Tutorial 6

Bases and matrix operators

Question 1. Show that the following set of vectors forms a basis for \mathbb{R}^2 and \mathbb{R}^3 respectively.

1.
$$\{ (2, 1), (3, 0) \}$$

$$2. \{ (3, 1, -4), (2, 5, 6) \}, (1, 4, 8)$$

Solution.

• The determinant

$$\begin{vmatrix} 2 & 1 \\ 3 & 0 \end{vmatrix} = -3 \neq 0.$$

thus, the set of vectors forms a basis for \mathbb{R}^2 .

• The determinant

$$\begin{vmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{vmatrix} = 26 \neq 0$$

thus, the set of vectors forms a basis for \mathbb{R}^3 .

Question 2. Show that the following matrices form a basis for $\mathcal{M}_{\times 2}$ 2.

1.
$$\begin{pmatrix} 3 & 6 \\ 3 & -6 \end{pmatrix}$$
, $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -8 \\ -12 & -4 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$

2.
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Solution.

1. We must show that the matrices are linearly independent and span $\mathcal{M}_{2\times 2}$. To prove linear independence we must show that the equation

$$\alpha_1 \begin{pmatrix} 3 & 6 \\ 3 & -6 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 & -8 \\ -12 & -4 \end{pmatrix} + \alpha_4 \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

has only the trivial solution. Expanding both sides and equating corresponding entries, we obtain the following system of linear equations:

$$3\alpha_{1} + \alpha_{4} = 0$$

$$6\alpha_{1} - \alpha_{2} - 8\alpha_{3} = 0$$

$$3\alpha_{1} - \alpha_{2} - 12\alpha_{3} - \alpha_{4} = 0$$

$$-6\alpha_{1} - 4\alpha_{3} + 2\alpha_{4} = 0$$

The coefficient matrix of the linear system is

$$A = \begin{pmatrix} 3 & 0 & 0 & 1 \\ 6 & -1 & -8 & 0 \\ 3 & -1 & -12 & -1 \\ -6 & 0 & -4 & 2 \end{pmatrix}.$$

Computing the determinant, we get $det(A) = 48 \neq 0$. Since the determinant is nonzero, the system has only the trivial solution, which confirms that the matrices are linearly independent.

To prove that the matrices span $\mathcal{M}_{2\times 2}$ we must show that every 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ can be expressed as

$$\beta_1 \begin{pmatrix} 3 & 6 \\ 3 & -6 \end{pmatrix} + \beta_2 \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} + \beta_3 \begin{pmatrix} 0 & -8 \\ -12 & -4 \end{pmatrix} + \beta_4 \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

This corresponds to a system of linear equations in the unknowns $\beta_1, \beta_2, \beta_3, \beta_4$ with the same coefficient matrix A as before. Since we have computed that $\det(A) \neq 0$, the system always has a unique solution for any given values a, b, c, d. Consequently, the given matrices span $\mathcal{M}_{2\times 2}$. Since the given set of matrices is both linearly independent and spans $\mathcal{M}_{2\times 2}$, it forms a basis for $\mathcal{M}_{2\times 2}$.

2. Using a similar approach as in Part 1, we consider the coefficient matrix

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Computing its determinant, we obtain $det(A) = 1 \neq 0$.

Question 3. In each part, show that the set of vectors is not a basis for \mathbb{R}^3

1.
$$\{ (2, -3, 1), (4, 1, 1), (0, -7, 1) \}$$

2.
$$\{ (1, 6, 4) \}, (2, 4, -1), (-1, 2, 5)$$

Solution.

• The determinant

$$\begin{vmatrix} 2 & -3 & 1 \\ 4 & 1 & 1 \\ 0 & -7 & 1 \end{vmatrix} = 0.$$

Since the determinant is zero, the matrix is singular, implying that its column vectors are linearly dependent. Consequently, the given set of vectors does not form a basis for \mathbb{R}^3 .

• The determinant

$$\begin{vmatrix} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{vmatrix} = 0,$$

thus, the set of vectors is not a basis for \mathbb{R}^3 .

Question 4. Show that the following matrices do not form a basis for $\mathcal{M}_{2\times 2}$.

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 2 & -2 \\ 3 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$$

Solution.

$$-\begin{pmatrix}1&0\\1&1\end{pmatrix}+\begin{pmatrix}2&-2\\3&2\end{pmatrix}-\begin{pmatrix}1&-1\\1&0\end{pmatrix}-\begin{pmatrix}0&-1\\1&1\end{pmatrix}=\begin{pmatrix}0&0\\0&0\end{pmatrix}$$

demonstrates that the zero matrix can be expressed as a nontrivial linear combination of the given matrices. This implies that the matrices are linearly dependent and, therefore, do not form a basis for $\mathcal{M}_{2\times 2}$.

Question 5. Find the coordinate vector of w relative to the basis $S = \{u_1, u_2\}$ for \mathbb{R}^2 .

1.
$$\mathbf{u}_1 = (2, -4), \mathbf{u}_2 = (3, 8), \mathbf{w} = (1, 1)$$

2.
$$\mathbf{u}_1 = (1, 1), \mathbf{u}_2 = (0, 2), \mathbf{w} = (a, b)$$

3.
$$\mathbf{u}_1 = (1, -1), \mathbf{u}_2 = (1, 1), \mathbf{w} = (1, 0)$$

4.
$$u_1 = (1, -1), u_2 = (1, 1), w = (0, 1)$$

Solution.

1. To find $[\boldsymbol{w}]_S$, we must find values $\alpha_1, \alpha_2, \alpha_3$ s.t.

$$\alpha_1 \boldsymbol{u}_1 + \alpha \boldsymbol{u}_2 = \boldsymbol{w} \Longrightarrow \alpha_1 (2, -4) + \alpha_2 (3, 8) = (1, 1)$$

Equating corresponding components gives

$$2\alpha_1 + 3\alpha_3 = 1$$
$$-4\alpha_1 + 8\alpha_2 = 1$$

The augmented matrix of the system is

$$\begin{pmatrix}
2 & 3 & 1 \\
-4 & 8 & 1
\end{pmatrix}$$

which has reduced row echelon form

$$\begin{pmatrix}
1 & 0 & \frac{5}{28} \\
0 & 1 & \frac{3}{14}
\end{pmatrix}$$

We have

$$\alpha_1 = \frac{5}{28}, \quad \alpha_2 = \frac{3}{14}.$$

Therefore

$$[\boldsymbol{w}]_S = \begin{pmatrix} \frac{5}{28} \\ \frac{3}{14} \end{pmatrix}$$

2. To find $[\boldsymbol{w}]_S$, we must find values $\alpha_1, \alpha_2, \alpha_3$ s.t.

$$\alpha_1 \boldsymbol{u}_1 + \alpha \boldsymbol{u}_2 = \boldsymbol{w} \Longrightarrow \alpha_1 (1, 1) + \alpha_2 (0, 2) = (a, b)$$

Equating corresponding components gives

$$\begin{array}{rcl}
\alpha_1 + \alpha_2 & = & a \\
2\alpha_2 & = & b
\end{array}$$

We have

$$\alpha_1 = \frac{2a - b}{2}, \quad \alpha_2 = \frac{b}{2}.$$

Therefore

$$[oldsymbol{w}]_S = egin{pmatrix} rac{2a-b}{2} \ rac{b}{2} \end{pmatrix}$$

3.

$$[m{w}]_S = egin{pmatrix} rac{1}{2} \ rac{1}{2} \end{pmatrix}$$

4.

$$[\boldsymbol{w}]_S = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

Question 6. Find the coordinate vector of \boldsymbol{u} relative to the basis $S = \{\boldsymbol{v}_1, \ \boldsymbol{v}_2, \ \boldsymbol{v}_3\}$ for \mathbb{R}^3

1.
$$\mathbf{v}_1 = (1, 0, 0), \mathbf{v}_2 = (2, 2, 0), \mathbf{v}_3 = (3, 3, 3), \mathbf{u} = (2, -1, 3)$$

2.
$$\mathbf{v}_1 = (1, 2, 3), \mathbf{v}_2 = (-4, 5, 6), \mathbf{v}_3 = (7, -8, 9), \mathbf{u} = (5, -12, 3)$$

Solution.

1.
$$u = 3v_1 - 2v_2 + v_3$$
, and

$$[\boldsymbol{u}]_S = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$$

2.
$$u = -2v_1 + v_3$$
, and

$$[\boldsymbol{u}]_S = \begin{pmatrix} -2\\0\\1 \end{pmatrix}$$

Question 7. For each case, first show that the set $S = \{A_1, A_2, A_3, A_4\}$ is a basis for $\mathcal{M}_{2\times 2}$, then express A as a linear combination of the vectors in S, and then find the coordinate vector of A relative to S.

1.
$$A_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $A_3 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $A_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$; $A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$

2.
$$A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $A_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A_4 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$; $A = \begin{pmatrix} 6 & 2 \\ 5 & 3 \end{pmatrix}$

Solution.

