
Algebra and Discrete Mathematics (ADM)

Tutorial 11 Trees and networks

Lecturer: Bc. Xiaolu Hou, PhD.

xiaolu.hou@stuba.sk

Steiner Trees

Definition
• For a graph G, a Steiner point is a new point p added to the graph that has

vertex degree of 3 where the three edges incident to p form 120◦ angles.

• A Steiner tree is a tree that only consists of Steiner points and the original
vertices of G.

• A Steiner point is similar to a Fermat point in that it is added to graph to find the
shortest network connecting the original vertices

• It has been shown that finding a shortest network amounts to finding a minimum
Steiner tree

• This problem is named for the 19th century Swiss mathematician Jakob Steiner

2 / 28

Finding Steiner Trees

• Though the Steiner Tree Problem sounds fairly simple, it is in fact among a class
of problems known as NP-Hard

• solutions can be verified quickly
• finding a solution can be quite hard

3 / 28

Four vertices – MST

ba

cd

10

10
√ 2

10

10 √
2

10

10

ba

cd

10

10

10

• A graph with four vertices that lie on a square

• A minimum spanning tree consists of three of the fours edges of length 10

4 / 28

Four vertices – Fermat points

ba

cd

s1

ba

cd

s1

s2

• s1: Fermat point for △adc

• s2: Fermat point for △abs1
• Length of network: ≈ 27.852

• Not Steiner points, since they do not have edges that form 120◦ angles
5 / 28

Four vertices – Steiner tree

ba

cd

s1

s2

• Total length 27.321

• Network with Fermat points: 27.852

• MST: 30
6 / 28

Steiner Network Method

• We will not be finding the minimum Steiner tree

• Use the ideas behind a Steiner tree to find a shorter network than a MST, if
possible

7 / 28

Steiner Network Method

• Step 1. Find the MST of the network

• Step 2. Form a triangle from two existing edges of the minimum spanning tree. If
all angles of this triangle measure less than 120◦, find the Fermat point.

• Step 3. Update the network by removing the two edges from the MST used in
Step 2 and adding new edges to the Fermat point

• Step 4. Repeat steps 2 and 3 until all possible triangles have been considered

8 / 28

Steiner Network Method – example

Example

a b

g

f

e

d

c
20

20

10

14.1

14
.1

14
.1

• We begin with vertices a, b, g since the angle at a is 90◦

9 / 28

Steiner Network Method – example

Example

a b

g

f

e

d

c

10

14.1

14
.1

14
.1s1

6 16.3

16
.3

• We begin with vertices a, b, g. Using Torricelli’s Construction, we get point s1

10 / 28

Steiner Network Method – example

Example

a b

g

f

e

d

c

10
14
.1s1

6 16.3

16
.3

s2

11.6

4.2

11
.6

• Take vertices f, e, d - angle at e is 90◦ Using Torricelli’s Construction, we get
point s2

• At this point, due to angle measures, there is only one triangle to be considered:
b, f, s1 11 / 28

Steiner Network Method – example

Example

a b

g

f

e

d

c

14
.1s1

6

16
.3

s2

11.6

4.2

11
.6

s36.1

5.
5

12.9

• Take vertices b, f, s1 we get point s3
• Total length: 88.3

• Original (MST) length: 92.3

12 / 28

Remark

• Although we did not fully answer the optimization question for networks
containing more than three points

• Using the Steiner Network Method provides a quick and simple procedure for
finding locations for improvements to the minimum spanning tree

13 / 28

Augmenting Flow Algorithm – steps

1. Label s with (−,∞), set σ(v) = ∞ for other vertices

2. Choose a labeled vertex x

a. For any arc yx, if f(yx) > 0 and y is unlabeled, then label y with (x−, σ(y)), where
σ(y) = min{σ(x), f(yx)}

b. For any arc xy, if k(xy) > 0 and y is unlabeled, then label y with (x+, σ(y)), where
σ(y) = min{σ(x), k(xy)}

3. If t has been labeled, go to Step 4. Otherwise, choose a different labeled vertex
that has not been scanned and go to Step 2. If all labeled vertices haven been
scanned, then f is a maximum flow.

4. Find an s− t chain K of slack edges by backtracking from t to s. Along the
edges of K, increase the flow by σ(t) units if they are in the forward direction and
decrease by σ(t) units in they are in the backward direction. Remove all vertex
labels except that of s and return to Step 2

14 / 28

Augmenting Flow Algorithm

s

a

b

c

d

e

g

f

h

t

(5
, 5
)

(5, 5) (1, 6)

(3, 5)

(2
, 6
)

(0
, 3
)

(8
, 8
)(6, 6)

(6, 7)

(6, 10)

(6, 8)

(1, 2)
(1
, 5
)

(7, 8)

• Question 3 - 1

15 / 28

Augmenting Flow Algorithm

a

c

g

f

h

ts(−,∞)

b(s+,2)

d(b+,2)

e(b+,2)

(5
, 5
)

(5, 5) (1, 6)

(3, 5)

(2
, 6
)

(0
, 3
)

(8
, 8
)(6, 6)

(6, 7)

(6, 10)

(6, 8)

(1, 2)
(1
, 5
)

(7, 8)

