ADM Lecturer: Be. Xiaolu Hou, Ph.D.

Tutorial 5

Vector spaces and linear independence

Question 1. Consider R? together with addition and scalar multiplication defined as follows:
for any w = (w1, up), v = (v1, v2) € R? and any a € R

utv=(u+v, utwn), au= (0, aqu)
1. Compute u + v and a ® u for u = (—1, 2), v = (3, 4) and o = 3.
2. Prove that (R?, +,®) is closed under addition and scalar multiplication.

3. Since vector addition in (R?* +,®) coincides with standard vector addition in the usual
vector space (R?, +, ), certain vector space axioms must hold for (R?, +, ®) because they
are known to hold in (R?, +, ). Identify which axioms these are.

4. Show that Axioms 5, 6, 7 of a vector space hold in (R? +, ®).

5. Show that Axiom 8 does not hold and hence that (R? +,®) is not a vector space

Solution.

- (-1, 2)+(3, 49=(2, 6), 3®(-1, 2)=(0, 6).

2. Take any u = (ul, U2) ,U = (2)1, vg) € R? and any o € R, then uy, us, v1,v5 € R, we
have uq + vy, us + vo, aus € R. Thus

u—i—v:(ul—l—vl, u2—|—v2)€R2, a®u:(0, au2)€R2,
proving that (R?, +, ®) is closed under addition and scalar multiplication.
3. Axioms 1-4 hold in (R?, 4+, ®)
4. Take any u = (ul, Uz) LU = (vb ’Ug) € R? and any «, 3 € R. We have
a®(u+v)=a® (ul + 01, ug+ vg) = (0, a(uy + Ug)) = (O, aus + avg) ,

and
aRQUtaRV = (O, au2) + (O, avg) = (0, auQ—FowQ),

thus Axiom 5 holds. Furthermore,
(a+8)@u= (0, (a+PBu), a®u+fu= (0, aus)+(0, Buy) = (0, (a+ Bus),
showing that Axiom 6 holds. Lastly,
afRu) =« (0, 6u2) = (O, aﬁug) , (af)@u= (O, aﬁug)
proves that Axiom 7 holds.

5. By definition, we have
1o (1, 3)=(0, 3)+# (1, 3),

demostrating that Axiom 8 does not hold.
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Question 2. Consider R? together with addition and scalar multiplication defined as follows:
for any u = (ul, UQ) , v = (vl, 02) €R? and any a € R

udv= (u1+1}1+1, U2+U2+1), au = (ozul, au2)
1. Compute u @ v and au for u = (O, 4), v = (1, —3) and o = 2.
2. Show that (O, O) does not serve as the additive identity in (R?, @, ).
3. Prove that the additive identity in (R?, ,-) is given by (—1, —1)
4. Show that Axiom 4 holds by finding the additive inverse of any given u € R?

5. Identify two vector space axioms that do not hold in (R?, @, -).

Solution.

1.
u®v=(0+1+1, 4-3+1)=(2, 2), au=(2x0, 2x4)=(0, 8

2. Let u= (1, 1), then
(0, 0)du=(2, 2)+#u.

3. For any w = (u1, up) € R,
ud (-1, —)=(u—-1+1, uu—1+1)=u
thus (—1, —1) is the additive identity in (R?, @, ).
4. For any w = (u1, ug) € R? let —u = (—us —2, —uy —2), then
ud(—u) = (ur+(—ur —2)+ 1, up+(—up—2)+1) = (-1, -1).
Thus, —u is the additive inverse of u in (R?, @, ).
5. Letu= (1, 0),v=(0, 1),a=2,3=1 then
aludv)=2(2, 2)=(4, 4), cudav=(2, 0)® (0, 2)=(3, 3)
which shows that Axiom 5 does not hold. Furthermore
(a+Bu=3(1, 0)=3, 0), audfu=(2, 0)® (1, 0)=(4, 1),

demonstrating that Aiom 6 does not hold.

Question 3. For each of the following sets equipped with the given operations, determine
whether it forms a vector space. For those that are not vector spaces identify the vector space
axioms that fail.

1. The set of all real numbers with the standard operations of addition and multiplication.

2. The set of all pairs of real numbers of the form (a:, O) with the standard vector addition
and scalar multiplication in R?.
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3. The set of all pairs of real numbers of the form (m, y) such that z > 0, with the standard
vector addition and scalar multiplication in R2.

4. The set of all n—tuples of real numbers that have the form (q:, Ty, ..., :l:) with the
standard vector addition and scalar multiplication in R™.

5. The set R? with the standard vector addition, but with scalar multiplication defined as

a® (ur, ug, uz)=(a’u, o’us, a’ug).
6. The set of all invertible 2 x 2 matrices, together with the standard matrix addition and
scalar multiplication.

7. The set of all diagonal 2 x 2 matrices of the form

(6 3)

together with the standard matrix addition and scalar multiplication

8. The set of all real-valued functions f defined everywhere on the real line satisfying the
condition f(1) = 0, together with addition and scalar multiplication defined as follows

(f +9)(x) = f(z) +g(x), (af)(z)=af(z)
9. The subset of R? consisting of all pairs of the form (1, y) with the operations
(L ye ¢v)=0 y+y), ao(l y)=(, ay)
10. The set of polynomials of the form ay + a;2 with the operations

(CLO + alx) + (bo + blm) = (CLO + bg) + (a1 + b1>I

and
alag + a1) = aay + aayx

Solution.
1. It is a vector space.

2. It is a subspace of R%. Let V denote the subset of R? consisting of all pairs of the form
(x, O). Take any two elements (:L‘l, 0), (952, 0) from V and any a € R

(z1, 0) + (22, 0) = (z1+x2, 0) €V, a(z, 0)=(az;, 0)€V,

showing that V' is closed under vector addition and scalar multiplication. Furthermore,
(0, 0) € V, ensuring that V is nonempty. We can conclude that V is a subspace of R2.