1. To show S is a basis for $\mathcal{M}_{2\times 2}$, we must show that S linearly independent and span $\mathcal{M}_{2\times 2}$. To prove linear independence we must show that the equation

$$\alpha_1 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} + \alpha_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

has only the trivial solution. Expanding both sides and equating corresponding entries, we obtain the following system of linear equations:

$$\alpha_1 = 0$$

$$\alpha_1 + \alpha_2 = 0$$

$$\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0$$

The coefficient matrix of the linear system is

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}.$$

Computing the determinant, we get $det(M) = 1 \neq 0$. Since the determinant is nonzero, the system has only the trivial solution, which confirms that the matrices are linearly independent.

To prove that the matrices span $\mathcal{M}_{2\times 2}$ we must show that every 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ can be expressed as

$$\beta_1 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \beta_2 \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} + \beta_3 \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} + \beta_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

This corresponds to a system of linear equations with coefficient matrix M. Since $det(M) \neq 0$, the system always has a unique solution for any given values a, b, c, d, proving that the given matrices span $\mathcal{M}_{2\times 2}$. Since S is both linearly independent and spans $\mathcal{M}_{2\times 2}$, it forms a basis for $\mathcal{M}_{2\times 2}$.

Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, we get the following system of linear equations in unknowns $\beta_1, \beta_2, \beta_3, \beta_4$

$$\beta_{1} = 1
\beta_{1} + \beta_{2} = 0
\beta_{1} + \beta_{2} + \beta_{3} = 1
\beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} = 0$$

Solving the system gives

$$\beta_1 = 1$$
, $\beta_2 = -1$, $\beta_3 = 1$, $\beta_4 = -1$

Thus, A can be expressed as

$$A = A_1 - A_2 + A_3 - A_4$$

Therefore, the coordinate vector of A relative to S is

$$[A]_S = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

2. The proof follows a similar argument as in Part 1. In this case, the coefficient matrix is

$$M = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

which has determinant det(M) = -1. Furthermore,

$$A = 1A_1 + 2A_2 + 3A_3 + 4A_4$$

and

$$[A]_S = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}$$

Question 8. In each part, let $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ be multiplication by A, and let $\{e_1, e_2, e_3\}$ be the standard basis for \mathbb{R}^3 . Determine whether the set $\{T_A(e_1), T_A(e_2), T_A(e_3)\}$ is linearly independent in \mathbb{R}^3

1.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ -1 & 2 & 0 \end{pmatrix}$$

$$2. \ A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix}$$

Solution. Since $T_A(\mathbf{e}_i)$ is equal to the *i*th column of A, the set $\{T_A(\mathbf{e}_1), T_A(\mathbf{e}_2), T_A(\mathbf{e}_3)\}$ is linearly independent in \mathbb{R}^3 iff $\det(A) \neq 0$

- 1. $\det(A) = 10 \neq 0$, the set $\{T_A(e_1), T_A(e_2), T_A(e_3)\}$ is linearly independent in \mathbb{R}^3
- 2. $\det(A) = 0$, the set $\{ T_A(\mathbf{e}_1), T_A(\mathbf{e}_2), T_A(\mathbf{e}_3) \}$ is linearly dependent in \mathbb{R}^3

Question 9. In each part, let $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ be multiplication by A, and let $\boldsymbol{u} = \begin{pmatrix} 1, & -2, & -1 \end{pmatrix}$. Find the coordinate vector of $T_A(\boldsymbol{u})$ relative to the basis $S = \{ \begin{pmatrix} 1, & 1, & 0 \end{pmatrix}, \begin{pmatrix} 0, & 1, & 1 \end{pmatrix}, \begin{pmatrix} 1, & 1, & 1 \end{pmatrix} \}$ for \mathbb{R}^3 .

1.
$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 2 \end{pmatrix}$$

$$2. \ A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Solution.

1.

$$T_A(\boldsymbol{u}) = A\boldsymbol{u}^{\top} = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix}$$

By solving for $\alpha_1, \alpha_2, \alpha_3$ in

$$\alpha_1(1, 1, 0) + \alpha_2(0, 1, 1) + \alpha_3(1, 1, 1) = (4, -2, 0),$$

we get

$$T_A(\boldsymbol{u}) = -2(1, 1, 0) - 6(0, 1, 1) + 6(1, 1, 1)$$

Hence the coordinate vector is given by

$$[T_A(\boldsymbol{u})]_S = \begin{pmatrix} -2\\ -6\\ 6 \end{pmatrix}$$

2.

$$T_A(\boldsymbol{u}) = \begin{pmatrix} -2\\0\\-1 \end{pmatrix}, \quad [T_A(\boldsymbol{u})]_S = \begin{pmatrix} 1\\2\\-3 \end{pmatrix}$$

Question 10. Find a basis for the solution space of the homogeneous linear system, and find the dimension of that space

1.

$$x_1 + x_2 - x_3 = 0$$

$$-2x_1 - x_2 + 2x_3 = 0$$

$$-x_1 + x_3 = 0$$

$$3x_1 + x_2 + x_3 + x_4 = 0$$
$$5x_1 - x_2 + x_3 - x_4 = 0$$

3.

$$2x_1 + x_2 + 3x_3 = 0$$
$$x_1 + 5x_3 = 0$$
$$x_2 + x_3 = 0$$

4.

2.

$$x_1 - 3x_2 + x_3 = 0$$

$$2x_1 - 6x_2 + 2x_3 = 0$$

$$3x_1 - 9x_2 + 3x_3 = 0$$

5.

$$x_1 - 4x_2 + 3x_3 - x_4 = 0$$
$$2x_1 - 8x_2 + 6x_3 - 2x_4 = 0$$

6.

$$x+y+z = 0$$

$$3x + 2y - 2z = 0$$

$$4x + 3y - z = 0$$

$$6x + 5y + z = 0$$

Solution.

1. The reduced row echelon form of the augmented matrix is $\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. The solution is given by

$$(x_1, x_2, x_3) = (t, 0, t) = t(1, 0, 1)$$

Thus the solution space is equal to $\text{span}(\{(1, 0, 1)\})$ and has dimension 1

2. The reduced row echelon form of the augmented matrix is

$$\begin{pmatrix} 1 & 0 & \frac{2}{7} & 0 & 0 \\ 0 & 1 & \frac{3}{7} & 1 & 0 \end{pmatrix}.$$

The solution is given by

$$(x_1, x_2, x_3, x_4) = \left(-\frac{2t}{7}, -s - \frac{3t}{7}, t, s\right) = t\left(-\frac{2}{7}, -\frac{3}{7}, 1, 0\right) + s\left(0, -1, 0, 1\right)$$

A basis for the solution space is

$$\left\{ \left. \begin{pmatrix} -\frac{2}{7}, & -\frac{3}{7}, & 1, & 0 \end{pmatrix}, (0, -1, 0, 1) \right. \right\}$$

and the solution space has dimension 2.

3. The reduced row echelon form of the augmented matrix is

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

The system has only the trivial solution. The solution space is the zero vector space and has dimension zero.

4. The reduced row echelon form of the augmented matrix is

$$\begin{pmatrix} 1 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

The solution is given by

$$(x_1, x_2, x_3) = (3t - s, t, s) = t(3, 1, 0) + s(-1, 0, 1)$$

A basis for the solution space is

$$\{ (3, 1, 0), (-1, 0, 1) \}$$

and the solution space has dimension 2.

5. The reduced row echelon form of the augmented matrix is

$$\begin{pmatrix} 1 & -4 & 3 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

The solution is given by

$$(x_1, x_2, x_3, x_4) = (4t - 3s + r, t, s, r) = t(4, 1, 0, 0) + s(-3, 0, 1, 0) + r(1, 0, 0, 1)$$

A basis for the solution space is

$$\{ (4, 1, 0, 0), (-3, 0, 1, 0) \}, (1, 0, 0, 1)$$

and the solution space has dimension 3.

6. The reduced row echelon form of the augmented matrix is

$$\begin{pmatrix} 1 & 0 & -4 & 0 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

The solution is given by

$$(x_1, x_2, x_3) = (4t, -5t, t) = t(4, -5, 1)$$

A basis for the solution space is

$$\{ (4, -5, 1) \}$$

and the solution space has dimension 1.

Question 11. In each part, find a basis for the given subspace of \mathbb{R}^3 , and sate its dimension

- 1. The plane 3x 2y + 5z = 0.
- 2. The plane x y = 0.

- 3. The line x = 2t, y = -t, z = 4t.
- 4. All vectors of the form (a, b, c), where b = a + c.

Solution.

1. The points in the plane are of the form

$$(x, y, z) = \left(\frac{2t}{3} - \frac{5s}{3}, t, s\right) = t\left(\frac{2}{3}, 1, 0\right) + s\left(-\frac{5}{3}, 0, 1\right)$$

A basis for the plane is:

$$\left\{ \left(\frac{2}{3}, 1, 0\right), \left(-\frac{5}{3}, 0, 1\right) \right\}$$

Since the basis consists of two vectors, the dimension is 2.

2. The points in the plane are of the form

$$(x, y, z) = (t, t, s) = t(1, 1, 0) + s(0, 0, 1)$$

A basis for the plane is:

$$\{ (1, 1, 0), (0, 0, 1) \}$$

Since the basis consists of two vectors, the dimension is 2.

3. The points on the line if of the form

$$(x, y, z) = (2t, -t, 4t) = t(2, -1, 4)$$

A basis for the line is:

$$\{ (2, -1, 4) \}$$

The dimension is 1.

