
ADM Lecturer: Bc. Xiaolu Hou, Ph.D.

Tutorial 5

Vector spaces and linear independence

Question 1. Consider R2 together with addition and scalar multiplication defined as follows:
for any u =

(
u1, u2

)
, v =

(
v1, v2

)
∈ R2, and any α ∈ R

u+ v =
(
u1 + v1, u2 + v2

)
, α⊗ u =

(
0, αu2

)
1. Compute u+ v and α⊗ u for u =

(
−1, 2

)
, v =

(
3, 4

)
and α = 3.

2. Prove that (R2,+,⊗) is closed under addition and scalar multiplication.

3. Since vector addition in (R2,+,⊗) coincides with standard vector addition in the usual
vector space (R2,+, ·), certain vector space axioms must hold for (R2,+,⊗) because they
are known to hold in (R2,+, ·). Identify which axioms these are.

4. Show that Axioms 5, 6, 7 of a vector space hold in (R2,+,⊗).

5. Show that Axiom 8 does not hold and hence that (R2,+,⊗) is not a vector space

Solution.

1. (
−1, 2

)
+
(
3, 4

)
=

(
2, 6

)
, 3⊗

(
−1, 2

)
=

(
0, 6

)
.

2. Take any u =
(
u1, u2

)
,v =

(
v1, v2

)
∈ R2 and any α ∈ R, then u1, u2, v1, v2 ∈ R, we

have u1 + v1, u2 + v2, αu2 ∈ R. Thus

u+ v =
(
u1 + v1, u2 + v2

)
∈ R2, α⊗ u =

(
0, αu2

)
∈ R2,

proving that (R2,+,⊗) is closed under addition and scalar multiplication.

3. Axioms 1-4 hold in (R2,+,⊗)

4. Take any u =
(
u1, u2

)
,v =

(
v1, v2

)
∈ R2 and any α, β ∈ R. We have

α⊗ (u+ v) = α⊗
(
u1 + v1, u2 + v2

)
=

(
0, α(u2 + v2)

)
=

(
0, αu2 + αv2

)
,

and
α⊗ u+ α⊗ v =

(
0, αu2

)
+
(
0, αv2

)
=

(
0, αu2 + αv2

)
,

thus Axiom 5 holds. Furthermore,

(α+β)⊗u =
(
0, (α + β)u2

)
, α⊗u+β⊗u =

(
0, αu2

)
+
(
0, βu2

)
=

(
0, (α + β)u2

)
,

showing that Axiom 6 holds. Lastly,

α(β ⊗ u) = α
(
0, βu2

)
=

(
0, αβu2

)
, (αβ)⊗ u =

(
0, αβu2

)
proves that Axiom 7 holds.

5. By definition, we have
1⊗

(
1, 3

)
=

(
0, 3

)
̸=

(
1, 3

)
,

demostrating that Axiom 8 does not hold.
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Question 2. Consider R2 together with addition and scalar multiplication defined as follows:
for any u =

(
u1, u2

)
, v =

(
v1, v2

)
∈ R2, and any α ∈ R

u⊕ v =
(
u1 + v1 + 1, u2 + v2 + 1

)
, αu =

(
αu1, αu2

)
1. Compute u⊕ v and αu for u =

(
0, 4

)
, v =

(
1, −3

)
and α = 2.

2. Show that
(
0, 0

)
does not serve as the additive identity in (R2,⊕, ·).

3. Prove that the additive identity in (R2,⊕, ·) is given by
(
−1, −1

)
4. Show that Axiom 4 holds by finding the additive inverse of any given u ∈ R2

5. Identify two vector space axioms that do not hold in (R2,⊕, ·).

Solution.

1.
u⊕ v =

(
0 + 1 + 1, 4− 3 + 1

)
=

(
2, 2

)
, αu =

(
2× 0, 2× 4

)
=

(
0, 8

)
2. Let u =

(
1, 1

)
, then (

0, 0
)
⊕ u =

(
2, 2

)
̸= u.

3. For any u =
(
u1, u2

)
∈ R2,

u⊕
(
−1, −1

)
=

(
u1 − 1 + 1, u2 − 1 + 1

)
= u

thus
(
−1, −1

)
is the additive identity in (R2,⊕, ·).

4. For any u =
(
u1, u2

)
∈ R2, let −u =

(
−u1 − 2, −u2 − 2

)
, then

u⊕ (−u) =
(
u1 + (−u1 − 2) + 1, u2 + (−u2 − 2) + 1

)
=

(
−1, −1

)
.

Thus, −u is the additive inverse of u in (R2,⊕, ·).

5. Let u =
(
1, 0

)
, v =

(
0, 1

)
, α = 2, β = 1 then

α(u⊕ v) = 2
(
2, 2

)
=

(
4, 4

)
, αu⊕ αv =

(
2, 0

)
⊕
(
0, 2

)
=

(
3, 3

)
which shows that Axiom 5 does not hold. Furthermore

(α + β)u = 3
(
1, 0

)
=

(
3, 0

)
, αu⊕ βu =

(
2, 0

)
⊕
(
1, 0

)
=

(
4, 1

)
,

demonstrating that Aiom 6 does not hold.

Question 3. For each of the following sets equipped with the given operations, determine
whether it forms a vector space. For those that are not vector spaces identify the vector space
axioms that fail.

1. The set of all real numbers with the standard operations of addition and multiplication.

2. The set of all pairs of real numbers of the form
(
x, 0

)
with the standard vector addition

and scalar multiplication in R2.
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3. The set of all pairs of real numbers of the form
(
x, y

)
such that x ≥ 0, with the standard

vector addition and scalar multiplication in R2.

4. The set of all n−tuples of real numbers that have the form
(
x, x, . . . , x

)
with the

standard vector addition and scalar multiplication in Rn.

5. The set R3 with the standard vector addition, but with scalar multiplication defined as

α⊗
(
u1, u2, u3

)
=

(
α2u1, α2u2, α2u3

)
.

6. The set of all invertible 2 × 2 matrices, together with the standard matrix addition and
scalar multiplication.

7. The set of all diagonal 2× 2 matrices of the form(
a 0
0 b

)
,

together with the standard matrix addition and scalar multiplication

8. The set of all real-valued functions f defined everywhere on the real line satisfying the
condition f(1) = 0, together with addition and scalar multiplication defined as follows

(f + g)(x) = f(x) + g(x), (αf)(x) = αf(x)

9. The subset of R2 consisting of all pairs of the form
(
1, y

)
with the operations(

1, y
)
⊕

(
1, y′

)
=

(
1, y + y′

)
, α⊗

(
1, y

)
=

(
1, αy

)
10. The set of polynomials of the form a0 + a1x with the operations

(a0 + a1x) + (b0 + b1x) = (a0 + b0) + (a1 + b1)x

and
α(a0 + a1x) = αa0 + αa1x

Solution.

1. It is a vector space.

2. It is a subspace of R2. Let V denote the subset of R2 consisting of all pairs of the form(
x, 0

)
. Take any two elements

(
x1, 0

)
,
(
x2, 0

)
from V and any α ∈ R(

x1, 0
)
+
(
x2, 0

)
=

(
x1 + x2, 0

)
∈ V, α

(
x1, 0

)
=

(
αx1, 0

)
∈ V,

showing that V is closed under vector addition and scalar multiplication. Furthermore,(
0, 0

)
∈ V , ensuring that V is nonempty. We can conclude that V is a subspace of R2.