3. It is not a vector space. Let V denote the subset of R? of the form (a:, y) with x > 0. V
is not closed under scalar multiplication. For example, take (1, 0) € V and scalar —1 € R

(=01 0)=(-1 0)¢V.
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4. Tt is a vector space. Let V be the subset of R™ consisting of n—tuples of the form
(:L‘, T, .., a:) For any (xl, T1, ey xl), (xg, To, ..., xQ) from V and any
scalar a € R

(961, L1, ooy $1)+($2, Lo, .o, 902):(9614-@, 1+ T2, ..., I1$2)€Va

a(ml, T1, .., xl):(azl, ary, ..., ole)EV

Thus V is closed under vector addition and scalar multiplication, hence it is a subspace
of R™.

5. It is not a vector space. Axiom 6 does not hold: take (1, 0, 0) €R*and 2,3€R
2+3)® (1, 0, 0)=(25 0, 0),
20(1, 0, 0)+3®(1, 0, 0)=(4, 0, 0)+(9, 0, 0)=(13, 0, 0) # (2+3)®(1, 0, 0)

6. It is not a vector space. Let V be the set of all invertible 2 x 2 matrices. V' is not closed

under addition: for example, (é (1)), (_01 _01) are both invertible matrices, but

(60 %)=0 1)

Furthermore, Axiom 3 does not hold because the zero matrix is not an element of V.

is not an invertible matrix.

7. It is a vector space. Let V be the set of 2 x 2 diagonal matrices. Take any (C(L)l l? ),
1

a0 from V and any a € R
0 by

aq 0 a9 0 i ay + as 0 aq 0 [ aa; 0
(Ob)+(0b9_( 0 bﬁwJEM a(om)—(o MJEV

Thus V is closed under addition and scalar multiplication. The zero matrix belongs to
V', ensuring that V' is nonempty. We can conclude that V' is a subspace of Msyo.

8. It is a vector space. Let V' denote the subset of consisting of function f(x) satisfying
f(1) = 0. Take any f(z),g9(x) € V and o € R

(f+9) (1) = F()+9(1) =04+0=0—= f+geV, (af)x)=af(l)=0—afeV

shows that V' is closed under addition and scalar multiplication. The zero function f(z) =
0 for all z € R belongs to V. We can conclude that V' is a subspace of F(R, R).

9. It is a vector space. Let V' be the set of all pairs of the form (1, y). Firstly, it is easy
to see that V' is closed under addition and scalar multiplication. The additive identity is
given by (1, O) and the additive inverse of (1, y) is (1, —y). It can be proven that
the other axioms also hold.

10. It is a vector space. Let V' denote the set of polynomials of the form ay + a;z. It is easy
to see that V is closed under addition and scalar multiplication. V' is nonempty as it
contains the zero polynomial 0. Thus it is a subspace of R]x].
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Question 4. Verify Axioms 1, 2, 5, 6, and 7 for the vector space Msyo.

Solution. Take any matrices (all a12), (bll b12> and (CH CIQ) from Msy s and any «, 5 €

Q21 A22 ba1 Do Ca1 C22
Axiom 1. Since addition is commutative in R, a;; + b;; = b;; + a;;, we have
ail a2 n bi1 bio _ (an+t bi1 a1z + bio _ b1 +ann b2+ ann
o1 Q23 ba1  bao a1 + b1 age + bao ba1 + ag1 b + ag
. bii big 11 A12
— + )
ba1  bao Q21 Q22
Axiom 2. By the associativity of addition in R,

(ai]- + bl]) + Cij = Gij + (bl] + Cij).
We have

a1l a2 bii bio cin ¢z  [(a1 +bn)+ e (a2 +bi2) + iz
+ + =
a1 G2 a1 b2o Co1 C22 (ag1 +b21) + car (age + bag) + caz
(e + (bn+cn) a+ (bietca2)\ | (e a bii bio C11 Ci12
— = + +
a1 + (ba1 + 1) @z + (baa + C22) Q21 Q22 bor Do Co1 C22
Axiom 5. By the distributive law of addition over multiplication for real numbers,

O[(Gij + bU) = Oj(lij + Olbij.

We have

ai; a2 bii b2\ | ain +bi1 a2+ b2\ (e +b11) alain + bi2)
« -+ =« =

21 Q22 ba1 Do ag1 + ba1  ag + by a(ag + ba1)  afan + ba)
_ (aan + abi;  aary + abys _ (aan aan n aby;  abs

Qa9 + Oébgl Qa9 + OébQQ adg1 Qa2 CYOébgl Oébgg
— ai; Q2 +a bir b2

as1 oo ba1  bao
Axiom 6. By the distributive law of addition over multiplication for real numbers,

(Oé + 5)aij = ozaij -+ ﬁaij.
We have

(a+B) <a11 a12> _ ((Oé—i-ﬂ)an (Oz—l-ﬁ)cm) _ (aan + Bay  @ars —|—Ba12)
Qo1  G22 (+ Bagr (a+ Bag Qasy + Bag  qasy + Bags

_ [aa11r Gaig 4 Bay  Paiz —a a11 a2 18 @11 A12
Qa1 a2 Bag1  Pag 21 Q22 Qo1 Q22

Axiom 7. By associativity of multiplication for real numbers

(aB)ai; = a(Baij).
We have

()] =a (G ey = (G o) = (e (o)

= o (20 02
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Question 5. Verify Axioms 2, 5, 6, 7, and 8 for the vector space F(R, R).

Solution. Take any f,g,h € F(R,R) and any «a, f € R.
Axiom 2. By the associativity of addition in R
(f (@) + g(2)) + h(z) = f(x) + (9(x) + h(z)).
We have

(f+g)+h)(x) = (f+9)(@)+h(x) = (f(x) +g(x)) + h(x) = f(2) + (9(x) + h(z))
= f@)+(g+h)() = (f+ (g +h)(@).

