Tutorial 9 # Hamiltonian cycles Question 1. Compute the following factorials - 1. 8! - 2. 12! - 3. 16! Solution. - 1. 40,320 - 2. 479,001,600 - 3. 20, 922, 789, 888, 000 Question 2. Simplify the following factorials: - 1. $9 \times 8!$ - 2. $\frac{11!}{8!}$ - 3. $6! \times \frac{7!}{5!}$ Solution. - 1. 9! = 362,880 - 2. $11 \times 10 \times 9 = 990$ - 3. $7! \times 6 = 30,240$ **Question 3.** How many different Hamiltonian cycles are there for K_4 ? K_8 ? K_{10} ? Draw all possible Hamiltonian cycles for K_4 . - K_4 : (4-1)! = 3! = 6 - K_8 : (8-1)! = 7! = 5040 - K_{10} : (10-1)! = 9! = 362,880 The graph of K_4 is as follows Taking a to be the reference point, the possible Hamiltonian cycles are - 1. abcda, adcba - 2. abdca, acdba - 3. acbda, adbca Question 4. Sir William Hamilton formalized the ideas of the Hamiltonian cycle and path. He posed this idea in 1856 in terms of a puzzle, which he later sold to a game dealer. The "Icosian Game" was a wooden puzzle with numbered ivory pegs where the player was tasked with inserting the pegs so that following them in order would traverse the entire board (as shown in the figure below). This is equivalent to finding a Hamiltonian cycle in the following graph. Solve the problem. Question 5. Find a Hamiltonian cycle for the following graph. **Question 6.** For each of the graphs below, determine if G - (a) definitely has a Hamiltonian cycle; - (b) definitely does not have a Hamiltonian cycle; or - (c) may or may not have a Hamiltonian cycle. ### Explain your answer. - 1. G has vertices of degree 3, 3, 3, 4, 4, 5. - 2. G is connected with 10 vertices, all of which have degree 6. - 3. G has vertices of degree 1, 2, 2, 3, 5, 5. - 4. G is connected with vertices of degree 2, 2, 3, 3, 4, 4. - 5. G has vertices of degree 0, 2, 2, 4, 4, 5, 5. - 1. (c). G has 6 vertices, all of which have degree at least 3. If G is connected, then it satisfies Dirac's Theorem and has a Hamiltonian cycle. If G is not connected, then it does not have a Hamiltonian cycle - 2. (a). By Dirac's Theorem - 3. (b). G cannot have a Hamiltonian cycle if it contains a vertex of degree one - 4. (c). It is possible though not guaranteed - 5. (b). G is not connected Question 7. Apply Repetitive Nearest Neighbor to the following graph. - abcdea 1290 - $badceb \rightarrow adceba 1250$ - $cbadec \rightarrow adecba 1190$ - $dabced \rightarrow abceda 1190$ - $eabcde \rightarrow abcdea 1290$ Question 8. Find a Hamiltonian cycle for each of the graphs below using: - (i) Repetitive Nearest Neighbor, - (ii) Cheapest Link, and - (iii) Nearest Insertion. 1. 2. 3. **4.** - 1. (i) adbcea, 21; $bdaceb \rightarrow acebda$, 19; $cedabc \rightarrow abceda$, 18; $dabced \rightarrow abceda$, 18; $ecbade \rightarrow abceda$, 18 - (ii) adbcea, 21 - (iii) abceda, 18 - 2. (i) mqonpm 1285; nmqopn 1415; onmqpo 1355; pmqonp 1285; qmnopq 1355 - (ii) mnopqm 1355 - (iii) mpnoqm 1285 - 3. (i) acbfdea 23; bcdeafb 27; cbfdeac 23; debcafd 27; edcbfae 27; fbcdeaf 27 (answers may vary in the case of ties) - (ii) aedcbfa 27 - (iii) acbfdea 23 - 4. (i) fhgkif-138.75; ghikfg-152.75; hgkifh-138.75; ihgkfi-135.75; kghifk-135.75 - (ii) fihgkf 135.75 - (iii) fhgkif 138.75 - 5. (i) jnkmopj 1548; kmjnpok 1442; mknjopm 1483; njmkopn 1442; opnjmko 1351; pomknjp 1548 - (ii) jmkopnj 1442 - (iii) jnkmpoj 1483 Question 9. Chris wants to visit his 4 brothers over the holidays and has determined the costs as shown in the table