3. It is not a vector space. Let V denote the subset of R2 of the form
(
x, y

)
with x ≥ 0. V

is not closed under scalar multiplication. For example, take
(
1, 0

)
∈ V and scalar −1 ∈ R

(−1)
(
1, 0

)
=

(
−1, 0

)
/∈ V.
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4. It is a vector space. Let V be the subset of Rn consisting of n−tuples of the form(
x, x, . . . , x

)
. For any

(
x1, x1, . . . , x1

)
,
(
x2, x2, . . . , x2

)
from V and any

scalar α ∈ R(
x1, x1, . . . , x1

)
+
(
x2, x2, . . . , x2

)
=

(
x1 + x2, x1 + x2, . . . , x1x2

)
∈ V,

α
(
x1, x1, . . . , x1

)
=

(
αx1, αx1, . . . , αx1

)
∈ V

Thus V is closed under vector addition and scalar multiplication, hence it is a subspace
of Rn.

5. It is not a vector space. Axiom 6 does not hold: take
(
1, 0, 0

)
∈ R3 and 2, 3 ∈ R

(2 + 3)⊗
(
1, 0, 0

)
=

(
25, 0, 0

)
,

2⊗
(
1, 0, 0

)
+3⊗

(
1, 0, 0

)
=

(
4, 0, 0

)
+
(
9, 0, 0

)
=

(
13, 0, 0

)
̸= (2+3)⊗

(
1, 0, 0

)
6. It is not a vector space. Let V be the set of all invertible 2× 2 matrices. V is not closed

under addition: for example,
(
1 0
0 1

)
,
(
−1 0
0 −1

)
are both invertible matrices, but

(
1 0
0 1

)
+

(
−1 0
0 −1

)
=

(
0 0
0 0

)
is not an invertible matrix.
Furthermore, Axiom 3 does not hold because the zero matrix is not an element of V .

7. It is a vector space. Let V be the set of 2 × 2 diagonal matrices. Take any
(
a1 0
0 b1

)
,(

a2 0
0 b2

)
from V and any α ∈ R

(
a1 0
0 b1

)
+

(
a2 0
0 b2

)
=

(
a1 + a2 0

0 b1 + b2

)
∈ V, α

(
a1 0
0 b1

)
=

(
αa1 0
0 αb1

)
∈ V

Thus V is closed under addition and scalar multiplication. The zero matrix belongs to
V , ensuring that V is nonempty. We can conclude that V is a subspace of M2×2.

8. It is a vector space. Let V denote the subset of consisting of function f(x) satisfying
f(1) = 0. Take any f(x), g(x) ∈ V and α ∈ R

(f + g)(1) = f(1) + g(1) = 0 + 0 = 0 =⇒ f + g ∈ V, (αf)(x) = αf(1) = 0 =⇒ αf ∈ V

shows that V is closed under addition and scalar multiplication. The zero function f(x) =
0 for all x ∈ R belongs to V . We can conclude that V is a subspace of F(R,R).

9. It is a vector space. Let V be the set of all pairs of the form
(
1, y

)
. Firstly, it is easy

to see that V is closed under addition and scalar multiplication. The additive identity is
given by

(
1, 0

)
and the additive inverse of

(
1, y

)
is

(
1, −y

)
. It can be proven that

the other axioms also hold.

10. It is a vector space. Let V denote the set of polynomials of the form a0 + a1x. It is easy
to see that V is closed under addition and scalar multiplication. V is nonempty as it
contains the zero polynomial 0. Thus it is a subspace of R[x].
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Question 4. Verify Axioms 1, 2, 5, 6, and 7 for the vector space M2×2.

Solution. Take any matrices
(
a11 a12
a21 a22

)
,
(
b11 b12
b21 b22

)
and

(
c11 c12
c21 c22

)
from M2×2 and any α, β ∈

R
Axiom 1. Since addition is commutative in R, aij + bij = bij + aij, we have(

a11 a12
a21 a22

)
+

(
b11 b12
b21 b22

)
=

(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
=

(
b11 + a11 b12 + a12
b21 + a21 b22 + a22

)
=

(
b11 b12
b21 b22

)
+

(
a11 a12
a21 a22

)
.

Axiom 2. By the associativity of addition in R,

(aij + bij) + cij = aij + (bij + cij).

We have[(
a11 a12
a21 a22

)
+

(
b11 b12
b21 b22

)]
+

(
c11 c12
c21 c22

)
=

(
(a11 + b11) + c11 (a12 + b12) + c12
(a21 + b21) + c21 (a22 + b22) + c22

)
=

(
a11 + (b11 + c11) a12 + (b12 + c12)
a21 + (b21 + c21) a22 + (b22 + c22)

)
=

(
a11 a12
a21 a22

)
+

[(
b11 b12
b21 b22

)
+

(
c11 c12
c21 c22

)]
Axiom 5. By the distributive law of addition over multiplication for real numbers,

α(aij + bij) = αaij + αbij.

We have

α

[(
a11 a12
a21 a22

)
+

(
b11 b12
b21 b22

)]
= α

(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
=

(
α(a11 + b11) α(a12 + b12)
α(a21 + b21) α(a22 + b22)

)
=

(
αa11 + αb11 αa12 + αb12
αa21 + αb21 αa22 + αb22

)
=

(
αa11 αa12
αa21 αa22

)
+

(
αb11 αb12
ααb21 αb22

)
= α

(
a11 a12
a21 a22

)
+ α

(
b11 b12
b21 b22

)
Axiom 6. By the distributive law of addition over multiplication for real numbers,

(α + β)aij = αaij + βaij.

We have

(α + β)

(
a11 a12
a21 a22

)
=

(
(α + β)a11 (α + β)a12
(α + β)a21 (α + β)a22

)
=

(
αa11 + βa11 αa12 + βa12
αa21 + βa21 αa22 + βa22

)
=

(
αa11 αa12
αa21 αa22

)
+

(
βa11 βa12
βa21 βa22

)
= α

(
a11 a12
a21 a22

)
+ β

(
a11 a12
a21 a22

)
Axiom 7. By associativity of multiplication for real numbers

(αβ)aij = α(βaij).

We have

α

[
β

(
a11 a12
a21 a22

)]
= α

(
βa11 βa12
βa21 βa22

)
=

(
α(βa11) α(βa12)
α(βa21) α(βa22)

)
=

(
(αβ)a11 (αβ)a12
(αβ)a21 (αβ)a22

)
= (αβ)

(
a11 a12
a21 a22

)
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Question 5. Verify Axioms 2, 5, 6, 7, and 8 for the vector space F(R,R).

Solution. Take any f, g, h ∈ F(R,R) and any α, β ∈ R.

Axiom 2. By the associativity of addition in R

(f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)).

We have

((f + g) + h)(x) = (f + g)(x) + h(x) = (f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x))

= f(x) + (g + h)(x) = (f + (g + h))(x).

Thus (f + g) + h = f + (g + h).

Axiom 5. By the distributive property of multiplication over addition in R,

α(f(x) + g(x)) = αf(x) + αg(x).

We have

(α(f + g))(x) = α((f + g)(x)) = α(f(x) + g(x)) = αf(x) + αg(x)

= (αf)(x) + (αg)(x)

Axiom 6. By the distributive property of multiplication over addition in R,

(α + β)f(x) = αf(x) + βf(x).