Thus (f+g)+h=f+(g+h).
Axiom 5. By the distributive property of multiplication over addition in R,
a(f(z) +g(x)) = af (z) + ag(z).
We have

(@(f +9)(x) = al(f+9)(x) = a(f(2) + () = af(z) + ag(z)
= (af)(z) + (ag)(z

Axiom 6. By the distributive property of multiplication over addition in R,
(a+B)f(x) = af(x) + Bf(2).
We have
((a+B)f)(@) = (a+ B)f(z) = af(z) + Bf(z) = (af)(z) + (Bf)(z)
Thus (o + 8)f = af + B.
Axiom 7. By the associativity of real number multiplication,
(@B)f(z) = a(Bf(z)).
We have
((af))(x) = (aB) f(z) = a(Bf(x)) = a((Bf)(x))-
Thus (af)f = a(Bf).
Axiom 8. (1f)(z) =1 x f(z) = f(z) shows that 1f = f.

Question 6. Show that R? with the usual addition and scalar multiplication defined as
« (ul, ug) = (C(ul, O)
satisfy Axioms 1-7.

Solution. Take any u = (ul, ug), v = (vl, vg), w = (wl, wg) from R? and any o, 3 € R
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Axiom 1. By the commutativity of addition for real numbers,
Uy + UV = V; + Uy
utv=(u v, uptuv)=(v1+u, vstu)=v+u
Axiom 2. By the associativity of addition in R,
(u; + v;) + w; = u; + (v; + wy).
(u+v)+w = (U1 + v, U2+ U2) + (w1, w2) = ((U1 +wu1) +wi, (ug +v2) + w2)

(u1 + (Ul + wl), U + (Ug + U)Q))
= (w1, w)+ (v +w, vot+w)=u+(v+w)

Axiom 3. The zero vector is (0, 0)

Axiom 4. The additive inverse of u is (—ul, —u2) since
(—ul, —u2) +u = (—u1 +uy, —ug + ug) = (0, O)
Axiom 5. By the distributive law of addition over multiplication for real numbers,
alu; + v;) = au; + aw;.

a(ut+v) = au+uv, us+v2) = (a(ur +v1), alus+v2)) = (aus +avi, aus + avy)

= (ouy, aup)+ (v, o) =au+av
Axiom 6. By the distributive law of addition over multiplication for real numbers,
(o + Bu; = au; + Pu.

(a+Bu = ((a+B)ur, (a+Bus) = (aus + fuy, aus + Pus)
= a(u, w)+p(u, w)=oau+u.

Axiom 7. By the associativity of real number multiplication,
(aB)u; = a(fu;)
(@B)u = ((@f)ur, (afluz) = (a(Bur), a(Bus)) = a(fu)

Question 7. Consider Ry, the set of positive real numbers. Define addition and scalar
multiplication as follows: for any u,v € Ry and any a € R

uPv=uv, a®@u=u”
Verify that Axioms 1 — 5, 7, and 8 hold.

Solution. Take any u,v,w € Ry and any «, 8 € R.

Axiom 1. u® v = uv = vu = v @ u follows from the commutativity of multiplication in R.
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Axiom 2. By the associativity of addition in R
u® (vdw)=ulvw) = (w)w=(udv)Bw

Axiom 3. The additive identity is 1:
ud1l=ul =u.

Axiom 4. The additive inverse of u is — since
U

u®—=u—=1.
u u

1 1
It follows from u > 0 that — > 0 and we can conclude — € R,.
u u

Axiom 5.
a® (udv)=a® (w)=(w)* =u*=(a@u)(a®v)=(a®@u) ® (e v)

Axiom 7.
(af)@u=u"’= W) =a® W) =a® (BRu)

Axiom 8. 1 ®u = u! = u.

Question 8. Show that the set of all points in R? lying on a line is a subspace of (R?, +,-) iff
the line passes through the origin.

Solution.

= If a line is a subspace of (R? +,-), by definition it contains the zero vector (0, O),
which is the origin.

<= If a line passes through the origin, it can be represented by an equation of the form

ar + by =0,

for some a,b € R. Let
W:{(x, y) | ax+by:()}

denote such a line. Take any (xl, yl), (xg, yz) from W and any a € R. Then
ary +by; =0, axy+ by, = 0.

We have
($1a y1) + ($2, yz) = ($1 + T2, +y2) .
We have

a(zy + x2) + b(y1 + y2) = (axy + byr) + (a2 + byo) =0 = (w1, y1) + (22, 12) € W.
Thus W is closed under addition. Furthermore, W is also closed under scalar multiplication:

a(z1, 1) = (a1, ayr), alaxr) +blayr) = alaxy +byy) =0 = a (21, 1) € W.

Question 9. Show that the set of all points in R? lying in a plane is a subspace of (R3 +,-)
iff the plane passes through the origin. Solution.

= If a plane is a subspace of (R3, +, -), by definition it contains the zero vector (O, 0, O),
which is the origin.
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<= If a plane passes through the origin, it can be represented by an equation of the form
ar +by+cz=0
for some a,b,c € R. Let
W={(z, y, 2) | av+by+cz=0}
denote such a plane. Take any (xl, Y1, zl), (mg, Yo, ZQ) from W and any o € R. Then
ary +by; +cz1 =0, axy+ bys +czo = 0.

We have
(3317 Y1, Zl) + (.1'2, Y2, Zl) - (:El + T2, U1 + Y2, 21 + 22) .
We have

a(z1 + 22) + b(y1 + y2) + c(21 + 22) = (ax1 + byr + c21) + (ax2 + bys + c22) =0
— (xIJ Y1, Zl) + (I27 Y2, 22) S W
Thus W is closed under addition. Furthermore, W is also closed under scalar multiplication:
Q@ (xl, Y1, zl) = (ole, ayy, ozzl) . alaxy) + b(ay) + c(az) = alaxry + by, +c¢z) =0

:>Oé(11, Y1, Zl)EW.

Question 10. Determine which of the following are subspaces of R3.

1. All vectors of the form (a, 0, 0)

)

2. All vectors of the form (
3. All vectors of the form (a, b, c), whereb=a+c

a,

—_
—_

4. All vectors of the form (a, b, c), where b=a+c+1

5. All vectors of the form (a, b, 0

Solution.