4. A vector of the form (a, b, c) where b = a + c can be rewritten as:

$$(a, b, c) = (a, a+c, c) = a(1, 1, 0) + c(0, 1, 1).$$

Thus, a basis is:

$$\{ (1, 1, 0), (0, 1, 1) \}$$

The dimension is 2.

Question 12. In each part, find a basis for the given subspace of \mathbb{R}^4 , and state its dimension.

- 1. All vectors of the form (a, b, c, 0).
- 2. All vectors of the form (a, b, c, d), where d = a + b and c = a b.
- c) All vectors of the form (a, b, c, d), where a = b = c = d.

1. We can express any vector in this subspace as

$$(a, b, c, 0) = a(1, 0, 0, 0) + b(0, 1, 0, 0) + c(0, 0, 1, 0)$$

Therefore, a basis for this subspace is:

$$\{ (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) \}$$

The dimension of the subspace is 3.

2. We can express any vector in this subspace as

$$(a, b, a-b, a+b) = a(1, 0, 1, 1) + b(0, 1, -1, 1)$$

Therefore, a basis for this subspace is:

$$\{ (1, 0, 1, 1), (0, 1, -1, 1) \}$$

The dimension of the subspace is 2.

3. We can express any vector in this subspace as

$$(a, a, a, a) = a (1, 1, 1, 1)$$

Therefore, a basis for this subspace is:

$$\{ (1, 1, 1, 1) \}$$

The dimension of the subspace is 1.

Question 13. Show that the matrices

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad M_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

form a basis for $\mathcal{M}_{2\times 2}$.

Solution. We must show that the matrices are linearly independent and span $\mathcal{M}_{2\times 2}$. To prove linear independence we must show that the equation

$$\alpha_1 M_1 + \alpha_2 M_2 + \alpha_3 M_3 + \alpha_4 M_4 = O$$

has only the trivial solution. To prove that the matrices span $\mathcal{M}_{2\times 2}$ we must show that every 2×2 matrix

$$B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

can be expressed as

$$\beta_1 M_1 + \beta_2 M_2 + \beta_3 M_3 + \beta_4 M_4 = B.$$

The matrix forms for the two equations are

$$\alpha_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \alpha_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

and

$$\beta_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \beta_2 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \beta_3 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \beta_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

which can be rewritten as

$$\begin{pmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \beta_1 & \beta_2 \\ \beta_3 & \beta_4 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Since the first equation has only the trivial solution

$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$$

the matrices are linearly independent, and since the second equation has the solution

$$\beta_1 = a$$
, $\beta_2 = b$, $\beta_3 = c$, $\beta_4 = d$

the matrices space $\mathcal{M}_{2\times 2}$. This proves that the matrices M_1 , M_2 , M_3 and M_4 form a basis for $\mathcal{M}_{2\times 2}$.

More generally

Definition 1 The mn different matrices whose entries are zero except for a single entry of 1 form a basis for $\mathcal{M}_{m \times n}$ called the standard basis for $\mathcal{M}_{M \times n}$.

Question 14. Find the dimension of each of the following vector spaces.

- 1. The vector space of all diagonal $n \times n$ matrices.
- 2. The vector space of all symmetric $n \times n$ matrices.
- 3. The vector space of all upper triangular $n \times n$ matrices.
- 4. The vector space of all lower triangular $n \times n$ matrices.

Solution. Let E_{ij} denote the $n \times n$ matrix with a 1 in the (i,i)-entry and 0 elsewhere, for $1 \le i, j \le n$.

1. The vector space of all diagonal $n \times n$ matrices.

A diagonal matrix A is of the form

$$A = \begin{pmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix} = a_{11}E_{11} + a_{22}E_{22} + \cdots + a_{nn}E_{nn}.$$

Therefore, a basis for the vector space of diagonal matrices is given by the set:

$$\{E_{11}, E_{22}, \ldots, E_{nn}\}.$$

The dimension of this vector space is n.

2. A symmetric matrix A satisfies $A^{\top} = A$, meaning that $a_{ij} = a_{ji}$ for all i, j. It has the form

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & a_{3n} & \cdots & a_{nn} \end{pmatrix} = \sum_{i=1}^{n} a_{ii} E_{ii} + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{ij} (E_{ij} + E_{ji})$$

Therefore, a basis consists of n diagonal matrices E_{ii} and $\frac{n(n-1)}{2}$ symmetric matrices of the form $E_{ij} + E_{ji}$ for i < j which correspond to the $\frac{n(n-1)}{2}$ entries above (or below) the diagonal. The dimension of this vector space is

$$\frac{n(n+1)}{2}$$
.

3. An upper triangular matrix A satisfies $a_{ij} = 0$ for all i > j, meaning it has the form

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix} = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij} E_{ij}$$

Therefore, a basis consists of $\frac{n(n+1)}{2}$ matrices E_{ij} for $i \leq j$, and the dimension of this vector space is

$$\frac{n(n+1)}{2}.$$

4. A lower triangular matrix A satisfies $a_{ij} = 0$ for all i < j, meaning it has the form

$$A = \begin{pmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & a_{32} & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix} = \sum_{i=1}^{n} \sum_{j=1}^{i} a_{ij} E_{ij}$$

Therefore, a basis consists of $\frac{n(n+1)}{2}$ matrices E_{ij} for $i \geq j$, and the dimension of this vector space is

$$\frac{n(n+1)}{2}.$$

Question 15. Find a standard basis vector in \mathbb{R}^3 that can be added to the set $\{v_1, v_2\}$ to produce a basis for \mathbb{R}^3 .

1.
$$\mathbf{v}_1 = (-1, 2, 3), \mathbf{v}_2 = (1, 2, -2).$$

2.
$$\mathbf{v}_1 = (1, -1, 0), \mathbf{v}_2 = (3, 1, -2).$$

Solution.

1. We observe that both vectors share the same y-coordinate, indicating that they lie in a plane where the standard basis vector e_2 is linearly independent from them. To confirm that $\{v_1, v_2, e_2\}$ forms a basis, we compute the determinant of the matrix whose columns are these vectors:

$$\begin{vmatrix} -1 & 2 & 3 \\ 1 & 2 & -2 \\ 0 & 1 & 0 \end{vmatrix} = 1$$

2. To determine a standard basis vector that can be added to \mathbf{v}_1 and \mathbf{v}_2 to form a basis of \mathbb{R}^3 , we compute the following determinants:

$$\begin{vmatrix} 1 & -1 & 0 \\ 3 & 1 & -2 \\ 1 & 0 & 0 \end{vmatrix} = 2, \quad \begin{vmatrix} 1 & -1 & 0 \\ 3 & 1 & -2 \\ 0 & 1 & 0 \end{vmatrix} = 2, \quad \begin{vmatrix} 1 & -1 & 0 \\ 3 & 1 & -2 \\ 0 & 0 & 1 \end{vmatrix} = 4.$$

Since all of these determinants are nonzero, it follows that any of the standard basis vectors can be added to the set $\{v_1, v_2\}$ to form a basis for \mathbb{R}^3 .

Question 16. Find standard basis vectors for \mathbb{R}^4 that can be added to the set $\{v_1, v_2\}$ to produce a basis for \mathbb{R}^4 .

$$v_1 = \begin{pmatrix} 1, & -4, & 2, & -3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -3, & 8, & -4, & 6 \end{pmatrix}$$

Solution. To determine the necessary standard basis vectors, it suffices to find two standard basis vectors that are not contained in span($\{v_1, v_2\}$). A vector belongs to span($\{v_1, v_2\}$) if and only if it can be written as a linear combination of v_1 and v_2 . To identify which standard basis vectors satisfy this condition, we construct the following augmented matrix, where the first two columns represent v_1 and v_2 , and the last four columns correspond to the four standard basis vectors

$$\begin{pmatrix}
1 & -3 & 1 & 0 & 0 & 0 \\
-4 & 8 & 0 & 1 & 0 & 0 \\
2 & -4 & 0 & 0 & 1 & 0 \\
-3 & 6 & 0 & 0 & 0 & 1
\end{pmatrix}.$$

Performing row reduction, we obtain the reduced row echelon form:

$$\begin{pmatrix}
1 & 0 & -2 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 & 0 & -\frac{1}{3} \\
0 & 0 & 0 & 1 & 0 & -\frac{4}{3} \\
0 & 0 & 0 & 0 & 1 & \frac{2}{3}
\end{pmatrix}$$

From the reduced matrix, we observe that e_1 is a linear combination of v_1 and v_2 while e_2 , e_3 , e_4 do not belong to span($\{v_1, v_2\}$). This means that any two of $\{e_2, e_3, e_4\}$ can be added to the set $\{v_1, v_2\}$ to produce a basis for \mathbb{R}^4 .

Question 17. The vectors $\mathbf{v}_1 = \begin{pmatrix} 1, -2, 3 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 0, 5, -3 \end{pmatrix}$ are linearly independent. Enlarge the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ to a basis for \mathbb{R}^3 .

