Algebra and Discrete Mathematics (ADM)

Tutorial 5 Vector spaces and linear independence

Lecturer: Bc. Xiaolu Hou, PhD. xiaolu.hou@stuba.sk

Vector space of polynomials

• Let $\mathbb{R}[x]$ denote the set of polynomials with coefficients from \mathbb{R} , i.e.

$$\mathbb{R}[x] = \left\{ \sum_{i=0}^{n} a_i x^i \mid a_i \in \mathbb{R}, n \ge 0 \right\}$$

- An element of $\mathbb{R}[x]$ is of the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \in \mathbb{R}[x]$
- If $a_n \neq 0$, we define *degree of* f(x), denoted deg(f(x)), to be n.
- Following the convention, we define $deg(0) = -\infty$.

Vector space of polynomials

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0,$$

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0 \text{ in } \mathbb{R}[x]$$

Without loss of generality, let us assume $n \geq m$, write

$$g(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_0,$$

where $b_i = 0$ for i > m. Then

$$f(x) + g(x) := c_n x^n + c_{n-1} x^{n-1} + \dots + c_0$$
, where $c_i = a_i + b_i$.

And

$$f(x)g(x) := d_n x^n + d_{n-1} x^{n-1} + \dots + d_0$$
, where $d_i = \sum_{i=0}^i a_i b_{i-j}$.

 $(\mathbb{R}[x],+,\cdot)$ is a vector space

Vector space of polynomials

$$\mathbb{R}[x] = \left\{ \sum_{i=0}^{n} a_i x^i \mid a_i \in \mathbb{R}, n \ge 0 \right\}$$

- $(\mathbb{R}[x], +, \cdot)$ is a vector space
- Additive identity/zero vector: 0
- Additive inverse of $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ is

$$-a_n x^n - a_{n-1} x^{n-1} - \dots - a_0$$

Other axioms also hold, following from the properties of real numbers

Linear independent vectors

Given the vectors:

$$u = (-1, 2, -3), v = (1, 0, 4), w = (2, -2, 1)$$

Are these vectors linearly dependent or independent?

We compute the determinant:

$$\begin{vmatrix} -1 & 1 & 2 \\ 2 & 0 & -2 \\ -3 & 4 & 1 \end{vmatrix}$$

Apply Sarrus' rule

$$0 + 16 + 6 - (0 + 8 + 2) = 12 \neq 0$$

Since the determinant is nonzero, the vectors are **linearly independent**.

Linear independent vectors

Given the vectors:

$$u = (2, 3), v = (5, -1), w = (1, 4)$$

Are these vectors linearly dependent?

Consider

$$\alpha_1(2, 3) + \alpha_2(5, -1) + \alpha_3(1, 4) = (0, 0),$$

which corresponds to the following homogeneous linear system

$$2\alpha_1 + 5\alpha_2 + \alpha_3 = 0$$

$$3\alpha_1 - \alpha_2 + 4\alpha_3 = 0$$

Recall

Corollary

A homogeneous linear system with more unknowns than equations has infinitely many solutions.

The system has nontrivial solutions, the vectors are linearly dependent.

Linear independent vectors

Are the following vectors linearly independent?

$$v_1 = \begin{pmatrix} 1, & 3, & 5, & 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -1, & 2, & 1, & 1 \end{pmatrix},$$

 $v_3 = \begin{pmatrix} 2, & 2, & 0, & -1 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 1, & 0, & 1, & 0 \end{pmatrix}$

Cofactor expansion along the fourth row, and Sarru's rule

$$\begin{vmatrix} 1 & -1 & 2 & 1 \\ 3 & 2 & 2 & 0 \\ 5 & 1 & 0 & 1 \\ 0 & 1 & -1 & 0 \end{vmatrix} = (-1)^{4+2} \begin{vmatrix} 1 & 2 & 1 \\ 3 & 2 & 0 \\ 5 & 0 & 1 \end{vmatrix} - (-1)^{4+3} \begin{vmatrix} 1 & -1 & 1 \\ 3 & 2 & 0 \\ 5 & 1 & 1 \end{vmatrix}$$
$$= (2 - 10 - 6) - (2 + 3 - 10 + 3)$$
$$= -14 - 2 = -16$$

Linear combination

$$u = (1, 2, 3), v = (3, 2, 1), w = (6, 8, 10)$$

Is w a linear combination of u and v

$$\begin{vmatrix} 1 & 3 & 6 \\ 2 & 2 & 8 \\ 3 & 1 & 10 \end{vmatrix} = 0 \Longrightarrow \text{the three vectors are linearly dependent}$$

$$\alpha_1 \mathbf{u} + \alpha_2 \mathbf{v} = \mathbf{w}$$

$$\alpha_1 + 3\alpha_2 = 6$$

$$2\alpha_1 + 2\alpha_2 = 8$$

$$3\alpha_1 + \alpha_2 = 10$$

Solve by, e.g. Cramer's rule

$$\alpha_1 = 3, \quad \alpha_2 = 1 \Longrightarrow \boldsymbol{w} = 3\boldsymbol{u} + \boldsymbol{v}$$

Linearly independent matrices

Are the three matrices linearly independent in $\mathcal{M}_{2\times 2}$?

$$M_1 = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$$

$$\alpha_1 M_1 + \alpha_2 M_2 + \alpha_3 M_3 = O$$

gives

$$\begin{pmatrix} \alpha_1 & 0 \\ \alpha_1 & 2\alpha_1 \end{pmatrix} + \begin{pmatrix} \alpha_2 & 2\alpha_2 \\ 2\alpha_2 & \alpha_2 \end{pmatrix} + \begin{pmatrix} 0 & \alpha_3 \\ 2\alpha_3 & \alpha_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\alpha_1 + \alpha_2 = 0$$

$$2\alpha_2 + \alpha_3 = 0$$

$$\alpha_1 + 2\alpha_2 + 2\alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 2 & 2 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}$$

Linearly independent matrices

Are the three matrices linearly independent in $\mathfrak{M}_{2\times 2}$?

$$M_1 = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 2 & 2 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{R_4 \to R_4 - 2R_1} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \xrightarrow{R_4 \to R_4 + R_2} \xrightarrow{R_3 \to R_3 - 2R_2}$$

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 3 & 0 \end{pmatrix} \xrightarrow{R_4 \to R_4 + R_3} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Longrightarrow \text{only trivial solution}$$

⇒ the matrices are linearly independent