1. Let W be the set of all vectors of the form (a, 0, 0). Take any (al, 0, 0), (a2, 0, 0)
from W and any a € R

(a1, 0, 0)+ (as, 0, 0) = (ar+az 0, 0)€W,
shows that W is closed under addition.
a(a;, 0, 0) = (aa;, 0, 0)
shows that W is closed under scalar multiplication.
W is nonempty as it contains the zero vector (O, 0, O). Thus, W is a subspace of R3.

2. Let W be be the set of all vectors of the form (a, 1, 1). Take (07 1, 1), (1, 1, 1)
from W.
(0, 1, 1)+(1, 1, 1)=(1, 2, 2)¢W

hence W is not a subspace of R3.
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3.

Let W be be the set of all vectors of the form (a, b, c), where b = a + c¢. Take any
u = (al, by, 01) and v = (ag, b, 02) from W and any o € R, then

b1:a1+61, b2:G2+CQ.
W is closed under addition:
UuU+v= (al, bl, Cl) = (CLQ, bg, Cg) = (CLl + asg, bl + bg, c1 + 02) s

CL1+CL2+01+02:(a1+61)+(a2+02):b1+b2:>u+’U€W

W is closed under scalar multiplication:
ou = (aay, aby, acy), aa+ac;=aola+c)=ab = aueW
W is nonempty as it contains the zero vector (0, 0, O) Thus W is a subspace of R3.

Let W be the set of all vectors of the form (a, b, c), where b = a+c+1. Take (0, 1, 0)
and (1, 2, O) from W,

(0, 1, 0)+(1, 2, 0)=(1, 3, 0)gW
hence W is not a subspace of R3.

Let W be the set of all vectors of the form (a, b, 0). Take any u = (al, b1, 0) and
v = (ag, ba, O) from W, and any o € R.

u+v:(a1+a2, b1+b27 O)EW
shows that W is closed under vector addition.
au = (aal, aby, 0) e W

shows that W is closed under scalar multiplication. The zero vector (0, 0, 0) belongs
to W, ensuring that W is nonempty. Thus W is a subspace of R3.

Question 11. Determine which of the following are subspaces of M,,x,.

1.
2.

The set of all diagonal n x n matrices
The set of all n x n matrices A such that det(4) =0
The set of all n x n matrices A such that tr (A) =0

The set of all symmetric n x n matrices

. The set of all n x n matrices A such that AT = —A

The set of all n x n matrices A for which Az = 0 has only the trivial solution

The set of all n X n matrices A such that AB = BA for some fixed n X n matrix B.

Solution.

10
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1. Let W denote the set of all diagonal n x n matrices.

Consider any matrices A = (a;;) and B = (b;;) in W, and let @ € R be a scalar. By the
definition of diagonal matrices, we have

a;; =0, b; =0, foralli#j.
The (i, j)-entry of the sum A + B is given by
(A+ B)ij = aij + by;.
Since both a;; and b;; are zero for all ¢ # 7, it follows that
(A+ B);; =0 forall i #j.

Thus, A + B is also a diagonal matrix, establishing closure under addition.

Next, consider the scalar multiple aA. The (7, j)-entry of @A is given by
(aA)i; = aay;.
Since a;; = 0 for all ¢ # j, we obtain
(aA);; =0 forall i # j.

This confirms that A remains a diagonal matrix, demonstrating closure under scalar
multiplication.

The zero matrix is diagonal and belongs to W.

Since W is nonempty and closed under addition and scalar multiplication, it follows that
W is a subspace of M,,.

2. Let W be the set of all n x n matrices A such that det(A) = 0. Take matrix A = (a;;)
and B = (b;;) from W such that

1 i=75=1 1 i=j, 1#1
a;; = s by = .
0 otherwise 0 otherwise

In other words, A and B are of the form

100 ...0 000 ...0
000 ... 0 010 0
A=|(00 0 Of, B=]0 01 0
000 0 000 1

And
A+B=1,¢&W,

showing that W is not a subspace of M,,«,,.

3. Let W be the set of all n x n matrices A such that tr (A) = 0. Take any A = (a;j), B =
(b”) S W, then

n

i=1

=1
We have
tr(A+B) =) (a;+bi) =tr(A)+tr(B)=0= A+ BecW.

=1

11
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n n
tr (aA) = Z(aaii) = ozZaii =a0=0=aAec W
i=1 i=1
Thus W is closed under addition and scalar multiplication. Furthermore, the zero matrix
belongs to W, ensuring that W is nonempty. We can conclude that W is a subspace of
M, -

4. Let W be the set of all symmetric n x n matrices. Take any A = (a;;) and B = (b;;) in
W. By definition of symmetry, we have

a;j = aj, by =bj, foralli,j.
Now, consider the (i, j)-entry of A+ B:
(A+ B)ij = aij + byj.
Since a;; = aj; and b;; = bj;, it follows that
(A+ B)ij = aij + bij = aji + bji = (A+ B)ji.
Thus, A + B is symmetric, which implies A + B € W, proving closure under addition.
Similarly, for any scalar o € R, the (i, j)-entry of aA is given by

(OéA)Z'j = aaij.
Since A is symmetric, we have a;; = a;;, so
(OZA)ij = aaij = ozaji = (O{A)ﬂ

This shows that aA is symmetric, implying «A € W and proving closure under scalar
multiplication.

Furthermore, the zero matrix is symmetric and belongs to W, ensuring that W is nonempty.
We can conclude that W is a subspace of M,,x,,.

5. Let W be the set of all n x n matrices A such that AT = —A. Take any A, B € W, then
A'=—-A, B"=-B.
We have
(A+B)'=AT+B"=—-A+(-B)=—(A+B), (aA)" =aAT =a(—A) = —(aA),

thus A+ B € W, aA € W. Therefore, W is closed under addition and scalar multiplica-
tion.

Furthermore, the zero matrix O satisfies
O'=-0=0=0¢eW,
ensuring that W is nonempty. We can then conclude that W is a subspace of M,,«,,.

6. Let W be the set of all n x n matrices A for which Az = 0 has only the trivial solution.
Take I,,, —1I, € W. The system

(I,+ (—1,)x =0

is equivalent to
Oz =0,

where O denotes the zero matrix and the system has infinitely many solutions. Thus
I, + (—1I,) ¢ W, showing that W is not a vector space.