Solution. Following a similar approach to Question 16, we seek a standard basis vector to add to the set $\{v_1, v_2\}$ to form a basis for \mathbb{R}^3 . To determine which standard basis vectors are not contained in span($\{v_1, v_2\}$), we construct the following augmented matrix, where the first two columns represent v_1 and v_2 , and the last three columns correspond to the three standard basis vectors

$$\begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
-2 & 5 & 0 & 1 & 0 \\
3 & -3 & 0 & 0 & 1
\end{pmatrix}$$

Applying row reduction, we obtain the reduced row echelon form:

$$\begin{pmatrix}
1 & 0 & 0 & \frac{1}{3} & \frac{5}{9} \\
0 & 1 & 0 & \frac{1}{3} & \frac{2}{9} \\
0 & 0 & 1 & -\frac{1}{3} & -\frac{5}{9}
\end{pmatrix}$$

Since the last three columns remain pivot columns, this confirms that any standard basis vector can be added to $\{v_1, v_2\}$ to form a basis for \mathbb{R}^3 .

Question 18. The vectors $\mathbf{v}_1 = \begin{pmatrix} 1, & 0, & 0, & 0 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 1, & 1, & 0, & 0 \end{pmatrix}$ are linearly independent. Enlarge the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ to a basis for \mathbb{R}^4 .

Solution. Observing that both v_1 and v_2 have zero entries in the third and fourth components, we select the standard basis vectors e_3 and e_4 to add to the set $\{v_1, v_2\}$. To confirm that the resulting set forms a basis for \mathbb{R}^4 , we verify that the corresponding matrix is invertible by computing its determinant

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$$

Since the determinant is nonzero, the set $\{v_1, v_2, e_3, e_4\}$ forms a basis for \mathbb{R}^4 .

Question 19. Consider the bases $B_1 = \{u_1, u_2\}$ and $B_2 = \{v_1, v_2\}$ for \mathbb{R}^2 , where

(a)
$$\boldsymbol{u}_1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \quad \boldsymbol{u}_2 = \begin{pmatrix} 4 \\ -1 \end{pmatrix}, \quad \boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \quad \boldsymbol{v}_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

(b)
$$\boldsymbol{u}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{u}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \boldsymbol{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \boldsymbol{v}_2 = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

- 1. Find the transition matrix from B_2 to B_1
- 2. Find the transition matrix from B_1 to B_2
- 3. Compute the coordinate vector $[\boldsymbol{w}]_{B_1}$, where

$$\boldsymbol{w} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$$

and compute $[\boldsymbol{w}]_{B_2}$ using the transition matrix from B_1 to B_2

4. Compute $[\boldsymbol{w}]_{B_2}$ directly

(a) Firstly, we express \boldsymbol{v}_1 and \boldsymbol{v}_2 as linear combinations of \boldsymbol{u}_1 and \boldsymbol{u}_2

$$v_1 = \frac{13}{10}u_1 - \frac{2}{5}u_2, \quad v_2 = -\frac{1}{2}u_1$$

And \boldsymbol{u}_1 and \boldsymbol{u}_2 as linear combinations of v_1 and \boldsymbol{v}_2

$$m{u}_1 = -2m{v}_2, \quad m{u}_2 = -rac{5}{2}m{v}_1 - rac{13}{2}m{v}_2.$$

We have

$$[\boldsymbol{v}_1]_{B_1} = \begin{pmatrix} \frac{13}{10} \\ -\frac{2}{5} \end{pmatrix}, \quad [\boldsymbol{v}_2]_{B_1} = \begin{pmatrix} -\frac{1}{2} \\ 0 \end{pmatrix}, \quad [\boldsymbol{u}_1]_{B_2} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, \quad [\boldsymbol{u}_2]_{B_2} = \begin{pmatrix} -\frac{5}{2} \\ -\frac{13}{2} \end{pmatrix},$$

1.

$$P_{B_2 \to B_1} = \begin{pmatrix} \frac{13}{10} & -\frac{1}{2} \\ -\frac{2}{5} & 0 \end{pmatrix}$$

2.

$$P_{B_1 \to B_2} = \begin{pmatrix} 0 & -\frac{5}{2} \\ -2 & -\frac{13}{2} \end{pmatrix}$$

3.

$$[\boldsymbol{w}]_{B_1} = \begin{pmatrix} -\frac{17}{10} \\ \frac{8}{5} \end{pmatrix}, \quad [\boldsymbol{w}]_{B_2} = P_{B_1 \to B_2}[\boldsymbol{w}]_{B_1} = \begin{pmatrix} -4 \\ -7 \end{pmatrix}$$

4. To find the coordinate vector for \boldsymbol{w} relative to B_2 , we solve for α_1, α_2 in the equation

$$\alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 = \boldsymbol{w},$$

This corresponds to the system of equations:

$$2\alpha_1 - 3\alpha_2 = 3$$
$$\alpha_1 + 4\alpha_2 = -5$$

We obtain $\alpha_1 = -4$, $\alpha_2 = -7$. Thus

$$[\boldsymbol{w}]_{B_2} = \begin{pmatrix} -4 \\ -7 \end{pmatrix}.$$

(b)

$$P_{B_1 \to B_2} = \begin{pmatrix} \frac{4}{11} & \frac{3}{11} \\ -\frac{1}{11} & \frac{2}{11} \end{pmatrix}, \quad P_{B_2 \to B_1} = \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix}, \quad [\boldsymbol{w}]_{B_1} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}, \quad [\boldsymbol{w}]_{B_2} = \begin{pmatrix} -\frac{3}{11} \\ -\frac{13}{11} \end{pmatrix}$$

$$P_{B_1 \to B_2}[\mathbf{w}]_{B_1} = [\mathbf{w}]_{B_2}$$

Question 20. Consider the bases $B_1 = \{u_1, u_2, u_3\}$ and $B_2 = \{v_1, v_2, v_3\}$ for \mathbb{R}^3 , where

(a)

$$\boldsymbol{u}_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \quad \boldsymbol{u}_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \quad \boldsymbol{u}_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \boldsymbol{v}_1 = \begin{pmatrix} 3 \\ 1 \\ -5 \end{pmatrix}, \quad \boldsymbol{v}_2 = \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}, \quad \boldsymbol{v}_3 = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$$

(b)

$$\boldsymbol{u}_1 = \begin{pmatrix} -3 \\ 0 \\ -3 \end{pmatrix}, \quad \boldsymbol{u}_2 = \begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}, \quad \boldsymbol{u}_3 = \begin{pmatrix} 1 \\ 6 \\ -1 \end{pmatrix}, \quad \boldsymbol{v}_1 = \begin{pmatrix} -6 \\ -6 \\ 0 \end{pmatrix}, \quad \boldsymbol{v}_2 = \begin{pmatrix} -2 \\ -6 \\ 4 \end{pmatrix}, \quad \boldsymbol{v}_3 = \begin{pmatrix} -2 \\ -3 \\ 7 \end{pmatrix}$$

- 1. Find the transition matrix from B_2 to B_1
- 2. Find the transition matrix from B_1 to B_2
- 3. Compute the coordinate vector $[\boldsymbol{w}]_{B_1}$, where

$$\boldsymbol{w} = \begin{pmatrix} -5\\8\\-5 \end{pmatrix}$$

and compute $[\boldsymbol{w}]_{B_2}$ using the transition matrix from B_1 to B_2

4. Compute $[\boldsymbol{w}]_{B_2}$ directly

Solution.

(a)

$$P_{B_2 \to B_1} = \begin{pmatrix} \frac{35}{2} & \frac{19}{2} & -\frac{13}{2} \\ -\frac{19}{2} & -\frac{11}{2} & \frac{7}{2} \\ -13 & -7 & 5 \end{pmatrix}, \quad P_{B_1 \to B_2} = \begin{pmatrix} 3 & 2 & \frac{5}{2} \\ -2 & -3 & -\frac{1}{2} \\ 5 & 1 & 6 \end{pmatrix},$$

$$[\boldsymbol{w}]_{B_1} = \begin{pmatrix} 9 \\ -9 \\ -5 \end{pmatrix}, \quad [\boldsymbol{w}]_{B_2} = \begin{pmatrix} -\frac{7}{2} \\ \frac{23}{2} \\ 6 \end{pmatrix}.$$

$$P_{B_2 \to B_1} = \begin{pmatrix} 0 & -\frac{4}{3} & -\frac{17}{6} \\ \frac{3}{2} & \frac{3}{2} & 3 \\ -\frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \end{pmatrix}, \quad P_{B_1 \to B_2} = \begin{pmatrix} \frac{3}{4} & \frac{3}{4} & \frac{1}{12} \\ -\frac{3}{4} & -\frac{17}{12} & -\frac{17}{12} \\ 0 & \frac{2}{3} & \frac{2}{3} \end{pmatrix},$$

$$[\boldsymbol{w}]_{B_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad [\boldsymbol{w}]_{B_2} = \begin{pmatrix} \frac{19}{12} \\ -\frac{43}{12} \\ \frac{4}{3} \end{pmatrix}.$$

Question 21. Let $B_1 = \{u_1, u_2\}$ and $B_2 = \{v_1, v_2\}$ be the bases for \mathbb{R}^2 , where

$$\boldsymbol{u}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \boldsymbol{u}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \quad \boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \quad \boldsymbol{v}_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}.$$

An efficient way to compute the transition matrix $P_{B_1 \to B_2}$ is as follows

- **Step 1.** Form the matrix $(B_2 \mid B_1)$
- **Step 2.** Use elementary row operations to reduce the matrix in Step 1 to reduced row echelon form
- **Step 3.** The resulting matrix will be $(I \mid P_{B_1 \to B_2})$
- **Step 4.** Extract the matrix $P_{B_1 \to B_2}$ from the right side of the matrix in Step 3

In diagram

(new basis | old basis)
$$\xrightarrow{\text{row operations}}$$
 (I | transition from old to new) (1)

- 1. Apply the above procedure to find the transition matrix $P_{B_2 \to B_1}$
- 2. Apply the above procedure to find the transition matrix $P_{B_1 \to B_2}$
- 3. Confirm that $P_{B_2 \to B_1}$ and $P_{B_1 \to B_2}$ are inverses of one another
- 4. Let $\mathbf{w} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Find $[\mathbf{w}]_{B_1}$ and then use the matrix $P_{B_1 \to B_2}$ to compute $[\mathbf{w}]_{B_2}$ from $[\mathbf{w}]_{B_1}$
- 5. Let $\mathbf{w} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$. Find $[\mathbf{w}]_{B_2}$ and then use the matrix $P_{B_2 \to B_1}$ to compute $[\mathbf{w}]_{B_1}$ from $[\mathbf{w}]_{B_2}$

Solution.