We have

((α + β)f)(x) = (α + β)f(x) = αf(x) + βf(x) = (αf)(x) + (βf)(x)

Thus (α + β)f = αf + βf .

Axiom 7. By the associativity of real number multiplication,

(αβ)f(x) = α(βf(x)).

We have

((αβ)f)(x) = (αβ)f(x) = α(βf(x)) = α((βf)(x)).

Thus (αβ)f = α(βf).

Axiom 8. (1f)(x) = 1× f(x) = f(x) shows that 1f = f .

Question 6. Show that R2 with the usual addition and scalar multiplication defined as

α
(
u1, u2

)
=

(
αu1, 0

)
satisfy Axioms 1-7.

Solution. Take any u =
(
u1, u2

)
, v =

(
v1, v2

)
, w =

(
w1, w2

)
from R2 and any α, β ∈ R

6
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Axiom 1. By the commutativity of addition for real numbers,

ui + vi = vi + ui.

u+ v =
(
u1 + v1, u2 + v2

)
=

(
v1 + u1, v2 + u2

)
= v + u

Axiom 2. By the associativity of addition in R,

(ui + vi) + wi = ui + (vi + wi).

(u+ v) +w =
(
u1 + v1, u2 + v2

)
+
(
w1, w2

)
=

(
(u1 + v1) + w1, (u2 + v2) + w2

)
=

(
u1 + (v1 + w1), u2 + (v2 + w2)

)
=

(
u1, u2

)
+
(
v1 + w1, v2 + w2

)
= u+ (v +w)

Axiom 3. The zero vector is
(
0, 0

)
Axiom 4. The additive inverse of u is

(
−u1, −u2

)
since(

−u1, −u2

)
+ u =

(
−u1 + u1, −u2 + u2

)
=

(
0, 0

)
Axiom 5. By the distributive law of addition over multiplication for real numbers,

α(ui + vi) = αui + αvi.

α(u+ v) = α
(
u1 + v1, u2 + v2

)
=

(
α(u1 + v1), α(u2 + v2)

)
=

(
αu1 + αv1, αu2 + αv2

)
=

(
αu1, αu2

)
+
(
αv1, αv2

)
= αu+ αv

Axiom 6. By the distributive law of addition over multiplication for real numbers,

(α + β)ui = αui + βui.

(α + β)u =
(
(α + β)u1, (α + β)u2

)
=

(
αu1 + βu1, αu2 + βu2

)
= α

(
u1, u2

)
+ β

(
u1, u2

)
= αu+ βu.

Axiom 7. By the associativity of real number multiplication,

(αβ)ui = α(βui)

(αβ)u =
(
(αβ)u1, (αβ)u2

)
=

(
α(βu1), α(βu2)

)
= α(βu)

Question 7. Consider R>0, the set of positive real numbers. Define addition and scalar
multiplication as follows: for any u, v ∈ R>0 and any α ∈ R

u⊕ v = uv, α⊗ u = uα

Verify that Axioms 1 – 5, 7, and 8 hold.

Solution. Take any u, v, w ∈ R>0 and any α, β ∈ R.

Axiom 1. u⊕ v = uv = vu = v ⊕ u follows from the commutativity of multiplication in R.
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Axiom 2. By the associativity of addition in R

u⊕ (v ⊕ w) = u(vw) = (uv)w = (u⊕ v)⊕ w

Axiom 3. The additive identity is 1:
u⊕ 1 = u1 = u.

Axiom 4. The additive inverse of u is 1

u
since

u⊕ 1

u
= u

1

u
= 1.

It follows from u > 0 that 1

u
> 0 and we can conclude 1

u
∈ R>0.

Axiom 5.
α⊗ (u⊕ v) = α⊗ (uv) = (uv)α = uαvα = (α⊗ u)(α⊗ v) = (α⊗ u)⊕ (α⊗ v)

Axiom 7.
(αβ)⊗ u = uαβ = (uβ)α = α⊗ (uβ) = α⊗ (β ⊗ u)

Axiom 8. 1⊗ u = u1 = u.

Question 8. Show that the set of all points in R2 lying on a line is a subspace of (R2,+, ·) iff
the line passes through the origin.

Solution.
=⇒ If a line is a subspace of (R2,+, ·), by definition it contains the zero vector

(
0, 0

)
,

which is the origin.
⇐= If a line passes through the origin, it can be represented by an equation of the form

ax+ by = 0,

for some a, b ∈ R. Let
W =

{ (
x, y

) ∣∣ ax+ by = 0
}

denote such a line. Take any
(
x1, y1

)
,
(
x2, y2

)
from W and any α ∈ R. Then

ax1 + by1 = 0, ax2 + by2 = 0.

We have (
x1, y1

)
+
(
x2, y2

)
=

(
x1 + x2, y1 + y2

)
.

We have

a(x1 + x2) + b(y1 + y2) = (ax1 + by1) + (ax2 + by2) = 0 =⇒
(
x1, y1

)
+
(
x2, y2

)
∈ W.

Thus W is closed under addition. Furthermore, W is also closed under scalar multiplication:

α
(
x1, y1

)
=

(
αx1, αy1

)
, a(αx1) + b(αy1) = α(ax1 + by1) = 0 =⇒ α

(
x1, y1

)
∈ W.

Question 9. Show that the set of all points in R3 lying in a plane is a subspace of (R3,+, ·)
iff the plane passes through the origin. Solution.

=⇒ If a plane is a subspace of (R3,+, ·), by definition it contains the zero vector
(
0, 0, 0

)
,

which is the origin.

8
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⇐= If a plane passes through the origin, it can be represented by an equation of the form

ax+ by + cz = 0

for some a, b, c ∈ R. Let

W =
{ (

x, y, z
) ∣∣ ax+ by + cz = 0

}
denote such a plane. Take any

(
x1, y1, z1

)
,
(
x2, y2, z2

)
from W and any α ∈ R. Then

ax1 + by1 + cz1 = 0, ax2 + by2 + cz2 = 0.

We have (
x1, y1, z1

)
+
(
x2, y2, z1

)
=

(
x1 + x2, y1 + y2, z1 + z2

)
.

We have

a(x1 + x2) + b(y1 + y2) + c(z1 + z2) = (ax1 + by1 + cz1) + (ax2 + by2 + cz2) = 0

=⇒
(
x1, y1, z1

)
+
(
x2, y2, z2

)
∈ W.

Thus W is closed under addition. Furthermore, W is also closed under scalar multiplication:

α
(
x1, y1, z1

)
=

(
αx1, αy1, αz1

)
, a(αx1) + b(αy1) + c(αz1) = α(ax1 + by1 + cz1) = 0

=⇒ α
(
x1, y1, z1

)
∈ W.

Question 10. Determine which of the following are subspaces of R3.

1. All vectors of the form
(
a, 0, 0

)
2. All vectors of the form

(
a, 1, 1

)
3. All vectors of the form

(
a, b, c

)
, where b = a+ c

4. All vectors of the form
(
a, b, c

)
, where b = a+ c+ 1

5. All vectors of the form
(
a, b, 0

)
Solution.

1. Let W be the set of all vectors of the form
(
a, 0, 0

)
. Take any

(
a1, 0, 0

)
,
(
a2, 0, 0

)
from W and any α ∈ R(

a1, 0, 0
)
+
(
a2, 0, 0

)
=

(
a1 + a2, 0, 0

)
∈ W,

shows that W is closed under addition.