below. Find a route (and its total weight) for Chris using - 1. Repetitive Nearest Neighbor - 2. Cheapest Link - 3. Nearest Insertion | | Chris | David | Evan | Frank | George | |--------|-------|-------|------|-------|--------| | Chris | • | 325 | 300 | 125 | 100 | | David | 325 | | 215 | 375 | 225 | | Evan | 300 | 215 | • | 400 | 275 | | Frank | 125 | 375 | 400 | | 305 | | George | 100 | 225 | 275 | 305 | | - 1. Repetitive Nearest Neighbor - cgdefc 1065 - $degcfd \rightarrow cfdegc 1090$ - $fcgdef \rightarrow cgdefc 1065$ - $gcfdeg \rightarrow cfdegc 1090$ Thus, the best route is either cgdefc or cgdefc both with weight 1065. - 2. Cheapest Link: cgdefc-1065 - 3. Nearest Insertion: cfedgc 1065 Question 10. June and Tori are planning their annual winery tour of Virginia. They want to plan their route so they can see as many of the wineries in one day as possible and this year will be staying at the inn at Mt. Eagle Winery. The chart below lists the wineries and the time (in minutes) between each one. Find a possible route (and its total time) for June and Tori using - 1. Repetitive Nearest Neighbor - 2. Cheapest Link - 3. Nearest Insertion - 4. and determine if they can visit all six locations in one day. | | Bluebird
Wines | Cardinal
Winery | Elk Point
Vineyard | Red Fox
Wines | Graybird
Vineyard | Mt. Eagle
Winery | |-----------|-------------------|--------------------|-----------------------|------------------|----------------------|---------------------| | Bluebird | | 41 | 58 | 43 | 51 | 49 | | Cardinal | 41 | | 60 | 7 | 62 | 33 | | Elk Point | 58 | 60 | | 75 | 67 | 53 | | Red Fox | 43 | 7 | 75 | | 64 | 36 | | Graybird | 51 | 62 | 67 | 64 | | 68 | | Mt. Eagle | 49 | 33 | 53 | 36 | 68 | | - 1. Repetitive Nearest Neighbor - $bcrmegb \rightarrow megbcrm 255$ - $crmbgec \rightarrow mbgecrm 270$ - $emcrbge \rightarrow mcrbgem 254$ - $rcmbger \rightarrow mbgercm 282$ - $gbcrmeg \rightarrow megbcrm 255$ - mcrbgem-254 the best route is mcrbgem, which takes 254 minutes - 2. Cheapest Link: $crbgemc \rightarrow mcrbgem 254$ - 3. Nearest Insertion: $brcmegb \rightarrow megbrcm 254$ - 4. The shortest route takes 254 minutes, which is 4hours and 14 minutes. Hence they can visit all six wineries in one day. ### Question 11. Using the digraph below, - 1. Apply the Undirecting Algorithm to find the weighted clone graph. - 2. Using your result from 1, apply the Nearest Neighbor Algorithm with starting vertices a, a', c and c' and convert your results to directed cycles in the digraph. Find the total weight of each directed cycle. - 3. Using your result from 1, apply the Cheapest Link Algorithm and convert your result to a directed cycle in the digraph and find its total weight. 1. We first construct the table of edge weights | | a | b | c | d | e | |---|----|----|----|----|----| | a | | 35 | 25 | 15 | 30 | | b | 28 | | 32 | 37 | 50 | | c | 23 | 40 | | 35 | 18 | | d | 13 | 52 | 33 | • | 46 | | e | 15 | 41 | 10 | 38 | • | Then we can construct the table of edge weights for the undirected clone graph as follows | | a | b | c | d | e | a' | b' | c' | d' | e' | |----|----|----|----|----|----|----|----|----|----|----| | a | | | | | | 0 | 28 | 23 | 13 | 15 | | b | | | | | | 35 | 0 | 40 | 52 | 41 | | c | ē | • | • | • | • | 25 | 32 | 0 | 33 | 10 | | d | | | | | | 15 | 37 | 35 | 0 | 38 | | e | | | | | | 30 | 50 | 18 | 46 | 0 | | a' | 0 | 35 | 25 | 15 | 30 | | | | | | | b' | 28 | 0 | 32 | 37 | 50 | | | | | | | c' | 23 | 40 | 0 | 35 | 18 | • | • | • | • | | | d' | 13 | 52 | 33 | 0 | 46 | | | | | | | e' | 15 | 41 | 10 | 38 | 0 | | | • | | • | The weighted clone graph in graph representation is as follows ### 2. Nearest Neighbor Algorithm | Nearest Neighbor Cycle | Conversion | Total Weight | |------------------------|-----------------------------------|--------------| | aa'dd'cc'ee'bb'a | $a \to d \to c \to e \to b \to a$ | 135 | | a'ad'dc'ce'eb'ba' | $a \to b \to e \to c \to d \to a$ | 143 | | cc'ee'aa'dd'bb'c | $c \to e \to a \to d \to b \to c$ | 132 | | c'ce'ea'ad'db'bc' | $c \to b \to d \to a \to e \to c$ | 130 | ### 3. Cheapest Link Algorithm: $$aa'ee'cc'bb'dd'a, \quad a \to e \to c \to b \to d \to a$$ total weight: 130 Question 12. Leena will be visiting her clients around Europe for the month of April. She has tried to estimate the cost of travel between two cities, using various modes of transportation and discovered the cost depends on the direction of travel. The table below gives these estimates. - 1. Draw the directed graph representing the information in the chart below. - 2. Apply the Undirecting Algorithm to find the weighted clone graph. - 3. Using your result from 1, apply the Nearest Neighbor Algorithm with starting vertices a, a', d and d' and convert your results to directed cycles in the digraph. Find the total weight of each directed cycle. - 4. Using your result from 1, apply the Cheapest Link Algorithm and convert your result to a directed cycle in the digraph and find its total weight. | | Amsterdam | Bern | Düsseldorf | Genoa | Munich | |------------|-----------|------|------------|-------|--------| | Amsterdam | • | 415 | 375 | 280 | 300 | | Bern | 500 | | 425 | 110 | 250 | | Düsseldorf | 300 | 425 | | 375 | 240 | | Genoa | 150 | 200 | 500 | • | 400 | | Munich | 275 | 350 | 315 | 400 | | 1. The directed graph representation is as follows $2. \ \,$ The table of weights for the weighted clone graph is as follows | | a | b | d | g | m | a' | b' | d' | g' | m' | |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | a | | | | | | 0 | 500 | 300 | 150 | 275 | | b | | | | | | 415 | 0 | 425 | 200 | 350 | | d | | | | | | 375 | 425 | 0 | 500 | 315 | | g | | | | | | 280 | 110 | 375 | 0 | 400 | | m | • | • | • | • | • | 300 | 250 | 240 | 400 | 0 | | a' | 0 | 415 | 375 | 280 | 300 | • | • | • | • | • | | b' | 500 | 0 | 425 | 110 | 250 | • | • | • | • | • | | d' | 300 | 425 | 0 | 375 | 240 | • | • | | • | | | g' | 150 | 200 | 500 | 0 | 400 | • | • | | • | | | m' | 275 | 350 | 315 | 400 | 0 | | ٠ | • | • | | The graph representation is # 3. Nearest Neighbor Algorithm | _ | | | | |---|------------------------|-----------------------------------|--------------| | _ | Nearest Neighbor Cycle | Conversion | Total Weight | | | aa'gg'bb'mm'dd'a | $a \to g \to b \to m \to d \to a$ | 1345 | | | a'ag'gb'bm'md'da' | $a \to d \to m \to b \to g \to a$ | 1225 | | | dd'mm'aa'gg'bb'd | $d \to m \to a \to g \to b \to d$ | 1420 | | | d'dm'mb'bg'ga'ad' | $d \to a \to g \to b \to m \to d$ | 1345 | | | | | | ### 4. Cheapest Link Algorithm: $$aa'dd'mm'bb'gg'a, \quad a \to d \to m \to b \to g \to a$$ total weight: 1225 Question 13. Explain why no cycles of length three exist in the graph resulting from applying the Undirecting Algorithm to a complete digraph. Solution. In the clone undirected graph constructed using the Undirecting Algorithm, each edge connects an original vertex to a clone