Algebra and Discrete Mathematics (ADM)

Tutorial 11 Trees and networks

Lecturer: Bc. Xiaolu Hou, PhD. xiaolu.hou@stuba.sk

Steiner Trees

Definition

- For a graph G, a *Steiner point* is a new point p added to the graph that has vertex degree of 3 where the three edges incident to p form 120° angles.
- A Steiner tree is a tree that only consists of Steiner points and the original vertices of G.
- A Steiner point is similar to a Fermat point in that it is added to graph to find the shortest network connecting the original vertices
- It has been shown that finding a shortest network amounts to finding a minimum Steiner tree
- This problem is named for the 19th century Swiss mathematician Jakob Steiner

Finding Steiner Trees

- Though the Steiner Tree Problem sounds fairly simple, it is in fact among a class of problems known as NP-Hard
 - solutions can be verified quickly
 - finding a solution can be quite hard

Four vertices – MST

- A graph with four vertices that lie on a square
- ullet A minimum spanning tree consists of three of the fours edges of length 10

Four vertices – Fermat points

- s_1 : Fermat point for $\triangle adc$
- s_2 : Fermat point for $\triangle abs_1$
- Length of network: ≈ 27.852
- \bullet Not Steiner points, since they do not have edges that form 120° angles

Four vertices – Steiner tree

- Total length 27.321
- Network with Fermat points: 27.852
- MST: 30

Steiner Network Method

- We will not be finding the minimum Steiner tree
- Use the ideas behind a Steiner tree to find a shorter network than a MST, if possible

Steiner Network Method

- Step 1. Find the MST of the network
- Step 2. Form a triangle from two existing edges of the minimum spanning tree. If all angles of this triangle measure less than 120°, find the Fermat point.
- Step 3. Update the network by removing the two edges from the MST used in Step 2 and adding new edges to the Fermat point
- Step 4. Repeat steps 2 and 3 until all possible triangles have been considered

Example

• We begin with vertices a, b, g. Using Torricelli's Construction, we get point s_1

- Take vertices f, e, d angle at e is 90° Using Torricelli's Construction, we get point s_2
- At this point, due to angle measures, there is only one triangle to be considered: $b,\,f,\,s_1$

- ullet Take vertices b,f,s_1 we get point s_3
- Total length: 88.3
- Original (MST) length: 92.3

Remark

- Although we did not fully answer the optimization question for networks containing more than three points
- Using the Steiner Network Method provides a quick and simple procedure for finding locations for improvements to the minimum spanning tree

Augmenting Flow Algorithm – steps

- 1. Label s with $(-, \infty)$, set $\sigma(v) = \infty$ for other vertices
- 2. Choose a labeled vertex x
 - a. For any arc yx, if f(yx)>0 and y is unlabeled, then label y with $(x^-,\sigma(y))$, where $\sigma(y)=\min\{\sigma(x),f(yx)\}$
 - b. For any arc xy, if k(xy)>0 and y is unlabeled, then label y with $(x^+,\sigma(y))$, where $\sigma(y)=\min\{\sigma(x),k(xy)\}$
- 3. If t has been labeled, go to Step 4. Otherwise, choose a different labeled vertex that has not been scanned and go to Step 2. If all labeled vertices haven been scanned, then f is a maximum flow.
- 4. Find an s-t chain K of slack edges by backtracking from t to s. Along the edges of K, increase the flow by $\sigma(t)$ units if they are in the forward direction and decrease by $\sigma(t)$ units in they are in the backward direction. Remove all vertex labels except that of s and return to Step 2

• Question 3 - 1

- Step 1. Label s
- Step 2. Label b
- ullet Step 3. Choose b
- ullet Step 2. Label d,e

- Step 3. Choose d
- Step 2. Label f, g
- Step 3. Choose *g*
- Step 2. Label t

- Step 3. go to step 4
- Step 4. find chain sbdgt
 - Increase the flow by $\sigma(t)=2$ units along each of these edges since all are in the forward direction.
 - ullet Update the network flow and remove all labels except for s
- No more vertex to label
- Value of flow $|f| = f^+(s) = 16$

Min-Cut Method

Steps

- 1. Let G=(V,A,c) be a network with a designated source s and sink t and each arc is given a capacity c
- 2. Apply the Augmenting Flow Algorithm
- 3. Define an s-t cut (P,\overline{P}) where P is the set of labeled vertices from the final implementation of the algorithm
- 4. (P, \overline{P}) is a minimum s-t cut for G

Note

In practice, we can perform the Augmenting Flow Algorithm and the Min-Cut Method simultaneously, thus finding a maximum flow and providing a proof that it is maximum (through the use of a minimum cut) in one complete procedure.

- Value of flow $|f| = f^+(s) = 16$
- $P = \{s\}$
- $C(P, \overline{P}) = 5 + 5 + 6 = 16$

Breadth-First Search Tree

- Main objective is to add as many neighbors of the root as possible in the first step
- At each additional step, we are adding all available neighbors of the most recently added vertices.
- As with depth-first, we will use an alphabetical ordering neighbor lists
- Input: Simple connected graph G = (V, E) and a designated root vertex r
- ullet Output: Breadth-first tree T

Breadth-First Search Tree – steps

- 1. Initialize the BFS tree T=(V',E') with the root vertex r, i.e., $V'=\{r\}$, and mark r as visited.
- 2. Add all neighbors of r to V', and add the corresponding edges from r to each neighbor to E'. Mark all these neighbors as visited. Let this set of newly added vertices be the current level.
- 3. For each vertex v in the current level (in alphabetical order):
 - Add all unvisited neighbors x of v to V'.
 - Add the edge (v, x) to E'.
 - Mark each such neighbor x as visited.

Let the collection of all such newly added vertices form the next level.

4. If T now includes all vertices of G, the process is complete. Otherwise, repeat step 3 using the next level as the current level.

- Let's consider the same example as from the lecture
- Take a as the root
- Step 1. add a, b, i.j, k
- Step 2. current level: b, i, j, k

Example

Step 3

- Vertex b: add neighbor c, and edge bc
- Vertex i: add neighbor h, and edge ih
- j and k do not have any unvisited neighbors

- Step 4. T does not contain all vertices, repeat step 3. Current level: c,h
- Step 3.
 - Vertex c: unvisited neighbors d, e, g
 - ullet Vertex h does not have unvisited neighbors

- Step 4. T does not contain all vertices, repeat step 3. Current level: d, e, g
- Step 3.
 - \bullet Vertex d has no unvisited neighbors
 - Vertex e: add neighbor f
 - Now we have all vertices

- Left: BFS tree; Right: DFS tree
- BFS trees are likely to be of shorter height than their DFS tree counterpart.

- BFS tree: height 4 with four vertices on level 1, two vertices on level 2, three vertices on level 3, and one on level 4.
- DFS tree: height 5, one vertex each at level 1 and 2, two vertices each at levels 3 and 4, four vertices at level 5