α
(
a1, 0, 0

)
=

(
αa1, 0, 0

)
shows that W is closed under scalar multiplication.
W is nonempty as it contains the zero vector

(
0, 0, 0

)
. Thus, W is a subspace of R3.

2. Let W be be the set of all vectors of the form
(
a, 1, 1

)
. Take

(
0, 1, 1

)
,
(
1, 1, 1

)
from W . (

0, 1, 1
)
+
(
1, 1, 1

)
=

(
1, 2, 2

)
/∈ W

hence W is not a subspace of R3.

9
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3. Let W be be the set of all vectors of the form
(
a, b, c

)
, where b = a + c. Take any

u =
(
a1, b1, c1

)
and v =

(
a2, b2, c2

)
from W and any α ∈ R, then

b1 = a1 + c1, b2 = a2 + c2.

W is closed under addition:

u+ v =
(
a1, b1, c1

)
=

(
a2, b2, c2

)
=

(
a1 + a2, b1 + b2, c1 + c2

)
,

a1 + a2 + c1 + c2 = (a1 + c1) + (a2 + c2) = b1 + b2 =⇒ u+ v ∈ W.

W is closed under scalar multiplication:

αu =
(
αa1, αb1, αc1

)
, αa1 + αc1 = α(a1 + c1) = αb1 =⇒ αu ∈ W

W is nonempty as it contains the zero vector
(
0, 0, 0

)
Thus W is a subspace of R3.

4. Let W be the set of all vectors of the form
(
a, b, c

)
, where b = a+c+1. Take

(
0, 1, 0

)
and

(
1, 2, 0

)
from W ,(

0, 1, 0
)
+
(
1, 2, 0

)
=

(
1, 3, 0

)
̸∈ W

hence W is not a subspace of R3.

5. Let W be the set of all vectors of the form
(
a, b, 0

)
. Take any u =

(
a1, b1, 0

)
and

v =
(
a2, b2, 0

)
from W , and any α ∈ R.

u+ v =
(
a1 + a2, b1 + b2, 0

)
∈ W

shows that W is closed under vector addition.

αu =
(
αa1, αb1, 0

)
∈ W

shows that W is closed under scalar multiplication. The zero vector
(
0, 0, 0

)
belongs

to W , ensuring that W is nonempty. Thus W is a subspace of R3.

Question 11. Determine which of the following are subspaces of Mn×n.

1. The set of all diagonal n× n matrices

2. The set of all n× n matrices A such that det(A) = 0

3. The set of all n× n matrices A such that tr (A) = 0

4. The set of all symmetric n× n matrices

5. The set of all n× n matrices A such that A⊤ = −A

6. The set of all n× n matrices A for which Ax = 0 has only the trivial solution

7. The set of all n× n matrices A such that AB = BA for some fixed n× n matrix B.

Solution.

10



ADM Lecturer: Bc. Xiaolu Hou, Ph.D.

1. Let W denote the set of all diagonal n× n matrices.
Consider any matrices A = (aij) and B = (bij) in W , and let α ∈ R be a scalar. By the
definition of diagonal matrices, we have

aij = 0, bij = 0, for all i ̸= j.

The (i, j)-entry of the sum A+B is given by

(A+B)ij = aij + bij.

Since both aij and bij are zero for all i ̸= j, it follows that

(A+B)ij = 0 for all i ̸= j.

Thus, A+B is also a diagonal matrix, establishing closure under addition.
Next, consider the scalar multiple αA. The (i, j)-entry of αA is given by

(αA)ij = αaij.

Since aij = 0 for all i ̸= j, we obtain

(αA)ij = 0 for all i ̸= j.

This confirms that αA remains a diagonal matrix, demonstrating closure under scalar
multiplication.
The zero matrix is diagonal and belongs to W .
Since W is nonempty and closed under addition and scalar multiplication, it follows that
W is a subspace of Mn.

2. Let W be the set of all n × n matrices A such that det(A) = 0. Take matrix A = (aij)
and B = (bij) from W such that

aij =

{
1 i = j = 1

0 otherwise
, bij =

{
1 i = j, i ̸= 1

0 otherwise

In other words, A and B are of the form

A =


1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
... ... ... . . . ...
0 0 0 . . . 0

 , B =


0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1

 .

And
A+B = In ̸∈ W,

showing that W is not a subspace of Mn×n.

3. Let W be the set of all n× n matrices A such that tr (A) = 0. Take any A = (aij), B =
(bij) ∈ W , then

tr (A) =
n∑

i=1

aii = 0, tr (B) =
n∑

i=1

bii = 0.

We have

tr (A+B) =
n∑

i=1

(aii + bii) = tr (A) + tr (B) = 0 =⇒ A+B ∈ W.

11
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tr (αA) =
n∑

i=1

(αaii) = α

n∑
i=1

aii = α0 = 0 =⇒ αA ∈ W.

Thus W is closed under addition and scalar multiplication. Furthermore, the zero matrix
belongs to W , ensuring that W is nonempty. We can conclude that W is a subspace of
Mn×n.

4. Let W be the set of all symmetric n × n matrices. Take any A = (aij) and B = (bij) in
W . By definition of symmetry, we have

aij = aji, bij = bji, for all i, j.

Now, consider the (i, j)-entry of A+B:

(A+B)ij = aij + bij.

Since aij = aji and bij = bji, it follows that

(A+B)ij = aij + bij = aji + bji = (A+B)ji.

Thus, A+B is symmetric, which implies A+B ∈ W , proving closure under addition.
Similarly, for any scalar α ∈ R, the (i, j)-entry of αA is given by

(αA)ij = αaij.

Since A is symmetric, we have aij = aji, so

(αA)ij = αaij = αaji = (αA)ji.

This shows that αA is symmetric, implying αA ∈ W and proving closure under scalar
multiplication.
Furthermore, the zero matrix is symmetric and belongs to W , ensuring that W is nonempty.
We can conclude that W is a subspace of Mn×n.

5. Let W be the set of all n× n matrices A such that A⊤ = −A. Take any A,B ∈ W , then

A⊤ = −A, B⊤ = −B.

We have

(A+B)⊤ = A⊤ +B⊤ = −A+ (−B) = −(A+B), (αA)⊤ = αA⊤ = α(−A) = −(αA),

thus A+B ∈ W , αA ∈ W . Therefore, W is closed under addition and scalar multiplica-
tion.
Furthermore, the zero matrix O satisfies

O⊤ = −O = O =⇒ O ∈ W,

ensuring that W is nonempty. We can then conclude that W is a subspace of Mn×n.

6. Let W be the set of all n× n matrices A for which Ax = 0 has only the trivial solution.
Take In,−In ∈ W . The system

(In + (−In))x = 0

is equivalent to
Ox = 0,

where O denotes the zero matrix and the system has infinitely many solutions. Thus
In + (−In) ̸∈ W , showing that W is not a vector space.

12
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7. Let W be the set of all n× n matrices A that commute with a fixed n× n matrix B. To
determine whether W is a subspace of Mn×n, we verify closure under addition and scalar
multiplication.
Take any A1, A2 ∈ W and any scalar α ∈ R. By definition, we have

A1B = BA1, A2B = BA2.

