \oplus 57_{16} = 10101110 \oplus 01010111 = F9_{16}$.

•
$$03_{16} \times 83_{16} = 1D_{16} \oplus 83_{16} = 9E_{16}$$
.

•
$$03_{16} \times D4_{16} = B3_{16} \oplus D4_{16} = 67_{16}$$
.

୬ ୯ ୯ 134 / 140

Inverse of a byte as an element in $\mathbb{F}_2[x]/(f(x))$.

$$f(x) = x^8 + x^4 + x^3 + x + 1.$$

As mentioned before, multiplicative inverse of $g(x) \in \mathbb{F}_2[x]/(f(x))$ can be found using the extended Euclidean algorithm

Example

 $03_{16} = 00000011_2 = x + 1$. By the Euclidean algorithm,

$$f(x) = (x+1)(x^7 + x^6 + x^5 + x^4 + x^2 + x) + 1 \Longrightarrow \gcd(f(x), (x+1)) = 1.$$

Long division

In primary school, we learned to do long division for calculating the quotient and remainder of dividing one integer by another integer. For example, to compute

 $1346 = 25 \times q + r,$

-0

we can write

$$\begin{array}{r}
 53 \\
 25 \overline{\smash{\big)}\,1346} \\
 \underline{125} \\
 96 \\
 \underline{75} \\
 21
 \end{array}$$

and we get q = 53, r = 21. Similarly, let us take two polynomials $f(x), g(x) \in F[x]$, where F is a field. We can also compute f(x) divided by g(x) using long division.

Long division

Let

$$f(x) = x^8 + x^4 + x^3 + x + 1 \in \mathbb{F}_2[x], \quad g(x) = x + 1 \in \mathbb{F}_2[x].$$

We have

$$x + 1 \overline{\smash{\big)} x^{8} + x^{4} + x^{3} + x + 1} \\ x^{8} + x^{7}$$

Long division

$$\begin{array}{r} x^{7} + x^{6} + x^{5} + x^{4} + x^{2} + x + 1 \\ x + 1 \overline{\smash{\big)}} x^{8} + x^{4} + x^{3} + x + 1 \\ \underline{x^{8} + x^{7}} \\ \hline x^{7} + x^{4} + x^{3} + x + 1 \\ \underline{x^{7} + x^{6}} \\ \hline x^{6} + x^{4} + x^{3} + x + 1 \\ \underline{x^{6} + x^{5}} \\ \hline x^{5} + x^{4} + x^{3} + x + 1 \\ \underline{x^{5} + x^{4}} \\ \hline x^{3} + x + 1 \\ \underline{x^{3} + x^{2}} \\ \hline x^{2} + x + 1 \\ \underline{x^{2} + x} \\ 1 \end{array}$$

$$f(x) = (x+1)(x^7 + x^6 + x^5 + x^4 + x^2 + x + 1) + 1.$$

<ロト < 回 > < 言 > < 言 > こ う へ () 138 / 140

Inverse of a byte as an element in $\mathbb{F}_2[x]/(f(x))$.

$$f(x) = x^8 + x^4 + x^3 + x + 1.$$

As mentioned before, multiplicative inverse of $g(x) \in \mathbb{F}_2[x]/(f(x))$ can be found using the extended Euclidean algorithm

Example

 $03_{16} = 00000011_2 = x + 1$. By the Euclidean algorithm,

$$f(x) = (x+1)(x^7 + x^6 + x^5 + x^4 + x^2 + x) + 1 \Longrightarrow \gcd(f(x), (x+1)) = 1$$

By the extended Euclidean algorithm,

$$1 = f(x) + (x+1)(x^7 + x^6 + x^5 + x^4 + x^2 + x).$$

We have

$$03_{16}^{-1} = (x+1)^{-1} \mod f(x) = x^7 + x^6 + x^5 + x^4 + x^2 + x = 11110110_2 = F6_{16}.$$

139 / 140

Assignment 1

• Read textbook