12



ADM Lecturer: Be. Xiaolu Hou, Ph.D.

7. Let W be the set of all n x n matrices A that commute with a fixed n x n matrix B. To
determine whether W is a subspace of M,,«,, we verify closure under addition and scalar
multiplication.

Take any A, Ay € W and any scalar o € R. By definition, we have
A1B = BA;, A;B= BA,.
Adding these two equations, we obtain
(A1 + A3)B=A1B+ AyB = BA; + BAy = B(A; + Ay),

which shows that A; + A, € W, proving closure under addition.

Similarly, for scalar multiplication, we compute

(OtAl)B = Oé(AlB> = Oé(BAl) = B(OéAl),
which implies «A; € W, proving closure under scalar multiplication.
Finally, the zero matrix O satisfies

OB=BO=0=0¢eW,

showing that W is nonempty.

Thus, we conclude that W is a subspace of M,,p,.

Question 12. Which of the following are subspaces of R*°?
1. All sequences v € R* of the form v = (U, 0, v, 0, v, 0, .. )
2. All sequences v € R* of the form v = (v, 1, v, 1, v, 1, .. )
3. All sequences v € R* of the form v = (1}, 2v, 4v, 8v, 16v, .. )

4. All sequences in R* whose components are 0 from some point on.

Solution.

1. Let W be the set of all sequences v € R* of the form v = (v, 0, v, 0, v, O, )
Take any v, = (vl, 0, v, 0, vy, O, ), vy = (vg, 0, vg, 0, vy, O, ) from
W and any a € R. We have

171+U2:(U1—|—U2, 0, U1+U2, 0, U1+’02, O, )GVV,

vy = (am7 0, avy, 0, awvy, O, ) e W.
Hence W is closed under addition and scalar multiplication.
Furthermore, the zero vector (0, 0, .. ) € W, showing that W is nonempty.

We can conclude that W is a subspace of R*.

2. Let W be the set of all sequences v € R* of the form v = (U, 1, v, 1, v, 1, )
Take v, = (0, 1, 0, 1, 0, 1, ), vy = (1, 1, 1, 1, 1, 1, ) from W, then

vi+vo=(1, 2, 1, 2, 1, 2, ...

Thus vy + v € W. W is not closed under addition and is not a subspace of R*°.

13
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3. Let W be the set of all sequences v € R*> of the form v = (U, 2u, 4v, 8v, 16w, .. )
Take any v = (vl, 2u1, 4vy, 8vy, 16wy, ), Uy = (Ug, 20y, 4vg, 8uvg, 16w, )
from W and any a € R. We have

V1 +vy = (U1—|—UQ, 2U1+2U2, 4U1+4U27 8@1+8U2, 16Ul+16U2, )
= (14w, 2(vi+w2), 4(vi+we), 8(vi +wa), 16(vy+1a), ...) €W
Furthermore,
av, = (owl, a2vy, advy, a8vy, albuy, )

= (avi, 2(av), 4(awvy), 8(awvr), 16(avy), ...) € W.

Therefore, W is closed under addition and scalar multiplication.
Finally, the zero vector (0, 0, O, ) ew.

We can conclude that W is a subspace of R*.

4. Let W be the set of all sequences in R* whose components are 0 from some point on.
Take any u = (ul, Ug, ..., u 0, O, ...),’u(vl, Vo, ..., Vs, 0, 0, ) e W,
and any a € R. By definition of W, there exists ¢, s > 1 such that

u; =0, Vi>1t; v;=0,Vj>s.
WLOG, assume s > t. Then the sum of w and v is given by
u+v= (vl—i—ul, Vo + Uz, ...y U+ Uy, UVpyr, oo, Vs, 000 ) ew
The scalar multiple of w by « is given by
au = (aul, aug, ..., aug, 0, 0, ) ew.

Therefore, W is closed under addition and scalar multiplication.

Finally, the zero sequence (0, 0, ) € W, ensuring that W is nonempty. We can
conclude that W is a subspace of R™.

Question 13. Which of the following are linear combinations of u = (0, -2, 2), v =
(1, 3, —1)
L (2, 2, 2 2. (0, 4, 5) 3. (0, 0, 0)
Solution.
1. Suppose

(2, 2, 2):au+5v:(6, —2a + 38, 20&—5)

for some scalars a and /3, which corresponds to the following linear system in the unknowns

a and 8
g =
—2a+38 =
20 -8 =
Solving the system gives
a=2 [f=2

Thus (2, 2, 2)=2u+2v.

14
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2. Suppose
(O, 4, 5) =au+ pfv = (6, —2a + 30, 204—5).

for some scalars a and /3, which corresponds to the following linear system in the unknowns

a and (8
g =0
—2a+4+38 = 4
20— = 5

The system has no solutions. Thus (2, 2, 2) is not a linear combination of u and v.

3. (0, 0, O) = Ou + Ov.

Question 14. Express the following as linear combinations of u = (2, 1, 4), v = (1, -2, 3)
and w = (3, 2, 5).

1. (-9, =7, —15) 2. (6, 11, 6) 3. (0, 0, 0)

Solution.

1. Suppose
(—9, —7, —15) = ou + (65X + a3W.

for some scalars aq, ag, 3. Expanding both sides and equating corresponding entries, we
obtain the following system of linear equations:

20&1 + s + 3043 = -9
a1 — 20[2 + 20&3 = -7
4oy + 3ag + 53 = —15
The coefficient matrix of this system is:
2 1 3
1 -2 2
3 3
Its inverse is
-4 1 2
3 1 1
4 2 4
11 1 5
4 2 4
The unique solution of the system is given by
5
al__lv 042—57 aS__§

Thus

15



ADM Lecturer: Be. Xiaolu Hou, Ph.D.

(0, 0, 0)=0u+ 0v+ 0w

Question 15. Which of the following are linear combinations of

a=(L8) o= F) -0
(0 2 (5 o)  (71)

Solution.