Adding these two equations, we obtain

(A1 + A2)B = A1B + A2B = BA1 +BA2 = B(A1 + A2),

which shows that A1 + A2 ∈ W , proving closure under addition.
Similarly, for scalar multiplication, we compute

(αA1)B = α(A1B) = α(BA1) = B(αA1),

which implies αA1 ∈ W , proving closure under scalar multiplication.
Finally, the zero matrix O satisfies

OB = BO = O =⇒ O ∈ W,

showing that W is nonempty.
Thus, we conclude that W is a subspace of Mn×n.

Question 12. Which of the following are subspaces of R∞?

1. All sequences v ∈ R∞ of the form v =
(
v, 0, v, 0, v, 0, . . .

)
.

2. All sequences v ∈ R∞ of the form v =
(
v, 1, v, 1, v, 1, . . .

)
.

3. All sequences v ∈ R∞ of the form v =
(
v, 2v, 4v, 8v, 16v, . . .

)
.

4. All sequences in R∞ whose components are 0 from some point on.

Solution.

1. Let W be the set of all sequences v ∈ R∞ of the form v =
(
v, 0, v, 0, v, 0, . . .

)
.

Take any v1 =
(
v1, 0, v1, 0, v1, 0, . . .

)
, v2 =

(
v2, 0, v2, 0, v2, 0, . . .

)
from

W and any α ∈ R. We have

v1 + v2 =
(
v1 + v2, 0, v1 + v2, 0, v1 + v2, 0, . . .

)
∈ W,

αv1 =
(
αv1, 0, αv1, 0, αv1, 0, . . .

)
∈ W.

Hence W is closed under addition and scalar multiplication.
Furthermore, the zero vector

(
0, 0, . . .

)
∈ W , showing that W is nonempty.

We can conclude that W is a subspace of R∞.

2. Let W be the set of all sequences v ∈ R∞ of the form v =
(
v, 1, v, 1, v, 1, . . .

)
.

Take v1 =
(
0, 1, 0, 1, 0, 1, . . .

)
, v2 =

(
1, 1, 1, 1, 1, 1, . . .

)
from W , then

v1 + v2 =
(
1, 2, 1, 2, 1, 2, . . .

)
.

Thus v1 + v2 ̸∈ W . W is not closed under addition and is not a subspace of R∞.

13
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3. Let W be the set of all sequences v ∈ R∞ of the form v =
(
v, 2v, 4v, 8v, 16v, . . .

)
.

Take any v1 =
(
v1, 2v1, 4v1, 8v1, 16v1, . . .

)
, v2 =

(
v2, 2v2, 4v2, 8v2, 16v2, . . .

)
from W and any α ∈ R. We have

v1 + v2 =
(
v1 + v2, 2v1 + 2v2, 4v1 + 4v2, 8v1 + 8v2, 16v1 + 16v2, . . .

)
=

(
v1 + v2, 2(v1 + v2), 4(v1 + v2), 8(v1 + v2), 16(v1 + v2), . . .

)
∈ W

Furthermore,

αv1 =
(
αv1, α2v1, α4v1, α8v1, α16v1, . . .

)
=

(
αv1, 2(αv1), 4(αv1), 8(αv1), 16(αv1), . . .

)
∈ W.

Therefore, W is closed under addition and scalar multiplication.
Finally, the zero vector

(
0, 0, 0, . . .

)
∈ W .

We can conclude that W is a subspace of R∞.

4. Let W be the set of all sequences in R∞ whose components are 0 from some point on.
Take any u =

(
u1, u2, . . . , ut, 0, 0, . . .

)
,v

(
v1, v2, . . . , vs, 0, 0, . . .

)
∈ W ,

and any α ∈ R. By definition of W , there exists t, s ≥ 1 such that

ui = 0, ∀i ≥ t; vj = 0, ∀j ≥ s.

WLOG, assume s ≥ t. Then the sum of u and v is given by

u+ v =
(
v1 + u1, v2 + u2, . . . , ut + vt, vt+1, . . . , vs, 0 0 . . .

)
∈ W

The scalar multiple of u by α is given by

αu =
(
αu1, αu2, . . . , αut, 0, 0, . . .

)
∈ W.

Therefore, W is closed under addition and scalar multiplication.
Finally, the zero sequence

(
0, 0, . . .

)
∈ W , ensuring that W is nonempty. We can

conclude that W is a subspace of R∞.

Question 13. Which of the following are linear combinations of u =
(
0, −2, 2

)
, v =(

1, 3, −1
)
1.

(
2, 2, 2

)
2.

(
0, 4, 5

)
3.

(
0, 0, 0

)
Solution.

1. Suppose (
2, 2, 2

)
= αu+ βv =

(
β, −2α + 3β, 2α− β

)
for some scalars α and β, which corresponds to the following linear system in the unknowns
α and β

β = 2

−2α + 3β = 2

2α− β = 2

Solving the system gives
α = 2, β = 2.

Thus
(
2, 2, 2

)
= 2u+ 2v.

14
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2. Suppose (
0, 4, 5

)
= αu+ βv =

(
β, −2α + 3β, 2α− β

)
.

for some scalars α and β, which corresponds to the following linear system in the unknowns
α and β

β = 0

−2α + 3β = 4

2α− β = 5

The system has no solutions. Thus
(
2, 2, 2

)
is not a linear combination of u and v.

3.
(
0, 0, 0

)
= 0u+ 0v.

Question 14. Express the following as linear combinations of u =
(
2, 1, 4

)
, v =

(
1, −2, 3

)
and w =

(
3, 2, 5

)
.

1.
(
−9, −7, −15

)
2.

(
6, 11, 6

)
3.

(
0, 0, 0

)
Solution.

1. Suppose (
−9, −7, −15

)
= α1u+ α2v + α3w.

for some scalars α1, α2, α3. Expanding both sides and equating corresponding entries, we
obtain the following system of linear equations:

2α1 + α2 + 3α3 = −9

α1 − 2α2 + 2α3 = −7

4α1 + 3α2 + 5α3 = −15

The coefficient matrix of this system is:2 1 3
1 −2 2
4 3 5


Its inverse is 

−4 1 2

3

4
−1

2
−1

4

11

4
−1

2
−5

4


The unique solution of the system is given by

α1 = −1, α2 =
1

2
, α3 = −5

2

Thus (
−9, −7, −15

)
= −u+

1

2
v − 5

2
w.

2. (
6, 11, 6

)
= −u− 5

2
v +

7

2
w

15
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3. (
0, 0, 0

)
= 0u+ 0v + 0w

Question 15. Which of the following are linear combinations of

A =

(
4 0
−2 −2

)
, B =

(
1 −1
2 3

)
, C =

(
0 2
1 4

)

1.
(

6 −8
−1 −8

)
2.

(
0 0
0 0

)
3.

(
−1 5
7 1

)

Solution.

1. Suppose (
6 −8
−1 −8

)
= α1A+ α2B + α3C,

for some scalars α1, α2, α3. Expanding both sides and equating corresponding entries, we
obtain the following system of linear equations:

4α1 + α2 = 6

−α2 + 2α3 = −8

−2α1 + 2α2 + α3 = −1

−2α1 + 3α2 + 4α3 = −8

The coefficient matrix associated with the first three equations is given by: 4 1 0
0 −1 2
−2 2 1


Its inverse is 

5

24

1

24
− 1

12

1

6
−1

6

1

3

1

12

5

12

1

6

 (1)

Using this inverse, we solve for α1, α2, α3, yielding:

α1 = 1, α2 = 2, α3 = −3.

