Algebra and Discrete Mathematics (ADM)

Tutorial 6 Matrix operators

Lecturer: Bc. Xiaolu Hou, PhD. xiaolu.hou@stuba.sk

Matrix transformations

• Consider $T: \mathbb{R}^2 \to \mathbb{R}^3$ with standard matrix

$$[T] = \begin{pmatrix} -1 & -1 \\ 2 & 3 \\ 3 & 1 \end{pmatrix}$$

ullet Find the image of $oldsymbol{x}=egin{pmatrix}1\\4\end{pmatrix}$

$$T\left(\boldsymbol{x}\right) = \begin{pmatrix} -1 & -1\\ 2 & 3\\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1\\ 4 \end{pmatrix} = \begin{pmatrix} -5\\ 14\\ 7 \end{pmatrix}$$

Matrix transformations

• Consider $T: \mathbb{R}^3 \to \mathbb{R}^2$ with standard matrix

$$[T] = \begin{pmatrix} -2 & -1 & 0 \\ 1 & 2 & 3 \end{pmatrix}$$

• Find the image of
$$x = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}$$

$$T(\boldsymbol{x}) = \begin{pmatrix} -2 & -1 & 0 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} -11 \\ 16 \end{pmatrix}$$

Reflection operators on \mathbb{R}^2

- Reflection about the x-axis, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- Reflection about the y-axis, $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$
- Reflection about the line y=x, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- Reflection about the line $y = \sqrt{3}x$
 - $y = \sqrt{3}x$ makes an angle $\pi/3$ (= 60°) with positive x-axis

$$\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

Reflection operators on \mathbb{R}^3

• Reflection about the xy-plane

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

• Reflection about the xz-plane

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Reflection about the yz-plane

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Projection operators on \mathbb{R}^2

• Orthogonal projection onto the x-axis

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

• Orthogonal projection onto the y-axis

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Projection operators on \mathbb{R}^3

• Orthogonal projection onto the xy-plane

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

• Orthogonal projection onto the xz-plane

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Orthogonal projection onto the yz-plane

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Rotation operators on \mathbb{R}^2

- Moves points counterclockwise about the origin through a positive angle θ
- Rotation matrix

$$R_{\theta} := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

ullet Clockwise about the origin through an angle heta

$$R_{-\theta} := \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

Rotation operators on $\ensuremath{\mathbb{R}}^3$

Operator	Rotation equations	Standard matrix
Counterclockwise rotation about the positive $x-\mathrm{axis}$ through an angle θ	$ \begin{aligned} w_1 &= x \\ w_2 &= y \cos \theta - z \sin \theta \\ w_3 &= y \sin \theta + z \cos \theta \end{aligned} $	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} $
Counterclockwise rotation about the positive $y-$ axis through an angle θ	$w_1 = x \cos \theta + z \sin \theta$ $w_2 = y$ $w_3 = -x \sin \theta + z \cos \theta$	$ \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} $
Counterclockwise rotation about the positive $z-$ axis through an angle θ	$ \begin{aligned} w_1 &= x \cos \theta - y \sin \theta \\ w_2 &= x \sin \theta + y \cos \theta \\ w_3 &= z \end{aligned} $	$ \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} $

Dilations and contractions

• Dilation/contraction with factor
$$\alpha$$
 on \mathbb{R}^3 , $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha x \\ \alpha y \end{pmatrix}$

$$\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$$

• Dilation/contraction with factor α on \mathbb{R}^3 , $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \alpha x \\ \alpha y \\ \alpha z \end{pmatrix}$

$$\begin{pmatrix}
\alpha & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \alpha
\end{pmatrix}$$

Expansions and compressions on \mathbb{R}^2

• In the
$$x$$
-direction – $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha x \\ y \end{pmatrix}$

$$\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$$

• In the
$$y$$
-direction – $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ \alpha y \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix}$$

Shears on \mathbb{R}^2

• Shear in the x-direction by a factor α , $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + \alpha y \\ y \end{pmatrix}$

$$\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$$

• Shear in the y-direction by a factor α , $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y + \alpha x \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 \\ \alpha & 1 \end{pmatrix}$$

Composition of matrix transformations

• Consider a square ABCD with vertices

$$A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, C = \begin{pmatrix} 3 \\ 3 \end{pmatrix}, D = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

- Perform the following transformations
 - T_1 : shear in the x-direction by a factor 2
 - T_2 : reflection about the x-axis
 - T_3 : reflection about the y-axis

$$[T_1] = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \quad [T_2] = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad [T_3] = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$[T_3][T_2][T_1] \begin{pmatrix} 1 & 3 & 3 & 1 \\ 1 & 1 & 3 & 3 \end{pmatrix} = \begin{pmatrix} -3 & -5 & -9 & -7 \\ -1 & -1 & -3 & -3 \end{pmatrix}$$