1. Suppose

(_61 :2) = OllA + OéQB + agC,

for some scalars aq, ag, 3. Expanding both sides and equating corresponding entries, we
obtain the following system of linear equations:

40&1+Oéz = 6

—ag + 203 = —8
—20./1 + 20[2 + 3 = —1
—20(1 + 30(2 + 40&3 = -8

The coefficient matrix associated with the first three equations is given by:

4 1 0
0 -1 2
-2 2 1
Its inverse is
5 1 1
24 24 12
1 1 1
- _Z Z 1
6 6 3 (1)
1 5 1
12 12 6

Using this inverse, we solve for aq, as, ag, yielding:
ar =1, ay=2, az3=—-3.
Substituting these values into the fourth equation, we verify:
—2x14+3x2+4x(=3)=-8.

Since this holds, we conclude that:

6 -8
(5 )~ aremsc

0 0
(0 0) =0A+ 0B +0C.

16
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3. Suppose

<_71 i)) = OélA -+ OQB + 0430,

for some scalars aq, ag, 3. Expanding both sides and equating corresponding entries, we
obtain the following system of linear equations:

doy + g = —1
—ag + 203 = B
=201 + 200 a3 =
—2a1 +3as +4a3 = 1

By Gauss—Jordan elimination, we obtain the reduced row echelon form:

1 0 0]0
01 00
00 1]0
00 0]1

Since the last row corresponds to the inconsistent equation 0 = 1, the system has no

7

solutions. This implies that the given matrix ( 1) is not a linear combination of

A, B,C,

Question 16. In each part, determine whether the vectors span R3.
Lvi=(2 2 2),v=(0 0, 3),v3=(0, 1, 1)
2. v1=(2, -1, 3),vo=(4, 1, 2),v3=(8 -1, 8)

Solution.

1. Suppose vy, vy, vs span R?. By definition, this means that any vector in R® can be
expressed as a linear combination of vy, vo, v3.

Consider an arbitrary vector u € R?, where
u = (Ul, Ug, U3) .
By assumption, there exist scalars aq, as, ag such that
U = V1 + QY2 + 3V3.

This equation corresponds to the following system of linear equations:

2@1 = U
2041 + a3 = U»
20[1 + 30&2 +a3 = us

To determine whether this system is consistent for all possible values of wuy, us, u3, we
examine the coefficient matrix:

200
A=1(2 0 1
2 31

17
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The system is consistent for all w if and only if A is invertible, which holds if and only if
det(A) # 0.

Computing the determinant:

det(A) = =—6#0.

SRS
w o o
(N )

Since det(A) # 0, the system is consistent for all w € R3, confirming that vy, v, v3 span
R3.

2. Suppose vy, vs,v3 span R3. By definition, this means that any vector in R3 can be
expressed as a linear combination of vy, vs, v3.

Consider an arbitrary vector u € R?, where
u= (ul, Ug, Ug).
By assumption, there exist scalars ay, as, ag such that
U = 1V + U2 + (3v3.
This equation corresponds to the following system of linear equations:

200 + 4 + 8z = g
—Qptay — Q3 = U
30[1 + 20(2 + 8@3 = Us

To determine whether this system is consistent for all possible values of uy,us, us, we
examine the coefficient matrix:

2 4 8
A=|-1 1 -1
3 2 8

The system is consistent for all w if and only if A is invertible, which holds if and only if
det(A) # 0.

Computing the determinant:

2 4 8
det(4) =|-1 1 —1|=0.
3 2 8

Since det(A) = 0, vy, vy, v3 do not span R3.

Question 17. Suppose that v; = (2, 1, 0, 3), vy = (3, -1, 5, 2), and vz = (—1, 0, 2, 1).
Which of the following vectors are in span{vy, ve, v3}?

1. (2, 3, =7, 3) 2. (0, 0, 0, 0)
3..(1, 1, 1, 1) 4. (-4, 6, —13, 4)
Solution.

18



ADM Lecturer: Be. Xiaolu Hou, Ph.D.

1. Suppose (2, 3, —T, 3) is in span{vy, v9,v3}. Then, by definition of span, there exist
scalars aq, ao, a3 € R such that

(2, 3, —7, 3) = V1 + V2 + Q3V3

This equation corresponds to the following system of linear equations:

2000 + 3 — a3 = 2
a; — Qg = 3
50(2 + 2063 = -7

3@1 +2&2+C¥3 = 3.

The augmented matrix of the system is given by

2 3 —-1| 2
1 -1 0] 3
0 5 2 -7
3 2 113

By Gauss—Jordan elimination, we obtain the reduced row echelon form:

1 0 0| 2
01 0]—-1
00 1]-1
00 0] O
From this, we determine the unique solution:
a1:2, 042:—1, 063:—1

Thus, we conclude that
(2, 3, =7, 3)=2v; —vy— 03,
which confirms that span{vi, ve, v3}.
2. (O, 0, 0, 0) is in span{v, vy, v3}.

3. (1, 1, 1, 1) is not in span{vy, vs, v3}.
(—4, 6, —13, 4) =3v; — 3vy + vs,

is in span{wv;, vy, v3}.

Question 18. Determine whether the solution space of the system Ax = 0 is a line through
the origin, a plane through the origin, or the origin only. If it is a plane, find an equation for
it. If it is a line, find parametric equations for it.
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-1 1 1 1 2 3
1. A= 3 -1 0 2. A= 5 3
2 —4 -5 1 0 8
1 -3 1 1 -1 1
3.A=(2 -6 2 4. A=12 -1 4
3 -9 3 3 1 11
10 4 21 18 -9 —14
5 A= 0 -4 3 6. A= 6 -3 -5
-5 -1 —12 -3 1 2
3 —6 9 3 6 —9
7TA=-2 T =2 8. A= 0 0 -2
0O 1 5 -2 1 5
a b b
9. A=1|b a b|, a#0orb+#0
b b a

Solution.

1. The reduced row echelon form of the augmented matrix is:

1010
2
3
01 -0
2
00 00

The solution space is a line through the origin and its parametric equation is

t 3t
= ——, y=—-= z=t teR.