Substituting these values into the fourth equation, we verify:

−2× 1 + 3× 2 + 4× (−3) = −8.

Since this holds, we conclude that:(
6 −8
−1 −8

)
= A+ 2B − 3C.

2. (
0 0
0 0

)
= 0A+ 0B + 0C.
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3. Suppose (
−1 5
7 1

)
= α1A+ α2B + α3C,

for some scalars α1, α2, α3. Expanding both sides and equating corresponding entries, we
obtain the following system of linear equations:

4α1 + α2 = −1

−α2 + 2α3 = 5

−2α1 + 2α2 + α3 = 7

−2α1 + 3α2 + 4α3 = 1

By Gauss–Jordan elimination, we obtain the reduced row echelon form:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Since the last row corresponds to the inconsistent equation 0 = 1, the system has no
solutions. This implies that the given matrix

(
−1 5
7 1

)
is not a linear combination of

A,B,C.

Question 16. In each part, determine whether the vectors span R3.

1. v1 =
(
2, 2, 2

)
, v2 =

(
0, 0, 3

)
, v3 =

(
0, 1, 1

)
2. v1 =

(
2, −1, 3

)
, v2 =

(
4, 1, 2

)
, v3 =

(
8, −1, 8

)
Solution.

1. Suppose v1,v2,v3 span R3. By definition, this means that any vector in R3 can be
expressed as a linear combination of v1,v2,v3.
Consider an arbitrary vector u ∈ R3, where

u =
(
u1, u2, u3

)
.

By assumption, there exist scalars α1, α2, α3 such that

u = α1v1 + α2v2 + α3v3.

This equation corresponds to the following system of linear equations:

2α1 = u1

2α1 + α3 = u2

2α1 + 3α2 + α3 = u3

To determine whether this system is consistent for all possible values of u1, u2, u3, we
examine the coefficient matrix:

A =

2 0 0
2 0 1
2 3 1

 .

17
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The system is consistent for all u if and only if A is invertible, which holds if and only if
det(A) ̸= 0.
Computing the determinant:

det(A) =

∣∣∣∣∣∣
2 0 0
2 0 1
2 3 1

∣∣∣∣∣∣ = −6 ̸= 0.

Since det(A) ̸= 0, the system is consistent for all u ∈ R3, confirming that v1,v2,v3 span
R3.

2. Suppose v1,v2,v3 span R3. By definition, this means that any vector in R3 can be
expressed as a linear combination of v1,v2,v3.
Consider an arbitrary vector u ∈ R3, where

u =
(
u1, u2, u3

)
.

By assumption, there exist scalars α1, α2, α3 such that

u = α1v1 + α2v2 + α3v3.

This equation corresponds to the following system of linear equations:

2α1 + 4α2 + 8α3 = u1

−α1 + α2 − α3 = u2

3α1 + 2α2 + 8α3 = u3

To determine whether this system is consistent for all possible values of u1, u2, u3, we
examine the coefficient matrix:

A =

 2 4 8
−1 1 −1
3 2 8

 .

The system is consistent for all u if and only if A is invertible, which holds if and only if
det(A) ̸= 0.
Computing the determinant:

det(A) =

∣∣∣∣∣∣
2 4 8
−1 1 −1
3 2 8

∣∣∣∣∣∣ = 0.

Since det(A) = 0, v1,v2,v3 do not span R3.

Question 17. Suppose that v1 =
(
2, 1, 0, 3

)
, v2 =

(
3, −1, 5, 2

)
, and v3 =

(
−1, 0, 2, 1

)
.

Which of the following vectors are in span{v1,v2,v3}?

1.
(
2, 3, −7, 3

)
2.

(
0, 0, 0, 0

)
3.

(
1, 1, 1, 1

)
4.

(
−4, 6, −13, 4

)
Solution.
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1. Suppose
(
2, 3, −7, 3

)
is in span{v1,v2,v3}. Then, by definition of span, there exist

scalars α1, α2, α3 ∈ R such that(
2, 3, −7, 3

)
= α1v1 + α2v2 + α3v3

This equation corresponds to the following system of linear equations:

2α1 + 3α2 − α3 = 2

α1 − α2 = 3

5α2 + 2α3 = −7

3α1 + 2α2 + α3 = 3.

The augmented matrix of the system is given by
2 3 −1 2
1 −1 0 3
0 5 2 −7
3 2 1 3


By Gauss–Jordan elimination, we obtain the reduced row echelon form:

1 0 0 2
0 1 0 −1
0 0 1 −1
0 0 0 0


From this, we determine the unique solution:

α1 = 2, α2 = −1, α3 = −1

Thus, we conclude that (
2, 3, −7, 3

)
= 2v1 − v2 − v3,

which confirms that span{v1,v2,v3}.

2.
(
0, 0, 0, 0

)
is in span{v1,v2,v3}.

3.
(
1, 1, 1, 1

)
is not in span{v1,v2,v3}.

4. (
−4, 6, −13, 4

)
= 3v1 − 3v2 + v3,

is in span{v1,v2,v3}.

Question 18. Determine whether the solution space of the system Ax = 0 is a line through
the origin, a plane through the origin, or the origin only. If it is a plane, find an equation for
it. If it is a line, find parametric equations for it.

19



ADM Lecturer: Bc. Xiaolu Hou, Ph.D.

1. A =

−1 1 1
3 −1 0
2 −4 −5

 2. A =

1 2 3
2 5 3
1 0 8



3. A =

1 −3 1
2 −6 2
3 −9 3

 4. A =

1 −1 1
2 −1 4
3 1 11



5. A =

10 4 21
0 −4 3
−5 −1 −12

 6. A =

18 −9 −14
6 −3 −5
−3 1 2



7. A =

 3 −6 9
−2 7 −2
0 1 5

 8. A =

 3 6 −9
0 0 −2
−2 1 5



9. A =

a b b
b a b
b b a

 , a ̸= 0 or b ̸= 0

Solution.

1. The reduced row echelon form of the augmented matrix is:
1 0

1

2
0

0 1
3

2
0

0 0 0 0


The solution space is a line through the origin and its parametric equation is

x = − t

2
, y = −3t

2
, z = t, t ∈ R.

2. The solution space is the zero vector space.

3. The reduced row echelon form of the augmented matrix is:1 −3 1 0
0 0 0 0
0 0 0 0


The solution space is a plane:

x+ z − 3y = 0.

4. The reduced row echelon form of the augmented matrix is:1 0 3 0
0 1 2 0
0 0 0 0


The solution space is a line with parametric equation

x = −3t, y = −2t, z = t, t ∈ R.
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5. The solution space is the zero vector space.

6. The solution space is the zero vector space.

7. The solution space is the zero vector space.

8. The solution space is the zero vector space.

9. If a = b ̸= 0, the solution space is a plane with equation

x+ y + z = 0.

If a ̸= b, we apply Gauss-Jordan elimination to the augmented matrixa b b 0
b a b 0
b b a 0

 R2→R2−R3−−−−−−−→
R1→R1−R2

a− b b− a 0 0
0 a− b b− a 0
b b a 0

 R1→ 1
a−b

R1
−−−−−−→
R2→ 1

a−b
R2

1 −1 0 0
0 1 −1 0
b b a 0


R3→R3−bR2−−−−−−−→
R1→R1+R2

1 0 −1 0
0 1 −1 0
b 0 a+ b 0

 R3→R3−bR1−−−−−−−→

1 0 −1 0
0 1 −1 0
0 0 a+ 2b 0


If a = −2b, the reduced row echelon form of the augmented matrix is1 0 −1 0

0 1 −1 0
0 0 0 0


and the solution space is a line with parametric equation

x = t, y = t, z = t, t ∈ R.