1. Following the procedure, we first form the matrix

$$\begin{pmatrix}
1 & 2 & 1 & 1 \\
2 & 3 & 3 & 4
\end{pmatrix}$$

The reduced row echelon form of the matrix is

$$\begin{pmatrix}
1 & 0 & 3 & 5 \\
0 & 1 & -1 & -2
\end{pmatrix}$$

Thus the transition matrix

$$P_{B_2 \to B_1} = \begin{pmatrix} 3 & 5 \\ -1 & -2 \end{pmatrix}$$

2. Following the procedure, we first form the matrix

$$\begin{pmatrix} 1 & 1 & 1 & 2 \\ 3 & 4 & 2 & 3 \end{pmatrix}$$

The reduced row echelon form of the matrix is

$$\begin{pmatrix}
1 & 0 & 2 & 5 \\
0 & 1 & -1 & -3
\end{pmatrix}$$

Thus the transition matrix

$$P_{B_1 \to B_2} = \begin{pmatrix} 2 & 5 \\ -1 & -3 \end{pmatrix}$$

3. $P_{B_1 \to B_2} P_{B_2 \to B_1} = \begin{pmatrix} 2 & 5 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} 3 & 5 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

4. $[\boldsymbol{w}]_{B_1} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad [\boldsymbol{w}]_{B_2} = P_{B_1 \to B_2} [\boldsymbol{w}]_{B_1} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

5. $[\boldsymbol{w}]_{B_2} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \quad [\boldsymbol{w}]_{B_1} = P_{B_2 \to B_1}[\boldsymbol{w}]_{B_2} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$

Question 22. Let S be the standard basis for \mathbb{R}^2 , and let $B = \{v_1, v_2\}$ be the basis in which

$$\boldsymbol{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \boldsymbol{v}_2 = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

- 1. Find the transition matrix $P_{B\to S}$ by inspection
- 2. Use Formula (1) to find the transition matrix $P_{S\to B}$
- 3. Confirm that $P_{B\to S}$ and $P_{S\to B}$ are inverses of one another
- 4. Let $\mathbf{w} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$. Find $[\mathbf{w}]_B$ and then use the matrix $P_{B\to S}$ to compute $[\mathbf{w}]_S$ from $[\mathbf{w}]_B$
- 5. Let $\boldsymbol{w} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$. Find $[\boldsymbol{w}]_S$ and then use the matrix $P_{S \to B}$ to compute $[\boldsymbol{w}]_B$ from $[\boldsymbol{w}]_S$

Solution.

1. Since the columns of $P_{B\to S}$ are given by the coordinate vectors of \mathbf{v}_1 and \mathbf{v}_2 relative to the standard basis, which are themselves, we have

$$P_{B\to S} = \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix}$$

2. We first form the matrix

$$\begin{pmatrix} 2 & -3 & 1 & 0 \\ 1 & 4 & 0 & 1 \end{pmatrix}.$$

The reduced row echelon form of the matrix is

$$\begin{pmatrix}
1 & 0 & \frac{4}{11} & \frac{3}{11} \\
0 & 1 & -\frac{1}{11} & \frac{2}{11}
\end{pmatrix}$$

Therefore

$$P_{S \to B} = \begin{pmatrix} \frac{4}{11} & \frac{3}{11} \\ -\frac{1}{11} & \frac{2}{11} \end{pmatrix}$$

3.

$$P_{S \to B} P_{B \to S} = \begin{pmatrix} \frac{4}{11} & \frac{3}{11} \\ -\frac{1}{11} & \frac{2}{11} \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

4.

$$[\boldsymbol{w}]_B = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad [\boldsymbol{w}]_S = P_{B \to S}[\boldsymbol{w}]_B = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$

5.

$$[\boldsymbol{w}]_S = \begin{pmatrix} 3 \\ -5 \end{pmatrix}, \quad [\boldsymbol{w}]_B = P_{S \to B}[\boldsymbol{w}]_S = \begin{pmatrix} -\frac{3}{11} \\ -\frac{13}{11} \end{pmatrix}$$

Question 23. Let S be the standard basis for \mathbb{R}^3 , and let $B = \{v_1, v_2, v_3\}$ be the basis in which

$$\boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \boldsymbol{v}_2 = \begin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix}, \quad \boldsymbol{v}_3 = \begin{pmatrix} 3 \\ 3 \\ 8 \end{pmatrix}$$

- 1. Find the transition matrix $P_{B\to S}$ by inspection
- 2. Use Formula (1) to find the transition matrix $P_{S\to B}$
- 3. Confirm that $P_{B\to S}$ and $P_{S\to B}$ are inverses of one another
- 4. Let $\mathbf{w} = \begin{pmatrix} 5 \\ -3 \\ 1 \end{pmatrix}$. Find $[\mathbf{w}]_B$ and then use the matrix $P_{B\to S}$ to compute $[\mathbf{w}]_S$ from $[\mathbf{w}]_B$
- 5. Let $\mathbf{w} = \begin{pmatrix} 3 \\ -5 \\ 0 \end{pmatrix}$. Find $[\mathbf{w}]_S$ and then use the matrix $P_{S \to B}$ to compute $[\mathbf{w}]_B$ from $[\mathbf{w}]_S$

1.
$$P_{B \to S} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix}$$

2.
$$P_{S \to B} = \begin{pmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{pmatrix}$$

3.
$$P_{S\to B}P_{B\to S} = I$$

4.
$$[\boldsymbol{w}]_B = \begin{pmatrix} -239 \\ 77 \\ 30 \end{pmatrix}, [\boldsymbol{w}]_S = \begin{pmatrix} 5 \\ -3 \\ 1 \end{pmatrix}$$

5.
$$[\boldsymbol{w}]_S = \begin{pmatrix} 3 \\ -5 \\ 0 \end{pmatrix}, [\boldsymbol{w}]_S = \begin{pmatrix} -200 \\ 64 \\ 25 \end{pmatrix}$$

Question 24. Let $S = \{e_1, e_2\}$ be the standard basis for \mathbb{R}^2 , and let $B = \{v_1, v_2\}$ be the basis that results when the vectors in S are reflected about the line y = x.

- 1. Find the transition matrix $P_{B\to S}$
- 2. Show that $P_{B\to S}^{\top} = P_{S\to B}$

Solution.

1. The standard matrix for the reflection about the line y = x is given by

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

where the first column is the image of e_1 under the reflection operator and the second column is the image of e_2 under the reflection operator. Thus $\mathbf{v}_1 = \begin{pmatrix} 0, & 1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 1, & 0 \end{pmatrix}$ Then

$$P_{B\to S} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

2. Since

$$\boldsymbol{e}_1 = \boldsymbol{v}_2, \quad \boldsymbol{e}_2 = \boldsymbol{v}_1,$$

we have
$$P_{S\to B} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$P_{B\to S}^{\top} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} = P_{S\to B}$$

Question 25. Let $S = \{e_1, e_2\}$ be the standard basis for \mathbb{R}^2 , and let $B = \{v_1, v_2\}$ be the basis that results when the vectors in S are reflected about the line that makes an angle θ with the positive x-axis.

- 1. Find the transition matrix $P_{B\to S}$
- 2. Show that $P_{B\to S}^{\top} = P_{S\to B}$

1. The standard matrix for the reflection about the line that makes an angle θ with the positive x-axis is given by

$$\begin{pmatrix}
\cos 2\theta & \sin 2\theta \\
\sin 2\theta & -\cos 2\theta
\end{pmatrix}$$

Thus $\mathbf{v}_1 = (\cos 2\theta, \sin 2\theta), \mathbf{v}_2 = (\sin 2\theta, -\cos 2\theta), \text{ and}$

$$P_{B\to S} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$$

2. To find $P_{S\to B}$, we first express the standard basis vectors e_1 and e_2 in terms of the basis vectors v_1 and v_2 . That is, we solve for the scalars $\alpha_1, \alpha_2, \beta_1, \beta_2$ in the equations:

$$e_1 = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2, \quad e_2 = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2.$$

Using trigonometric identities, we obtain the relationships:

$$e_1 = \cos 2\theta v_1 + \sin 2\theta v_2$$
, $e_2 = \sin 2\theta v_1 - \cos 2\theta v_2$

Thus, the transition matrix from S to B is given by:

$$P_{S \to B} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$$

Furthermore,

$$P_{B\to S}^{\top} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} = P_{S\to B}.$$

Question 26. Find the domain and codomain of the transformation $T_A(x) = Ax$

1. $A \in \mathcal{M}_{3\times 2}$

3. $A \in \mathcal{M}_{3\times 3}$

5. $A \in \mathcal{M}_{4\times 5}$

7. $A \in \mathcal{M}_{4\times 4}$

 $2. A \in \mathcal{M}_{2\times 3}$

 $A \in \mathcal{M}_{1 \times 6}$

6. $A \in \mathcal{M}_{5\times 4}$

8. $A \in \mathcal{M}_{3\times 1}$

Solution.

