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Elementary row operations and row space

Theorem

Elementary row operations do not change the row space of a matrix.

• It is clear that swapping rows does not affect the row space

• If we multiply a row by a nonzero scalar, we replace a row vector with its scalar
multiple, every vector in the span of the original rows can still be written as a
linear combination of the modified rows. Vector spaces are closed under scalar
multiplication.

• If we replace Rj with Rj + αRi, then every vector in the span of the original rows
can still be written as a linear combination of the modified rows. Vector spaces
are closed under addition and scalar multiplication.
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Elementary row operations may change column spaces

Consider

A =

(
1 3
2 6

)
, B =

(
1 3
0 0

)
B can be obtained from A by row operation

A
R2→−2R1+R2−−−−−−−−−→ B

• Column space of A consists of scalar multiples of

(
1
2

)
• Column space of B consists of scalar multiples of

(
1
0

)
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Row space and column space of matrix in reduced row echelon form

Theorem

If a matrix R is in row echelon form, then the row vectors with the leading 1’s (the
nonzero row vectors) form a basis for the row space of R, and the pivot columns form
a basis for the column space of R.

• Each nonzero row has a leading 1 in a unique column, which is not shared by any
lower row. This ensures that no row can be written as a linear combination of the
others =⇒ the nonzero rows are linearly independent.

• Each pivot column contains a leading 1 and zeros below it, no pivot column can
be written as a linear combination of the others =⇒ the pivot columns are linearly
independent.

• Every non-pivot column is a linear combination of the previous pivot columns
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Row space and column space of matrix in reduced row echelon form

Every non-pivot column is a linear combination of the previous pivot columns

• Let b1, b2 . . . , br be the pivot columns before a non-pivot column b

• The entries starting from row r + 1 are all zero for b1, b2 . . . , br and b

• Consider the first r entries of the vectors b1, b2 . . . , br and b, denoted as
a1,a2, . . . ,ar and a respectively

• The coefficient matrix of the linear system

α1a1 + α2a2 + · · ·+ αrar = a

is an upper triangular matrix with all main diagonal entries = 1 =⇒ the system is
consistent.
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Elementary row operations and column spaces

Theorem

Elementary row operations do not alter dependence relationships or linear
independence among the column vectors

• Suppose columns w1,w2, . . . ,wr are linearly dependent, then the linear system

α1w1 + α2w2 + · · ·αrwr = 0, (1)

has non-trivial solutions.

• Suppose after one elementary operation, those columns become w′
1,w

′
2, . . . ,w

′
r

• The coefficient matrix of the linear system

α1w
′
1 + α2w

′
2 + · · ·αrw

′
r = 0,

is obtained from the coefficient matrix of Equation 1 through elementary row
operations, they share the same solutions
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Linearly independent eigenvectors

Theorem

If λ1, λ2, . . . , λk are distinct eigenvalues of A, and if v1,v2, . . . ,vk are corresponding
eigenvectors, then {v1,v2, . . . ,vk} is a linearly independent set.

Proof.
• Assume v1,v2, . . . ,vk are linearly dependent. Since an eigenvector is by definition
nonzero, {v1} is linearly independent.

• Let r be the largest integer s.t. v1,v2, . . . ,vr is linearly independent.

• Then 1 ≤ r < k

• v1,v2, . . . ,vr+1 is linearly dependent

α1v1 + α2v2 + · · ·+ αr+1vr+1 = 0,

where αi’s are not all zero

• Multiplying both sides by A and use the fact that Avi = λivi, we get
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Linearly independent eigenvectors

Proof.

α1v1 + α2v2 + · · ·+ αr+1vr+1 = 0, (2)

α1λ1v1 + α2λ2v2 + · · ·+ αr+1λr+1vr+1 = 0 (3)

• Subtract Eq (2)×λr+1 from Eq (3)

α1(λ1 − λr+1)v1 + α2(λ2 − λr+1)v2 + · · ·+ αr(λr − λr+1)vr = 0

• Since v1,v2, . . . ,vr is linearly independent

α1(λ1 − λr+1) = α2(λ2 − λr+1) = · · · = αr(λr − λr+1) = 0

λi’s are distinct, we have

c1 = c2 = · · · = cr = 0

Substituting back to Eq (2) gives αr+1vr+1 = 0. Since vr+1 ̸= 0, it follows that
αr+1 = 0, a contradiction to the choice of r.
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LU-decomposition – Doolittle decomposition

A =

(
2 −1
3 3

)
, L =

(
1 0
ℓ21 1

)
, U =

(
u11 u12
0 u22

)
• Row 1

u11 = 2, u12 = −1

• Row 2

ℓ21u11 = 3 =⇒ ℓ21 =
3

2

ℓ21u12 + u22 = 3 =⇒ u22 = 3− 3

2
× (−1) =

9

2

• We have

L =

1 0

3

2
1

 , U =

(
2 −1

0
9

2

)
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Solving linear system

Consider the linear system Ax = b, where

A =

(
2 −1
3 3

)
, b =

(
0
9

)
We have computed A = LU , we have Ly = b1 0

3

2
1

(y1
y2

)
=

(
0
9

)
=⇒ y1 = 0, y2 = 9

Ux = y (
2 −1

0
9

2

)(
x1
x2

)
=

(
0
9

)
=⇒ x2 = 2, x1 = 1
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Eigenvalues and eigenvectors

A =

(
5 4
8 9

)
Characteristic equation of A is

det(λI) =

∣∣∣∣λ− 5 −4
−8 λ− 9

∣∣∣∣ = (λ− 5)(λ− 9)− 32

Solving for λ

λ2 − 14λ+ 13 = 0 =⇒ (λ− 13)(λ− 1) = 0 =⇒ λ1 = 1, λ2 = 13
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Eigenvalues and eigenvectors

A =

(
5 4
8 9

)
, λ1 = 1, λ2 = 13(

λ− 5 −4
−8 λ− 9

)(
x1
x2

)
=

(
0
0

)
λ1=1−−−→

(
−4 −4
−8 −8

)(
x1
x2

)
=

(
0
0

)
⇒
(
x1
x2

)
= t

(
−1
1

)
A basis for the eigenspace corresponding to eigenvalue λ1 = 1 is

{(
−1 1

)}
(
λ− 5 −4
−8 λ− 9

)(
x1
x2

)
=

(
0
0

)
λ2=13−−−−→

(
8 −4
−8 4

)(
x1
x2

)
=

(
0
0

)
=⇒

(
x1
x2

)
= t

(
2
1

)
A basis for the eigenspace corresponding to eigenvalue λ2 = 13 is

{(
2 1

)}
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