2. The solution space is the zero vector space.

3. The reduced row echelon form of the augmented matrix is:

1 -3 10
0O 0 0O
0O 0 0O
The solution space is a plane:
r+2z—3y=0.

4. The reduced row echelon form of the augmented matrix is:

10
01
00
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5. The solution space is the zero vector space.
6. The solution space is the zero vector space.
7. The solution space is the zero vector space.
8. The solution space is the zero vector space.

9. If a = b # 0, the solution space is a plane with equation
r+y+z=0.

If a # b, we apply Gauss-Jordan elimination to the augmented matrix

a b b|0 a—b b—a 0 |0 R tim (1 —1 00
boa b|O] 220 00 a—b b—a 0] —="= 0 1 -1]0
b b oalo) TRy by g |0o) PR \p b o4 |0
10 —-110 10 -1 10
R3—>R3—bR2 0 1 _1 O R3—>R3—bR1 O 1 _1 O
ez \p 0 a4b|0 00 a+2b|0
If a = —2b, the reduced row echelon form of the augmented matrix is
1 0 —-1]0
01 —110
00 010

and the solution space is a line with parametric equation
r=t, y=t z=t, tek

If a # —2b and a # b, we continue with Gauss-Jordan elimination

mo o (10 =1]0 100]0
— o 1 —1]o| B2l g 1 00
00 1|0/ 7R \g 0 10

and the solution space is the zero vector space.

Question 19. Explain why the following form linearly dependent sets of vectors
Lou=(-1, 2, 4), uy=(5 —10, —20) in R?

2. u = (3, —=1), uy=(4, 5), uz= (-2, 7)inR?

-3 4 3 —4)\ .
3.A:(2 O>’ B:<_2 O)IDM2x2

Solution.
1. uy = —Buy. uy is a linear combination of wq, thus the set {u, us} is linearly dependent.
2. u3 = —2uq + uo
3. B=-A
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Question 20. In each part, determine whether the vectors are linearly independent or are
linearly dependent in R3.

1. (-3, 0, 4), (5 -1, 2), (1, 1, 3)
2. (=2, 0, 1), (3, 2, 5), (6, =1, 1), (7, 0, 2)

Solution.

1. The determinant

-3 0 4
5 —1 2|=39
1 1 3

and hence the vectors are linearly independent.

2. Four vectors in R? are linearly dependent.

Question 21. In each part, determine whether the vectors are linearly independent or are
linearly dependent in R%.

1. (3, 8 7, =3),(1, 5, 3, —1),(2 -1, 2, 6), (4, 2, 6, 4)
2. (3, 0, =3, 6),(0, 2, 3, 1), (0, =2, =2, 0), (-2, 1, 2, 1)

Solution.

1. The determinant

3 8 7 -3
1 5 3 -1
o 12 6| "
4 2 6 4
and hence the vectors are linearly dependent.
2. The determinant
3 0 -3 6
0 2 3 1
0 —2 —2 o 370
-2 1 2 1
and hence the vectors are linearly independent.
Question 22. Prove the following theorem
Theorem 1 S = {vy,vs,...,v,} spans R™ iff the determinant
U1
v
2l £0.
vn
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Solution. S spans R™ iff the linear system
V1 + QU + -+ -+ 0V, = U

is consistent for every u € R", which is true iff the coefficient matrix

(vir v; o .. UT)

n

has nonzero determinant. Since the determinant of a square matrix is equal to the determinant
of its transpose, it follows that S spans R™ iff

V1
Vo

£ 0.

Un

Question 23. In each part, determine whether the matrices are linearly independent or
dependent.

10 12 0 1),

i) () ()
1 -1 1 -1 11 .

2o 0) (o) () mee
100 000 00 0.

> (0 0 0)’ (0 1 0)’ (0 0 1) in Mazxa.

Solution.

1. Consider the equation

1Oy, (12 01\ [0 0
Ay o) Tlg (JT®l{g )T g o)

Expanding both sides and equating the corresponding matrix entries, we obtain the sys-
tem of linear equations

o+ oy =
200 + a3 =
o1 + 200 + 203 =

20[1+062+Oé3 =

o O O O

The augmented matrix of this linear system is

N = O
— N DN
_— N = O
o O OO
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Applying Gauss—Jordan elimination, we obtain the reduced row echelon form:

1 0 0]0
0100
00 1]0
00 0]0

The system has only the trivial solution. It follows that the matrices are linearly inde-
pendent in Moyo.

Consider the equation

1 1) L1y, 1 1\ (00
o o @29 o) T®\_9 9) 7 \0 0)"

Expanding both sides and equating the corresponding matrix entries, we obtain the sys-
tem of linear equations

o]+ a9 +ag3 =
—209 — 203 =
—p — gyt az =
—209 + 203 =

o o o O

The augmented matrix of this linear system is

1 1 1
0 -2 -2
-1 -1 1
0 -2 2

o O OO

Applying Gauss—Jordan elimination, we obtain the reduced row echelon form:

1 0 0]0
01 00
00 1]0
00 0]0

The system has only the trivial solution. It follows that the matrices are linearly inde-
pendent in Moyo.

Consider the equation

100_|_ 000+ 000y (00O
“oo00)"010)"®0o0o1)"loo0o0

Expanding both sides and equating the corresponding matrix entries, we obtain the sys-
tem of linear equations

aq
(%)

043:0

. Thus the system has only the trivial solution and it follows that the matrices are linearly
independent in Msys.
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Question 24. Determine all values of a for which the following matrices are linearly indepen-

dent in M2><2
10 -1 0 2 0
1 a)’ a 1)’ 1 3

Solution. Consider the equation

10 10 2 0 00
Gly g) T, 1)ty 3) = 0 o)

Expanding both sides and equating the corresponding matrix entries, we obtain the system of
linear equations

o] — Qg + 20[3 =0
o]+ atg + a3 =
aqq + as + 3as =
The given matrices are linearly independent if and only if the system has only the trivial

solution, which occurs only when the coefficient matrix has a nonzero determinant. Computing
the determinant, we obtain

1 -1 2 1 -1 2 1 -1 2
1 a 1]=10 a+1 -1 |=|0 a+1 -1 |=(a+1)(4—2a).
a 1 3 0 I14+a 3—2a 0 0 4-2a

For the determinant to be nonzero, we require a # —1,2. Thus the given matrices are linearly
independent iff a # —1, 2.