1. $A\boldsymbol{x} \in \mathbb{R}^3$, thus $T_A : \mathbb{R}^2 \to \mathbb{R}^3$ - domain is \mathbb{R}^2 , codomain is \mathbb{R}^3

 $2. T_A: \mathbb{R}^3 \to \mathbb{R}^2$

4. $T_A: \mathbb{R}^6 \to \mathbb{R}$

3. $T_A: \mathbb{R}^3 \to \mathbb{R}^3$ 5. $T_A: \mathbb{R}^5 \to \mathbb{R}^4$ 7. $T_A: \mathbb{R}^4 \to \mathbb{R}^4$

6. $T_A: \mathbb{R}^4 \to \mathbb{R}^5$

8. $T_A: \mathbb{R} \to \mathbb{R}^3$

Question 27. Find the domain and codomain of the transformation defined by the equations

1.

$$w_1 = 4x_1 + 5x_2 w_2 = x_1 - 8x_2$$

2.

$$w_1 = 5x_1 - 7x_2$$

$$w_2 = 6x_1 + x_2$$

$$w_3 = 2x_1 + 3x_2$$

3.

$$w_1 = x_1 - 4x_2 + 8x_3$$

$$w_2 = -x_1 + 4x_2 + 2x_3$$

$$w_3 = -3x_1 + 2x_2 - 5x_3$$

4.

$$w_1 = 2x_1 + 7x_2 - 4x_3$$

$$w_2 = 4x_1 - 3x_2 + 2x_3$$

Solution.

1. Domain: \mathbb{R}^2 . Codomain: \mathbb{R}^2 3. Domain: \mathbb{R}^3 . Codomain: \mathbb{R}^3 Domain: R². Codomain: R³
 Domain: R³. Codomain: R²

Question 28. Find the standard matrix for the transformation defined below

1.

$$w_1 = 2x_1 - 3x_2 + x_3$$

$$w_2 = 3x_1 + 5x_2 - x_3$$

2.

$$w_1 = 7x_1 + 2x_2 - 8x_3$$

$$w_2 = -x_2 + 5x_3$$

$$w_3 = 4x_1 + 7x_2 - x_3$$

3.
$$T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -x_1 \\ x_1 + 3x_2 \\ x_1 - x_2 \end{pmatrix}$$

4.
$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 7x_1 + 2x_2 - x_3 + x_4 \\ x_2 + x_3 \\ -x_1 \end{pmatrix}$$

5.
$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

6.
$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_4 \\ x_1 \\ x_3 \\ x_2 \\ x_1 - x_3 \end{pmatrix}$$

Solution.

$$1. \begin{pmatrix} 2 & -3 & 1 \\ 3 & 5 & -1 \end{pmatrix}$$

$$3. \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 0 & 3 \\ 1 & -1 & 0 \end{pmatrix}$$

$$2. \begin{pmatrix} 7 & 2 & -8 \\ 0 & -1 & 5 \\ 4 & 7 & -1 \end{pmatrix}$$

$$4. \begin{pmatrix} 7 & 2 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

$$6. \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{pmatrix}$$

Question 29. Find $T_A(x)$.

1.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \boldsymbol{x} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

2.
$$A = \begin{pmatrix} -1 & 2 & 0 \\ 3 & 1 & 5 \end{pmatrix}, \boldsymbol{x} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} -2 & 1 & 4 \\ 3 & 5 & 7 \\ 6 & 0 & -1 \end{pmatrix}, \ \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

4.
$$A = \begin{pmatrix} -1 & 1 \\ 2 & 4 \\ 7 & 8 \end{pmatrix}, \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Solution.

1.
$$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

3.
$$\begin{pmatrix} -2x_1 + x_2 + 4x_3 \\ 3x_1 + 5x_2 + 7x_3 \\ 6x_1 - x_3 \end{pmatrix}$$

$$2. \binom{3}{13}$$

4.
$$\begin{pmatrix} -x_1 + x_2 \\ 2x_1 + 4x_2 \\ 7x_1 + 8x_2 \end{pmatrix}$$

Question 30. The images of the standard basis vectors for \mathbb{R}^3 are given for a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$. Find the standard matrix for the transformation, and find T(x).

1.
$$T(\mathbf{e}_1) = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, T(\mathbf{e}_2) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, T(\mathbf{e}_3) = \begin{pmatrix} 4 \\ -3 \\ -1 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

2.
$$T(\mathbf{e}_1) = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, T(\mathbf{e}_2) = \begin{pmatrix} -3 \\ -1 \\ 0 \end{pmatrix}, T(\mathbf{e}_3) = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

Solution.

1.
$$[T] = \begin{pmatrix} 1 & 0 & 4 \\ 3 & 0 & -3 \\ 0 & 1 & -1 \end{pmatrix}, T(\boldsymbol{x}) = \begin{pmatrix} 2 \\ 6 \\ 1 \end{pmatrix}$$

2.
$$[T] = \begin{pmatrix} 2 & -3 & 1 \\ 1 & -1 & 0 \\ 3 & 0 & 2 \end{pmatrix}, T(\boldsymbol{x}) = \begin{pmatrix} 1 \\ 1 \\ 11 \end{pmatrix}$$

Question 31. Use matrix multiplication to find the reflection of (-1, 2) about the

1.
$$x$$
-axis

2.
$$y$$
-axis 3.

line
$$y = x$$

Solution.

$$1. \ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}.$$

$$2. \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

3.
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Question 32. Use matrix multiplication to find the reflection of (a, b) about the

1.
$$x$$
-axis

2.
$$y$$
-axis 3.

line
$$y = x$$

Solution.

1.
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ -b \end{pmatrix}$$
.

$$2. \ \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -a \\ b \end{pmatrix}$$

$$3. \ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} b \\ a \end{pmatrix}$$

Question 33. Use matrix multiplication to find the reflection of (2, -5, 3) about the

1.
$$xy$$
-plane

2.
$$xz$$
-plane 3.

$$yz$$
-plane

1.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \\ -3 \end{pmatrix}$$

$$2. \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$$

3.
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ -5 \\ 3 \end{pmatrix}$$

Question 34. Use matrix multiplication to find the reflection of $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ about the

1. xy-plane

2. xz-plane

3. yz-plane

Solution.

1.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ b \\ -c \end{pmatrix}$$

$$2. \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ -b \\ c \end{pmatrix}$$

3.
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -a \\ b \\ c \end{pmatrix}$$

Question 35. Use matrix multiplication to find the orthogonal projection of $\begin{pmatrix} 2 \\ -5 \end{pmatrix}$ onto the

1. x-axis

2. y-axis

Solution.

1.
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ -5 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

$$2. \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -5 \end{pmatrix} = \begin{pmatrix} 0 \\ -5 \end{pmatrix}$$

Question 36. Use matrix multiplication to find the orthogonal projection of $\begin{pmatrix} a \\ b \end{pmatrix}$ onto the

1. x-axis

2. y-axis

$$1. \ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$2. \ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

Question 37. Use matrix multiplication to find the orthogonal projection of $\begin{pmatrix} -2\\1\\3 \end{pmatrix}$ onto the

1. xy-plane

2. xz-plane

3. yz-plane

Solution.

1.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$

$$2. \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 3 \end{pmatrix}$$

$$3. \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$$

Question 38. Use matrix multiplication to find the orthogonal projection of $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ onto the

1. xy-plane

2. xz-plane

3. yz-plane

Solution.

1.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$$

$$2. \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ 0 \\ c \end{pmatrix}$$

3.
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ b \\ c \end{pmatrix}$$

Question 39. Use matrix multiplication to find the image of the vector $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$ when it is rotated about the origin through an angle of

- 1. $\theta = 30^{\circ}$
- 2. $\theta = -60^{\circ}$
- 3. $\theta = 45^{\circ}$
- $4 \theta = 90^{\circ}$

Solution. Recall

$$R_{\theta} := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

1.
$$\begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 3 \\ -4 \end{pmatrix} = \begin{pmatrix} \frac{4+3\sqrt{3}}{2} \\ \frac{3-4\sqrt{3}}{2} \end{pmatrix} \approx \begin{pmatrix} 4.598 \\ -1.964 \end{pmatrix}$$

2.
$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 3 \\ -4 \end{pmatrix} = \begin{pmatrix} \frac{3-4\sqrt{3}}{2} \\ -\frac{3\sqrt{3}+4}{2} \end{pmatrix} \approx \begin{pmatrix} -1.964 \\ -4.598 \end{pmatrix}$$

3.
$$\begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 3 \\ -4 \end{pmatrix} = \begin{pmatrix} \frac{7\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix} \approx \begin{pmatrix} 4.950 \\ -0.7071 \end{pmatrix}$$

$$4. \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

Question 40. Use matrix multiplication to find the image of the nonzero vector $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ when it is rotated about the origin through

1. a positive angle θ

2. a negative angle $-\theta$

Solution.