• Step 1. Label s

• Step 2. Label b

• Step 3. Choose b

• Step 2. Label d, e

16 / 28

Augmenting Flow Algorithm

a

c h

s(−,∞)

b(s+,2)

d(b+,2)

e(b+,2)

g(d+,2)

f(d+,2)

t(g+,2)

(5
, 5
)

(5, 5) (1, 6)

(3, 5)

(2
, 6
)

(0
, 3
)

(8
, 8
)(6, 6)

(6, 7)

(6, 10)

(6, 8)

(1, 2)

(1
, 5
)

(7, 8)

• Step 3. Choose d

• Step 2. Label f, g

• Step 3. Choose g

• Step 2. Label t

17 / 28

Augmenting Flow Algorithm

s(−,∞)

a

b

c

d

e

g

f

h

t

(5
, 5
)

(5, 5) (1, 6)

(5, 5)

(4
, 6
)

(0
, 3
)

(8
, 8
)(6, 6)

(6, 7)

(8, 10)

(8, 8)

(1, 2)

(1
, 5
)

(7, 8)

• Step 3. go to step 4
• Step 4. find chain sbdgt

• Increase the flow by σ(t) = 2 units along each of these edges since all are in the
forward direction.

• Update the network flow and remove all labels except for s
• No more vertex to label
• Value of flow |f | = f+(s) = 16

18 / 28

Min-Cut Method

Steps

1. Let G = (V,A, c) be a network with a designated source s and sink t and each arc
is given a capacity c

2. Apply the Augmenting Flow Algorithm

3. Define an s− t cut (P, P) where P is the set of labeled vertices from the final
implementation of the algorithm

4. (P, P) is a minimum s− t cut for G

Note

In practice, we can perform the Augmenting Flow Algorithm and the Min-Cut Method
simultaneously, thus finding a maximum flow and providing a proof that it is maximum
(through the use of a minimum cut) in one complete procedure.

19 / 28

Augmenting Flow Algorithm

s(−,∞)

a

b

c

d

e

g

f

h

t

(5
, 5
)

(5, 5) (1, 6)

(5, 5)

(4
, 6
)

(0
, 3
)

(8
, 8
)(6, 6)

(6, 7)

(8, 10)

(8, 8)

(1, 2)

(1
, 5
)

(7, 8)

• Value of flow |f | = f+(s) = 16

• P = {s}
• C(P, P) = 5 + 5 + 6 = 16

20 / 28

Breadth-First Search Tree

• Main objective is to add as many neighbors of the root as possible in the first step

• At each additional step, we are adding all available neighbors of the most recently
added vertices.

• As with depth-first, we will use an alphabetical ordering neighbor lists

• Input: Simple connected graph G = (V,E) and a designated root vertex r

• Output: Breadth-first tree T

21 / 28

Breadth-First Search Tree – steps

1. Initialize the BFS tree T = (V ′, E′) with the root vertex r, i.e., V ′ = {r}, and
mark r as visited.

2. Add all neighbors of r to V ′, and add the corresponding edges from r to each
neighbor to E′. Mark all these neighbors as visited. Let this set of newly added
vertices be the current level.

3. For each vertex v in the current level (in alphabetical order):
• Add all unvisited neighbors x of v to V ′.
• Add the edge (v, x) to E′.
• Mark each such neighbor x as visited.

Let the collection of all such newly added vertices form the next level.

4. If T now includes all vertices of G, the process is complete. Otherwise, repeat
step 3 using the next level as the current level.

22 / 28

Breadth-First Search Tree – example

Example

a

j

i

h

k

b

c

d

e

g

f

• Let’s consider the same example as from the lecture

• Take a as the root

• Step 1. add a, b, i.j, k

• Step 2. current level: b, i, j, k

23 / 28

Breadth-First Search Tree – example

Example

a

j

i

h

k

b

c

d

e

g

f

Step 3

• Vertex b: add neighbor c, and edge bc

• Vertex i: add neighbor h, and edge ih

• j and k do not have any unvisited
neighbors

a

b i j k

24 / 28

Breadth-First Search Tree – example

Example

a

j

i

h

k

b

c

d

e

g

f

• Step 4. T does not contain all vertices, repeat
step 3. Current level: c, h

• Step 3.
• Vertex c: unvisited neighbors d, e, g
• Vertex h does not have unvisited neighbors

a

b i j k

c h
25 / 28

Breadth-First Search Tree – example

Example

a

j

i

h

k

b

c

d

e

g

f

• Step 4. T does not contain all vertices, repeat
step 3. Current level: d, e, g

• Step 3.
• Vertex d has no unvisited neighbors
• Vertex e: add neighbor f
• Now we have all vertices

a

b i j k

c h

d e g
26 / 28

Breadth-First Search Tree – example

Example

a

b i j k

c h

d e g

f

a

b

c

d

e

f g

h

i

j k

• Left: BFS tree; Right: DFS tree

• BFS trees are likely to be of shorter height than their DFS tree counterpart.
27 / 28

Breadth-First Search Tree – example

Example

a

b i j k

c h

d e g

f

a

b

c

d

e

f g

h

i

j k

• BFS tree: height 4 with four vertices on level 1, two vertices on level 2, three
vertices on level 3, and one on level 4.

• DFS tree: height 5, one vertex each at level 1 and 2, two vertices each at levels 3
and 4, four vertices at level 5

28 / 28