Question 25. In each part, determine whether the three vectors lie in a plane in R3
Lvi=(2 -2, 0),vs=(6, 1, 4),v3=(2, 0, —4)
2. vy = (—67 7, 2), vy = (3, 2, 4), vy = (4, -1, 2)

Solution. To determine whether the three given vectors lie in a plane in R3, we check if they
are linearly dependent. This is equivalent to computing the determinant of the matrix formed
by taking the vectors as rows or columns. If the determinant is zero, the vectors are linearly
dependent and lie in a plane; otherwise, they are linearly independent and span R3.

1.
2 =2 0 2 =2 0
6 1 4|=|0 7 4 :2‘
2 0 -4 0 2 —4

Since the determinant is nonzero, the vectors are linearly independent and do not lie in
a plane.

7 4

) _4':2><(—28—8):—727é0

2
A = (=6 x2x24+Tx4x4—6)— (16+24+42) =0
2

Since the determinant is zero, the vectors are linearly dependent and lie in a plane.
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Question 26. In each part, determine whether the three vectors lie on the same line in R3
Lov= (-1, 2, 3),vo=(-2, =4, —6),v3= (-3, 6, 0)
2. v1=(2, -1, 4),v5=(4, 2, 3),v3=(2, 7, —6)
3.v1=(4, 6, 8),v2=(2, 3, 4),v3=(—2, —3, —4)

Solution. Three vectors are collinear if and only if each vector is a scalar multiple of the other
two. In other words, da, 8 € R such that

V9 = VU, V3 = 5’01.
1. Suppose vs = av;. Equating the corresponding components, we obtain
—2=—-a, —4=2a, —6=3a.

Solving for a, we get
a=2 a=-2, a=-2

Since the values of « are inconsistent, no scalar « satisfies all three equations simultane-
ously. Hence, the vectors are not collinear.

2. Suppose vy = aw;. From the first two components, we obtain:

Solving for a, we get
a=2, a=-2

The inconsistency between these values indicates that no single « satisfies both equations.
Therefore, the vectors are not collinear.

3. Observing the relationships between the vectors, we find:

1
'02:2’01, V3 = —5’01.

Since both vy and w3 are scalar multiples of vy, the three vectors are collinear,

Question 27. For which values of A do the following vectors form a linearly dependent set in

R3?
1 1 1 1 1 1
U1 = -5 —5 ) V2= | —5, o5 V3= 5 o :
' (A’ 2’ 2) ? (2A 2) ’ (2 2A>

Solution. The three vectors are linearly dependent if and only if the following determinant is
Zero

1

A —— —=

2 2

1 1

S N
1 1

—— == A
2 2
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Apply row operations, we get

11
A —- —=
2 9 )
' o2y -1 - 0 Sl —1-2)
—S A —5|=m[l 2 Sl =1 —1
2 2 ~1 -1 2\ 0 —1-2\ 2\+1
L1
2 9
Lo 0 —2-22+4N -1 2 _1
51 1 = 5|0 —1-2 N+ 1
0 —1—2\ N+ 1 0 0 22X\ 4 4)2

1
= §(2)\+ 1)(4M% —2) — 2)

The determinant is zero implies

1
(2)\+1)(4)\2—2)\—2):0:>)\:—§,1

Question 28. For each part, first show that the vectors vy, vy, v3 are linearly dependent in
R*. Subsequently, demonstrate that each vector can be expressed as a linear combination of
the remaining two.

L vy=(0, 3, 1, =1),va=(6, 0, 5, 1),v3=(4, =7, 1, 3)
2.v1=(1, 2, 3, 4),v,=(0, 1, 0, —1),v3=(1, 3, 3, 3)

Solution.

1. Consider the equation
a1 (0, 3, 1, =1)+a (6, 0, 5, 1)+a3(4, -7, 1, 3)=(0, 0, 0, 0)

Expanding both sides and equating the corresponding matrix entries, we obtain the sys-
tem of linear equations

6o + 4z =

3oy — Tag =

a1+ 009 +ag =

—a1+as+3a3 =

o o O O

The augmented matrix of this linear system is

0 6 4|0
3 0 =710
1 5 110
-1 1 3 1|0

Applying Gauss—Jordan elimination, we obtain the reduced row echelon form:

7

10 —3 0
01 2 0
3
00 0 O
00 0 O
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Since the system has a free variable, the set {vq,vs,v3} is linearly dependent. The
solution set of the system is

{5 -2 4) | rer},
3" 3

For example, setting ¢ = 3 yields
7’01 — 2’02 + 3’03 = 0,
confirming linear dependence. Furthermore, we can express each vector as a linear com-

bination of the other two:

v—gv —§v v—zv + S V3= —7U1+ U
1—72 737 2—21 237 3 — 31 32-

2. Consider the equation
ar (1, 2, 3, 4)+ax(0, 1, 0, =1)4a3(1, 3, 3, 3)=(0, 0, 0, 0)

Expanding both sides and equating the corresponding matrix entries, we obtain the sys-
tem of linear equations

aq + 3 =
2041 + Qo + 3043 =
30&1 + 3&3 =

4041 — Qo + 30(3 =

o O o O

The augmented matrix of this linear system is

1 0 1]0
2 1 310
3 0 310
4 -1 310

Applying Gauss—Jordan elimination, we obtain the reduced row echelon form:

1010
0110
0000
0000

Since the system has a free variable, the set {vi,vs,v3} is linearly dependent. The
solution set of the system is

{(~t, —=t, t) | teR}.
For example, setting ¢t = 1 yields
—V1 — V2 + Vg :O,

confirming linear dependence. Furthermore, we can express each vector as a linear com-
bination of the other two:

V] = —V2 + V3, V= —V1+ V3, VU3z=7V1+ V2
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