vertex, and vice versa. Therefore, any path in the graph must alternate between original and clone vertices. Suppose, for contradiction, that the graph contains a cycle of length three. Then the sequence of vertices in such a cycle must return to its starting point after two steps, implying that two of the vertices in the cycle must either both be original vertices or both be clone vertices. Hence, the graph resulting from applying the Undirecting Algorithm to a complete directed graph contains no cycles of length three. Question 14. Determine a modification of Nearest Insertion that will allow it to be used on a graph obtained from a complete digraph using the Undirecting Algorithm. (Hint: the initial cycle should start from the lowest nonzero edge and should have length 4.) Use your modification on the weighted clone graph corresponding to the following directed graph from lecture Solution. Input: Weighted clone graph of a complete digraph # 1. Initialization: • Among all edges with nonzero weight, identify those with the minimum weight. If multiple such edges exist, select one at random. - Use the selected edge to construct an initial cycle of length 4 by including both of its endpoints and their corresponding clone or original vertices. - For example, if the chosen edge is x'y, the initial cycle is $x \to x'yy'x$. If the selected edge is xy', the initial cycle is x'xy'yx'. ### 2. Insertion Step: - Among all unvisited vertices, select the one that is closest to any vertex currently in the cycle. - Insert the selected vertex and its corresponding clone/original vertex into the cycle. This involves: - Connecting the chosen vertex to its nearest neighbor in the cycle, - Adding an edge between the chosen vertex and its clone/original counterpart, - Connecting the counterpart to a suitable position in the cycle, and - Removing one existing edge to maintain the cycle structure. - Choose the insertion configuration that results in the smallest increase in total cycle weight. - 3. **Repeat** the insertion step until all original and clone vertices have been added to the cycle. - 4. **Output:** The resulting Hamiltonian cycle in the clone graph corresponds to a Hamiltonian cycle in the original digraph. This can be obtained by interpreting the cycle as alternating between original and clone vertices. Applying the algorithm to the weighted clone graph we get ee'aa'dd'bb'cc'e converting to directed cycle in the digraph we have $$e \to a \to d \to b \to c \to e$$ with total weight 1300. Question 15. The Nearest Insertion Algorithm finds a Hamiltonian cycle by expanding smaller cycles through the addition of the closest vertex to that cycle. It suffers from the same problem as the other algorithms in that a large edge may be chosen in the last step of the algorithm. A variation, called *Farthest Insertion*, first considers the vertices farthest apart since any Hamiltonian cycle must include both of them. In doing so, later additions of vertices will either reduce the cycle weight or increase it by small margins. The description of the algorithm appears below. # Farthest Insertion Algorithm **Input:** Weighted complete graph G = (V, E). # Steps: - 1. Pick a starting vertex v_1 . - 2. Choose the vertex v_2 that has the highest weighted edge to v_1 . - 3. Form a list $(w_1, w_2, w_3, \ldots, w_n)$ where the entry in location i is the minimum weighted edge from v_i to either of v_1 and v_2 . The entries for v_1 and v_2 will be left blank (denoted by -). - 4. Choose vertex x with the largest value from the list created in Step 3. Form the cycle $v_1 v_2 x v_1$. - 5. Update the list from Step 3 so the entries are now the weights from the chosen to unchosen vertices. Choose the next vertex y with largest value in the list. - 6. Append the cycle of chosen vertices with y by removing one of the edges from that cycle. Determine which edges to add and subtract by choosing the lowest total as in Nearest Insertion; that is, if the cycle obtained from Step 4 was a b c a and d is the new vertex to add along with edge to dc, we calculate: $$w(dc) + w(db) - w(cb)$$ and $w(dc) + w(da) - w(ca)$ and choose the option that produces the smaller total. 7. Repeat Steps (5) and (6) until all vertices have been included in the cycle. Output: Hamiltonian cycle. Apply the Farthest Insertion to the following graph from the Lecture and from Question 7. 1. **2**. - $1. \ adebca 1270$ - $2. \ adceba 1250$ Question 16. Each morning a collection of online orders arrives at the warehouse of a large retailer. Steve, the warehouse manager, must ensure the items are packed and put onto the truck for shipment. However, the items are different every morning and are located in varying locations in the large warehouse. Steve has come to you for help in determining the best method for pulling stock from the shelves. Write a report detailing the Traveling Salesman Problem and how it applies to the warehouse. As part of your report, determine a route for the items shown in the map below. The route must start and end at the packaging bay (p) and the time required for moving down a long aisle is 45 seconds and down a short aisle or between aisles is 10 seconds. For example, it takes 85 seconds to get from item a to item b since four short segments and one long segment are used. Include a weighted graph and discussion of which algorithm(s) you used. Solution. We can approximate the layout on a grid with the following coordinate for each point $$a = (0, 4.5), b = (4, 0), c = (12, 4.5), d = (0, -1), e = (6, -5.5)$$ $f = (4, -7.5), p = (10, -8.5)$ The weight for each edge is then given by $$\omega (ac) = 12 \times 10 = 120, \qquad \omega (ad) = 5.5 \times 10 = 55, \qquad \omega (ae) = (6+10) \times 10 = 160, \\ \omega (af) = (4+12) \times 10 = 160, \qquad \omega (bc) = (8+4.5) \times 10 = 125, \qquad \omega (bd) = (4+1) \times 10 = 50, \\ \omega (be) = (2+5.5) \times 10 = 75, \qquad \omega (bf) = 7.5 \times 10 = 75, \qquad \omega (cd) = (12+5.5) \times 10 = 175, \\ \omega (ce) = (6+10) \times 10 = 160, \qquad \dots$$ | | a | b | c | d | e | f | p | |---|-----|-----|-----|-----|-----|-----|-----| | a | | 85 | 120 | 55 | 160 | 160 | 230 | | b | 85 | | 125 | 50 | 75 | 75 | 145 | | c | 120 | 125 | | 175 | 160 | 200 | 150 | | d | 55 | 50 | 175 | | 105 | 105 | 175 | | e | 160 | 75 | 160 | 105 | | 40 | 70 | | f | 160 | 75 | 200 | 105 | 40 | | 70 | | p | 230 | 145 | 150 | 175 | 70 | 70 | | A graph representation is as follows - 1. Repetitive Nearest Neighbor Algorithm - $adbefpca \rightarrow pcadbefp 560$ - $bdacpefb \rightarrow pefbbdacp 560$ - $cadbefpc \rightarrow pcadbefp 560$ - $dbefpcad \rightarrow pcadbefp 560$ - $efpbdace \rightarrow pbdacefp 640$ - $fepbdacf \rightarrow pbdacfep 680$ - pefbdacp 560 - 2. Cheapest Link Algorithm: $efbdacpe \rightarrow pefbdacp 560$ - 3. Nearest Insertion Algorithm: pedacbfp-620