1.
$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} v_1 \cos \theta - v_2 \sin \theta \\ v_1 \sin \theta + v_2 \cos \theta \end{pmatrix}$$

2.
$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} v_1 \cos \theta + v_2 \sin \theta \\ -v_1 \sin \theta + v_2 \cos \theta \end{pmatrix}$$

Question 41. Use matrix multiplication to find the image of the vector $\begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ if it is rotated

- 1. 30° clockwise about the positive x-axis.
- 2. 30° counterclockwise about the positive y-axis.
- 3. 45° clockwise about the positive y-axis.
- 4. 90° counterclockwise about the positive z-axis.

1. 30° clockwise corresponds to -30°

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\left(-\frac{\pi}{6}\right) & -\sin\left(-\frac{\pi}{6}\right) \\ 0 & \sin\left(-\frac{\pi}{6}\right) & \cos\left(-\frac{\pi}{6}\right) \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 - \frac{\sqrt{3}}{2} \\ \frac{1}{2} + \sqrt{3} \end{pmatrix} \approx \begin{pmatrix} 2 \\ 0.1340 \\ 2.2321 \end{pmatrix}$$

2.

$$\begin{pmatrix} \cos\frac{\pi}{6} & 0 & \sin\frac{\pi}{6} \\ 0 & 1 & 0 \\ -\sin\frac{\pi}{6} & 0 & \cos\frac{\pi}{6} \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 + \sqrt{3} \\ -1 \\ -1 + \sqrt{3} \end{pmatrix} \approx \begin{pmatrix} 2.7321 \\ -1 \\ 0.7321 \end{pmatrix}$$

3. 45° clockwise corresponds to -45°

$$\begin{pmatrix} \cos\left(-\frac{\pi}{4}\right) & 0 & \sin\left(-\frac{\pi}{4}\right) \\ 0 & 1 & 0 \\ -\sin\left(-\frac{\pi}{4}\right) & 0 & \cos\left(-\frac{\pi}{4}\right) \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 2\sqrt{2} \end{pmatrix} \approx \begin{pmatrix} 0 \\ -1 \\ 2.8284 \end{pmatrix}$$

4.

$$\begin{pmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0\\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2\\ -1\\ 2 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2\\ -1\\ 2 \end{pmatrix} = \begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix}$$

Question 42. Use matrix multiplication to find:

- 1. The contraction of $\begin{pmatrix} -1\\2 \end{pmatrix}$ with factor $\alpha = \frac{1}{2}$.
- 2. The dilation of $\binom{-1}{2}$ with factor $\alpha = 3$.

Solution.

1.
$$\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix}$$

$$2. \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$$

Question 43. Use matrix multiplication to find:

- 1. The contraction of $\binom{a}{b}$ with factor $\frac{1}{\alpha}$, where $\alpha > 1$.
- 2. The dilation of $\binom{a}{b}$ with factor α , where $\alpha > 1$.

Solution.

1.
$$\begin{pmatrix} \frac{1}{\alpha} & 0 \\ 0 & \frac{1}{\alpha} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \frac{a}{\alpha} \\ \frac{b}{\alpha} \end{pmatrix}$$

$$2. \ \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \alpha a \\ \alpha b \end{pmatrix}$$

Question 44. Use matrix multiplication to find:

- 1. The contraction of $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ with factor $\frac{1}{4}$.
- 2. The dilation of $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ with factor 2.

Solution.

1.
$$\begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{4} \\ \frac{3}{4} \end{pmatrix}$$

$$2. \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 6 \end{pmatrix}$$

Question 45. Use matrix multiplication to find:

- 1. The contraction of $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ with factor $\frac{1}{\alpha}$, where $\alpha > 1$.
- 2. The dilation of $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ with factor α , where $\alpha > 1$.

1.
$$\begin{pmatrix} \frac{1}{\alpha} & 0 & 0 \\ 0 & \frac{1}{\alpha} & 0 \\ 0 & 0 & \frac{1}{\alpha} \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \frac{a}{\alpha} \\ -\frac{b}{\alpha} \\ \frac{c}{\alpha} \end{pmatrix}$$

2.
$$\begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \alpha a \\ \alpha b \\ \alpha c \end{pmatrix}$$

Question 46. Use matrix multiplication to find:

- 1. The compression of $\begin{pmatrix} -1\\2 \end{pmatrix}$ in the x-direction with factor $\frac{1}{2}$.
- 2. The compression of $\binom{-1}{2}$ in the y-direction with factor $\frac{1}{2}$.

Solution.

1.
$$\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ 2 \end{pmatrix}$$

$$2. \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Question 47. Use matrix multiplication to find:

- 1. The expansion of $\binom{-1}{2}$ in the x-direction with factor 3.
- 2. The expansion of $\binom{-1}{2}$ in the y-direction with factor 3.

Solution.

1.
$$\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

$$2. \ \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 6 \end{pmatrix}$$

Question 48. Use matrix multiplication to find:

1. The compression of $\begin{pmatrix} a \\ b \end{pmatrix}$ in the x-direction with factor $\frac{1}{\alpha}$, where $\alpha > 1$.

2. The expansion of $\begin{pmatrix} a \\ b \end{pmatrix}$ in the y-direction with factor α , where $\alpha > 1$.

Solution.

1.
$$\begin{pmatrix} \frac{1}{\alpha} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \frac{a}{\alpha} \\ b \end{pmatrix}$$

$$2. \begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ \alpha b \end{pmatrix}$$

Question 49. In each part, determine whether the operators T_1 and T_2 commute, i.e. whether $T_1 \circ T_2 = T_2 \circ T_1$.

- 1. $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ is the reflection about the line y = x, and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ is the orthogonal projection onto the x-axis.
- 2. $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ is the reflection about the x-axis, and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ is the reflection about the line y = x.
- 3. $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ is the orthogonal projection onto the x-axis, and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ is the orthogonal projection onto the y-axis.
- 4. $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ is the rotation about the origin through an angle of $\frac{\pi}{4}$, and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ is the reflection about the y-axis.
- 5. $T_1: \mathbb{R}^3 \to \mathbb{R}^3$ is a dilation with factor α , and $T_2: \mathbb{R}^3 \to \mathbb{R}^3$ is a contraction with factor $\frac{1}{\alpha}$, where $\alpha > 1$.
- 6. $T_1: \mathbb{R}^3 \to \mathbb{R}^3$ is the rotation about the x-axis through an angle θ_1 , and $T_2: \mathbb{R}^3 \to \mathbb{R}^3$ is the rotation about the z-axis through an angle θ_2 .

Solution.

1.
$$[T_1] = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $[T_2] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
 $[T_1 \circ T_2] = [T_1][T_2] = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $[T_2 \circ T_1] = [T_2][T_1] = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

 T_1 and T_2 do not commute.

2.
$$[T_1] = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $[T_2] = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$[T_1 \circ T_2] = [T_1][T_2] = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
, $[T_2 \circ T_1] = [T_2][T_1] = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

 T_1 and T_2 do not commute.

3.
$$[T_1] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $[T_2] = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

$$[T_1 \circ T_2] = [T_1][T_2] = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
, $[T_2 \circ T_1] = [T_2][T_1] = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

 T_1 and T_2 commute.

4.
$$[T_1] = \begin{pmatrix} \cos\frac{\pi}{4} & -\sin\frac{\pi}{4} \\ \sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}, [T_2] = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$[T_1 \circ T_2] = [T_1][T_2] = \begin{pmatrix} -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}, [T_2 \circ T_1] = [T_2][T_1] = \begin{pmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

 T_1 and T_2 do not commute.

5.
$$[T_1] = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{pmatrix}, [T_2] = \begin{pmatrix} \frac{1}{\alpha} & 0 & 0 \\ 0 & \frac{1}{\alpha} & 0 \\ 0 & 0 & \frac{1}{\alpha} \end{pmatrix}$$

$$[T_1 \circ T_2] = [T_1][T_2] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad [T_2 \circ T_1] = [T_2][T_1] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 T_1 and T_2 commute.

6.
$$[T_1] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_1 & -\sin \theta_1 \\ 0 & \sin \theta_1 & \cos \theta_1 \end{pmatrix}, [T_2] = \begin{pmatrix} \cos \theta_2 & -\sin \theta_2 & 0 \\ \sin \theta_2 & \cos \theta_2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$[T_1 \circ T_2] = [T_1][T_2] = \begin{pmatrix} \cos \theta_2 & -\sin \theta_2 & 0 \\ \sin \theta_2 \cos \theta_1 & \cos \theta_1 \cos \theta_2 & -\sin \theta_1 \\ \sin \theta_1 \sin \theta_2 & \sin \theta_1 \cos \theta_2 & \cos \theta_1 \end{pmatrix}$$

$$[T_2 \circ T_1] = [T_2][T_1] = \begin{pmatrix} \cos \theta_2 & -\sin \theta_2 \cos \theta_1 & \sin \theta_1 \sin \theta_2 \\ \sin \theta_2 & \cos \theta_1 \cos \theta_2 & -\sin \theta_1 \cos \theta_2 \\ \sin \theta_2 & \cos \theta_1 \cos \theta_2 & -\sin \theta_1 \cos \theta_2 \\ 0 & \sin \theta_1 & \cos \theta_1 \end{pmatrix}$$

 T_1 and T_2 do not commute.