If a ̸= −2b and a ̸= b, we continue with Gauss-Jordan elimination

R3→ 1
a+2b−−−−−→

1 0 −1 0
0 1 −1 0
0 0 1 0

 R1→R1+R3−−−−−−−→
R2→R2+R3

1 0 0 0
0 1 0 0
0 0 1 0


and the solution space is the zero vector space.

Question 19. Explain why the following form linearly dependent sets of vectors

1. u1 =
(
−1, 2, 4

)
, u2 =

(
5, −10, −20

)
in R3

2. u1 =
(
3, −1

)
, u2 =

(
4, 5

)
, u3 =

(
−2, 7

)
in R2

3. A =

(
−3 4
2 0

)
, B =

(
3 −4
−2 0

)
in M2×2

Solution.

1. u2 = −5u1. u2 is a linear combination of u1, thus the set {u1,u2} is linearly dependent.

2. u3 = −2u1 + u2

3. B = −A
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Question 20. In each part, determine whether the vectors are linearly independent or are
linearly dependent in R3.

1.
(
−3, 0, 4

)
,

(
5, −1, 2

)
,

(
1, 1, 3

)
2.

(
−2, 0, 1

)
,

(
3, 2, 5

)
,

(
6, −1, 1

)
,

(
7, 0, 2

)
Solution.

1. The determinant ∣∣∣∣∣∣
−3 0 4
5 −1 2
1 1 3

∣∣∣∣∣∣ = 39

and hence the vectors are linearly independent.

2. Four vectors in R3 are linearly dependent.

Question 21. In each part, determine whether the vectors are linearly independent or are
linearly dependent in R4.

1.
(
3, 8, 7, −3

)
,
(
1, 5, 3, −1

)
,
(
2, −1, 2, 6

)
,
(
4, 2, 6, 4

)
2.

(
3, 0, −3, 6

)
,
(
0, 2, 3, 1

)
,
(
0, −2, −2, 0

)
,
(
−2, 1, 2, 1

)
Solution.

1. The determinant ∣∣∣∣∣∣∣∣
3 8 7 −3
1 5 3 −1
2 −1 2 6
4 2 6 4

∣∣∣∣∣∣∣∣ = 0

and hence the vectors are linearly dependent.

2. The determinant ∣∣∣∣∣∣∣∣
3 0 −3 6
0 2 3 1
0 −2 −2 0
−2 1 2 1

∣∣∣∣∣∣∣∣ = 35 ̸= 0

and hence the vectors are linearly independent.

Question 22. Prove the following theorem

Theorem 1 S = {v1,v2, . . . , vn} spans Rn iff the determinant∣∣∣∣∣∣∣∣∣
v1

v2
...
vn

∣∣∣∣∣∣∣∣∣ ̸= 0.
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Solution. S spans Rn iff the linear system

α1v1 + α2v2 + · · ·+ αnvn = u

is consistent for every u ∈ Rn, which is true iff the coefficient matrix(
v⊤
1 v⊤

2 · · · v⊤
n

)
has nonzero determinant. Since the determinant of a square matrix is equal to the determinant
of its transpose, it follows that S spans Rn iff∣∣∣∣∣∣∣∣∣

v1

v2
...
vn

∣∣∣∣∣∣∣∣∣ ̸= 0.

Question 23. In each part, determine whether the matrices are linearly independent or
dependent.

1.
(
1 0
1 2

)
,

(
1 2
2 1

)
,

(
0 1
2 1

)
in M2×2

2.
(
1 −1
0 0

)
,

(
1 −1
−2 −2

)
,

(
1 1
−2 2

)
in M2×2

3.
(
1 0 0
0 0 0

)
,

(
0 0 0
0 1 0

)
,

(
0 0 0
0 0 1

)
in M2×3.

Solution.

1. Consider the equation

α1

(
1 0
1 2

)
+ α2

(
1 2
2 1

)
+ α3

(
0 1
2 1

)
=

(
0 0
0 0

)
.

Expanding both sides and equating the corresponding matrix entries, we obtain the sys-
tem of linear equations

α1 + α2 = 0

2α2 + α3 = 0

α1 + 2α2 + 2α3 = 0

2α1 + α2 + α3 = 0

The augmented matrix of this linear system is
1 1 0 0
0 2 1 0
1 2 2 0
2 1 1 0


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Applying Gauss–Jordan elimination, we obtain the reduced row echelon form:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


The system has only the trivial solution. It follows that the matrices are linearly inde-
pendent in M2×2.

2. Consider the equation

α1

(
1 −1
0 0

)
+ α2

(
1 −1
−2 −2

)
+ α3

(
1 1
−2 2

)
=

(
0 0
0 0

)
.

Expanding both sides and equating the corresponding matrix entries, we obtain the sys-
tem of linear equations

α1 + α2 + α3 = 0

−2α2 − 2α3 = 0

−α1 − α2 + α3 = 0

−2α2 + 2α3 = 0

The augmented matrix of this linear system is
1 1 1 0
0 −2 −2 0
−1 −1 1 0
0 −2 2 0


Applying Gauss–Jordan elimination, we obtain the reduced row echelon form:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


The system has only the trivial solution. It follows that the matrices are linearly inde-
pendent in M2×2.

3. Consider the equation

α1

(
1 0 0
0 0 0

)
+ α2

(
0 0 0
0 1 0

)
+ α3

(
0 0 0
0 0 1

)
=

(
0 0 0
0 0 0

)
Expanding both sides and equating the corresponding matrix entries, we obtain the sys-
tem of linear equations

α1 = 0

α2 = 0

α3 = 0

. Thus the system has only the trivial solution and it follows that the matrices are linearly
independent in M2×3.
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Question 24. Determine all values of a for which the following matrices are linearly indepen-
dent in M2×2 (

1 0
1 a

)
,

(
−1 0
a 1

)
,

(
2 0
1 3

)

Solution. Consider the equation

α1

(
1 0
1 a

)
+ α2

(
−1 0
a 1

)
+ α3

(
2 0
1 3

)
=

(
0 0
0 0

)
.

Expanding both sides and equating the corresponding matrix entries, we obtain the system of
linear equations

α1 − α2 + 2α3 = 0

α1 + aα2 + α3 = 0

aα1 + α2 + 3α3 = 0

The given matrices are linearly independent if and only if the system has only the trivial
solution, which occurs only when the coefficient matrix has a nonzero determinant. Computing
the determinant, we obtain∣∣∣∣∣∣

1 −1 2
1 a 1
a 1 3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 −1 2
0 a+ 1 −1
0 1 + a 3− 2a

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 −1 2
0 a+ 1 −1
0 0 4− 2a

∣∣∣∣∣∣ = (a+ 1)(4− 2a).

For the determinant to be nonzero, we require a ̸= −1, 2. Thus the given matrices are linearly
independent iff a ̸= −1, 2.