Question 50. Find the standard matrix for the stated composition in \mathbb{R}^2 .

- 1. A rotation of 90°, followed by a reflection about the line y = x.
- 2. An orthogonal projection onto the y-axis, followed by a contraction with factor $\frac{1}{2}$.
- 3. A reflection about the x-axis, followed by a dilation with factor 3, followed by a rotation about the origin of 60° .

- 4. A rotation about the origin of 60° , followed by an orthogonal projection onto the x-axis, followed by a reflection about the line y = x.
- 5. A dilation with factor 2, followed by a rotation about the origin of 45° , followed by a reflection about the y-axis.
- 6. A rotation about the origin of 15°, followed by a rotation about the origin of 105°, followed by a rotation about the origin of 60°.

Solution.

1.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\ \sin \frac{\pi}{2} & \cos \frac{\pi}{2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

2.

$$\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

3.

$$\begin{pmatrix} \cos\frac{\pi}{3} & -\sin\frac{\pi}{3} \\ \sin\frac{\pi}{3} & \cos\frac{\pi}{3} \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} -\frac{3\sqrt{3}}{2} & -\frac{3}{2} \\ \frac{3}{2} & -\frac{3\sqrt{3}}{2} \end{pmatrix}$$

4.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \cos \frac{\pi}{3} & -\sin \frac{\pi}{3} \\ \sin \frac{\pi}{3} & \cos \frac{\pi}{3} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$$

5.

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\frac{\pi}{4} & -\sin\frac{\pi}{4} \\ \sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} -\sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{pmatrix}$$

6. The total rotated angle is

$$15^{\circ} + 105^{\circ} + 60^{\circ} = 180^{\circ}$$
.

Hence the transition matrix is given by

$$\begin{pmatrix} \cos \pi & -\sin \pi \\ \sin \pi & \cos \pi \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

Question 51. Find the standard matrix for the stated composition in \mathbb{R}^3 .

- 1. A reflection about the yz-plane, followed by an orthogonal projection onto the xz-plane.
- 2. A rotation of 45° about the y-axis, followed by a dilation with factor $\sqrt{2}$.
- 3. An orthogonal projection onto the xy-plane, followed by a reflection about the yz-plane.
- 4. A rotation of 30° about the x-axis, followed by a rotation of 30° about the z-axis, followed by a contraction with factor $\frac{1}{4}$.
- 5. A reflection about the xy-plane, followed by a reflection about the xz-plane, followed by an orthogonal projection onto the yz-plane.
- 6. A rotation of 270° about the x-axis, followed by a rotation of 90° about the y-axis, followed by a rotation of 180° about the z-axis.

Solution.

1.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2.

$$\begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} \cos\frac{\pi}{4} & 0 & \sin\frac{\pi}{4} \\ 0 & 1 & 0 \\ -\sin\frac{\pi}{4} & 0 & \cos\frac{\pi}{4} \end{pmatrix} = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 1 \\ 0 & \sqrt{2} & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

3.

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

ADM

4.

$$\begin{pmatrix}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{4}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos\frac{\pi}{6} & -\sin\frac{\pi}{6} \\
0 & \sin\frac{\pi}{6} & \cos\frac{\pi}{6}
\end{pmatrix} = \begin{pmatrix}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{4}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\
0 & 0 & \frac{1}{4}
\end{pmatrix}$$

$$= \begin{pmatrix}
\frac{1}{4} & 0 & 0 \\
0 & \frac{\sqrt{3}}{8} & -\frac{1}{8} \\
0 & \frac{1}{8} & \frac{\sqrt{3}}{8}
\end{pmatrix}$$

5.

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

6.

$$\begin{pmatrix} \cos \pi & -\sin \pi & 0 \\ \sin \pi & \cos \pi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \frac{\pi}{2} & 0 & \sin \frac{\pi}{2} \\ 0 & 1 & 0 \\ -\sin \frac{\pi}{2} & 0 & \cos \frac{\pi}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \frac{3\pi}{2} & -\sin \frac{3\pi}{2} \\ 0 & \sin \frac{3\pi}{2} & \cos \frac{3\pi}{2} \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}$$

Question 52. Let $\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ be a vector in \mathbb{R}^2 . Consider the linear transformations $T_1 : \mathbb{R}^2 \to \mathbb{R}^2$ and $T_2 : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$T_1(\boldsymbol{x}) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix}, \quad T_2(\boldsymbol{x}) = \begin{pmatrix} 3x_1 \\ 2x_1 + 4x_2 \end{pmatrix}$$

- 1. Find the standard matrices for T_1 and T_2 .
- 2. Find the standard matrices for $T_1 \circ T_2$ and $T_2 \circ T_1$.
- 3. Find the standard matrices for $T_1 \circ T_2 \circ T_1$ and $T_1 \circ T_2 \circ T_2$.
- 4. Use the matrices obtained in part 2 to find formulas for $T_1(T_2(\mathbf{x}))$ and $T_2(T_1(\mathbf{x}))$

1.
$$[T_1] = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $[T_2] = \begin{pmatrix} 3 & 0 \\ 2 & 4 \end{pmatrix}$

$$[T_1 \circ T_2] = [T_1][T_2] = \begin{pmatrix} 5 & 4 \\ 1 & -4 \end{pmatrix}, \quad [T_2 \circ T_1] = [T_2][T_1] = \begin{pmatrix} 3 & 3 \\ 6 & -2 \end{pmatrix}$$

3.

$$[T_1 \circ T_2 \circ T_1] = [T_1][T_2][T_1] = \begin{pmatrix} 9 & 1 \\ -3 & 5 \end{pmatrix}, \quad [T_1 \circ T_2 \circ T_2] = [T_1][T_2][T_2] = \begin{pmatrix} 23 & 16 \\ -5 & -16 \end{pmatrix}$$

4.

$$T_1(T_2(\mathbf{x})) = \begin{pmatrix} 5x_1 + 4x_2 \\ x_1 - 4x_2 \end{pmatrix}, \quad T_2(T_1(\mathbf{x})) = \begin{pmatrix} 3x_1 + 3x_2 \\ 6x_1 - 2x_2 \end{pmatrix}$$

Question 53. Let $\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ be a vector in \mathbb{R}^3 . Consider the linear transformations $T_1: \mathbb{R}^3 \to \mathbb{R}^3$ and $T_2: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T_1(\mathbf{x}) = \begin{pmatrix} 4x_1 \\ -2x_1 + x_2 \\ -x_1 - 3x_3 \end{pmatrix}, \quad T_2(\mathbf{x}) = \begin{pmatrix} x_1 + 2x_2 \\ 2x_3 \\ 4x_1 - x_3 \end{pmatrix}$$

- 1. Find the standard matrices for T_1 and T_2 .
- 2. Find the standard matrices for $T_1 \circ T_2$ and $T_2 \circ T_1$.
- 3. Find the standard matrices for $T_1 \circ T_2 \circ T_1$ and $T_1 \circ T_2 \circ T_2$.
- 4. Use the matrices obtained in part 2 to find formulas for $T_1(T_2(\boldsymbol{x}))$ and $T_2(T_1(\boldsymbol{x}))$

Solution.

1.
$$[T_1] = \begin{pmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & -3 \end{pmatrix}, [T_2] = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 2 \\ 4 & 0 & -1 \end{pmatrix}$$

2.

$$[T_1 \circ T_2] = [T_1][T_2] = \begin{pmatrix} 4 & 8 & 0 \\ -2 & -4 & 2 \\ -13 & -2 & 3 \end{pmatrix}, \quad [T_2 \circ T_1] = [T_2][T_1] = \begin{pmatrix} 0 & 2 & 0 \\ -2 & 0 & -6 \\ 17 & 0 & 3 \end{pmatrix}$$

3.

$$[T_1 \circ T_2 \circ T_1] = [T_1][T_2][T_1] = \begin{pmatrix} 0 & 8 & 0 \\ -2 & -4 & -6 \\ -51 & -2 & -9 \end{pmatrix}, \quad [T_1 \circ T_2 \circ T_2] = [T_1][T_2][T_2] = \begin{pmatrix} 4 & 8 & 16 \\ 6 & -4 & -10 \\ -1 & -26 & -7 \end{pmatrix}$$

4.

$$T_{1}(T_{2}(\boldsymbol{x})) = \begin{pmatrix} 4x_{1} + 8x_{2} \\ -2x_{1} - 4x_{2} + 2x_{3} \\ -13x_{1} - 2x_{2} + 3x_{3} \end{pmatrix}, \quad T_{2}(T_{1}(\boldsymbol{x})) = \begin{pmatrix} 2x_{2} \\ -2x_{1} - 6x_{3} \\ 17x_{1} + 3x_{3} \end{pmatrix}$$