Question 25. In each part, determine whether the three vectors lie in a plane in R3

1. v1 =
(
2, −2, 0

)
, v2 =

(
6, 1, 4

)
, v3 =

(
2, 0, −4

)
2. v1 =

(
−6, 7, 2

)
, v2 =

(
3, 2, 4

)
, v3 =

(
4, −1, 2

)
Solution. To determine whether the three given vectors lie in a plane in R3, we check if they
are linearly dependent. This is equivalent to computing the determinant of the matrix formed
by taking the vectors as rows or columns. If the determinant is zero, the vectors are linearly
dependent and lie in a plane; otherwise, they are linearly independent and span R3.

1. ∣∣∣∣∣∣
2 −2 0
6 1 4
2 0 −4

∣∣∣∣∣∣ =
∣∣∣∣∣∣
2 −2 0
0 7 4
0 2 −4

∣∣∣∣∣∣ = 2

∣∣∣∣7 4
2 −4

∣∣∣∣ = 2× (−28− 8) = −72 ̸= 0

Since the determinant is nonzero, the vectors are linearly independent and do not lie in
a plane.

2. ∣∣∣∣∣∣
−6 7 2
3 2 4
4 −1 2

∣∣∣∣∣∣ = (−6× 2× 2 + 7× 4× 4− 6)− (16 + 24 + 42) = 0

Since the determinant is zero, the vectors are linearly dependent and lie in a plane.
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Question 26. In each part, determine whether the three vectors lie on the same line in R3

1. v1 =
(
−1, 2, 3

)
, v2 =

(
−2, −4, −6

)
, v3 =

(
−3, 6, 0

)
2. v1 =

(
2, −1, 4

)
, v2 =

(
4, 2, 3

)
, v3 =

(
2, 7, −6

)
3. v1 =

(
4, 6, 8

)
, v2 =

(
2, 3, 4

)
, v3 =

(
−2, −3, −4

)
Solution. Three vectors are collinear if and only if each vector is a scalar multiple of the other
two. In other words, ∃α, β ∈ R such that

v2 = αv1, v3 = βv1.

1. Suppose v2 = αv1. Equating the corresponding components, we obtain

−2 = −α, −4 = 2α, −6 = 3α.

Solving for α, we get
α = 2, α = −2, α = −2

Since the values of α are inconsistent, no scalar α satisfies all three equations simultane-
ously. Hence, the vectors are not collinear.

2. Suppose v2 = αv1. From the first two components, we obtain:

4 = 2α, 2 = −α.

Solving for α, we get
α = 2, α = −2.

The inconsistency between these values indicates that no single α satisfies both equations.
Therefore, the vectors are not collinear.

3. Observing the relationships between the vectors, we find:

v2 = 2v1, v3 = −1

2
v1.

Since both v2 and v3 are scalar multiples of v1, the three vectors are collinear,

Question 27. For which values of λ do the following vectors form a linearly dependent set in
R3?

v1 =

(
λ, −1

2
, −1

2

)
, v2 =

(
−1

2
, λ, −1

2

)
, v3 =

(
−1

2
, −1

2
, λ

)
.

Solution. The three vectors are linearly dependent if and only if the following determinant is
zero ∣∣∣∣∣∣∣∣∣∣∣∣

λ −1

2
−1

2

−1

2
λ −1

2

−1

2
−1

2
λ

∣∣∣∣∣∣∣∣∣∣∣∣
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Apply row operations, we get∣∣∣∣∣∣∣∣∣∣∣∣

λ −1

2
−1

2

−1

2
λ −1

2

−1

2
−1

2
λ

∣∣∣∣∣∣∣∣∣∣∣∣
=

1

23

∣∣∣∣∣∣
2λ −1 −1
−1 2λ −1
−1 −1 2λ

∣∣∣∣∣∣ = 1

23

∣∣∣∣∣∣
0 −1 + 4λ2 −1− 2λ
−1 2λ −1
0 −1− 2λ 2λ+ 1

∣∣∣∣∣∣

=
1

23

∣∣∣∣∣∣
0 0 −2− 2λ+ 4λ2

−1 2λ −1
0 −1− 2λ 2λ+ 1

∣∣∣∣∣∣ = 1

23

∣∣∣∣∣∣
−1 2λ −1
0 −1− 2λ 2λ+ 1
0 0 −2− 2λ+ 4λ2

∣∣∣∣∣∣
=

1

23
(2λ+ 1)(4λ2 − 2λ− 2)

The determinant is zero implies

(2λ+ 1)(4λ2 − 2λ− 2) = 0 =⇒ λ = −1

2
, 1

Question 28. For each part, first show that the vectors v1,v2,v3 are linearly dependent in
R4. Subsequently, demonstrate that each vector can be expressed as a linear combination of
the remaining two.

1. v1 =
(
0, 3, 1, −1

)
, v2 =

(
6, 0, 5, 1

)
, v3 =

(
4, −7, 1, 3

)
2. v1 =

(
1, 2, 3, 4

)
, v2 =

(
0, 1, 0, −1

)
, v3 =

(
1, 3, 3, 3

)
Solution.

1. Consider the equation

α1

(
0, 3, 1, −1

)
+ α2

(
6, 0, 5, 1

)
+ α3

(
4, −7, 1, 3

)
=

(
0, 0, 0, 0

)
Expanding both sides and equating the corresponding matrix entries, we obtain the sys-
tem of linear equations

6α2 + 4α3 = 0

3α1 − 7α3 = 0

α1 + 5α2 + α3 = 0

−α1 + α2 + 3α3 = 0

The augmented matrix of this linear system is
0 6 4 0
3 0 −7 0
1 5 1 0
−1 1 3 0


Applying Gauss–Jordan elimination, we obtain the reduced row echelon form:

1 0 −7

3
0

0 1
2

3
0

0 0 0 0
0 0 0 0


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Since the system has a free variable, the set {v1,v2,v3} is linearly dependent. The
solution set of the system is {(

7t

3
, −2t

3
, t

) ∣∣∣∣ t ∈ R
}
.

For example, setting t = 3 yields

7v1 − 2v2 + 3v3 = 0,

confirming linear dependence. Furthermore, we can express each vector as a linear com-
bination of the other two:

v1 =
2

7
v2 −

3

7
v3, v2 =

7

2
v1 +

3

2
v3, v3 = −7

3
v1 +

2

3
v2.

2. Consider the equation

α1

(
1, 2, 3, 4

)
+ α2

(
0, 1, 0, −1

)
+ α3

(
1, 3, 3, 3

)
=

(
0, 0, 0, 0

)
Expanding both sides and equating the corresponding matrix entries, we obtain the sys-
tem of linear equations

α1 + α3 = 0

2α1 + α2 + 3α3 = 0

3α1 + 3α3 = 0

4α1 − α2 + 3α3 = 0

The augmented matrix of this linear system is
1 0 1 0
2 1 3 0
3 0 3 0
4 −1 3 0


Applying Gauss–Jordan elimination, we obtain the reduced row echelon form:

1 0 1 0
0 1 1 0
0 0 0 0
0 0 0 0


Since the system has a free variable, the set {v1,v2,v3} is linearly dependent. The
solution set of the system is { (

−t, −t, t
) ∣∣ t ∈ R

}
.

For example, setting t = 1 yields

−v1 − v2 + v3 = 0,

confirming linear dependence. Furthermore, we can express each vector as a linear com-
bination of the other two:

v1 = −v2 + v3, v2 = −v1 + v3, v3 = v1 + v2.
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