Algebra and Discrete Mathematics (ADM)

Tutorial 10 Paths and spanning trees

Lecturer: Bc. Xiaolu Hou, PhD.
xiaolu.hou@stuba.sk



Chinese Postman Problem

® Find an Eulerian circuit of minimal total weight

® Eulerization: find vertices with odd degree and pair these in the hopes of
minimizing the weight along the path between each pair

® Now we combine the method for Eulerizing a graph and Dijkstra’s Algorithm to
provide a more complete answer to the Chinese Postman Problem.
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Chinese Postman Problem — example

Use Dijkstra’s Algorithm to find the best pairing of odd vertices and the total weight
of the edges duplicated in the Eulerization of the graph.
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Chinese Postman Problem — example

® Four odd vertices: a,g,k,q

® Three possible pairings a — g,k —q, ora—k,g—q,ora—q,9 — k
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Chinese Postman Problem — example

® Three possible pairings a — g,k —q, ora—k,g—q,ora—q,g —k
® Applying Dijkstra's Algorithm, we can find the shortest paths between the paired
vertices and the total weight of the two paths needed to Eulerize the graph
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Chinese Postman Problem — example
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Chinese Postman Problem — example
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Chinese Postman Problem — example
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Chinese Postman Problem — example

® Three possible pairings a — g,k —q, ora—k,g—q,ora—q,g — k
® Applying Dijkstra's Algorithm, we can find the shortest paths between the paired
vertices and the total weight of the two paths needed to Eulerize the graph

Path Pairs Weight Total Weight

adtefg 12
kjing 12 24
adteijk 18
gfeing 10 28
adnq 15
gfeijk 12 27

Exercise: verify!
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Chinese Postman Problem — example

Once the paths are found, we duplicate the edges along these paths to obtain the
Eulerization

In doing so, we must be on alert for any edges that appear in both paths of a
pairing

For example, the paths in the second pairing both use the edge ei

We should never duplicate an edge more than once during an Eulerization

We modify the paths found by Dijkstra’s Algorithm by removing both duplications
of et

This maintains the degree condition (all vertices have even degree) and reduces
the total weight by 4 — same as the first one

adteijk 18
gfeing 10 28
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Chinese Postman Problem — example
® adtefg, kjing
® qdteijk, gfeing
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Remarks

® The use of Dijkstra's Algorithm allows for a methodical approach to the Chinese
Postman Problem.

® However, even for small examples the number of paths to find can be quite large.
® More efficient: matchings

12/40



Critical path and project scheduling

® This spring you are tackling the jungle that is your backyard. Some good friends
have volunteered their time and you have split them into two groups.

Task

Vertex Name

Processing Time

Precedence Relationships

Buy plants
Remove bushes
Remove ivy

Weed flower beds
Plant bushes

Plant flowers

Trim trees

Mow and rake lawn
Install lighting

NS S I T =

NO PR, NWDRN-

b,r
w,p

13/40



Critical path and project scheduling

b(1)[9] w(3)[5] 1(2)[2]

Start(0)[15]

End(0)[0]

i(4)[14] #(4)[10] m(6)|6]
ct[f]
ct[p] ()+Ct[f]=7+1=8a

pt(w) + ct[l] =3+ 2 =15,
pt(r) + ct[p] = 7+ 8 = 15,
tart] = pt (Start) + ct[r] =0+ 15 =15

ctlw]
4410 =14, ct[r]
ct[S
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Critical path and project scheduling

b(1)[9)] w(3)[5] 1(2)[2]

Start(0)[15] End(0)[0]

i(4)[14] £(4)[10] m(6)][6]

The critical path is
Start - r —-p— f — End

The critical path priority list is
r—i—t—-b—-p-m-w-I—-Ff
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Critical path and project scheduling

r—i—t—b—p-m-w-—-I0—f

12)[2]

Start(0)[15]

End(0)[0]

10

11

12

13

14

15

16

17

18

19

Po|lr|r|lr|r|r|r|r

P

e Step 1. (T'=0) Assign r to Py, i to P
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r—i—t—b—p-m-w-—-I0—f

Start(0)[15]

Critical path and project scheduling

12)[2]

End(0)[0]

8

10

11

12

13

14

15

16

17

18

19

Po|lr|r|r|r

P

t

t

® Step 2. (T'=4) Assign t to P
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r—i—t—b—p-m-w-—-I0—f

Start(0)[15]

Critical path and project scheduling

12)[2]

End(0)[0]

10

11

12

13

14

15

16

17

18

19

Po|lr|r|r|r

P

t

e Step 3. (T'=T7) Assign b to P,
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r—i—t—b—p-m-w-—-I0—f

Start(0)[15]

Critical path and project scheduling

12)[2]

End(0)[0]

3 10[1112]13]14]15]16]17] 18] 19
Po|r|r|r|r p|p|p|P|DP|DP
Pt i1 ||t m|m | m|m|m

® Step 4. (T = 8) Assign p to P, m to P»
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Critical path and project scheduling

r—i—t—b—p-m-w-—-I0—f

Start(0)[15]

12)[2]

End(0)[0]

3 8| 9 10|11 |12 |13 |14 |15 |16 | 17 | 18 | 19
Polr|r|r|r|r|r|r|b plplpl|lp|p|p
Pt |i|i|t|t|t]tim| m|m|m|m|m|w]|w,|w

® Step 5. (T'=14) Assign w to Py
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r—i—t—b—p-m-w-—-I0—f

Start(0)[15]

Critical path and project scheduling

12)[2]

End(0)[0]

3 10 11|12 |13 |14 |15 |16 | 17 | 18 | 19
Po|lr|r|r|r p p p p p p * *
Pt i1 ||t m|m | m|m|m|w|w]|w

® Step 6. (T' = 15) No eligible task. P; will remain idle.
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r—i—t—b—p-m-w-—-I0—f

Start(0)[15]

Critical path and project scheduling

12)[2]

End(0)[0]

3 101112 |13 |14 |15 |16 | 17 | 18 | 19
Polr|r|r|r P P P P P P * * l l
Pyl di|e|e|d|t m|m|m|m|m|w|w|w]|f *

® Step 7. (T'=17) Assign [ to P, and f to P»
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Critical path and project scheduling

OPT > 15,

By using the two metrics described in the lecture, we know

35
OPT > 5 = 17.5 for two processors

both [ and f relied upon its completion

® The optimal schedule is as follows

The schedule we have found has 3 total hours of idle time

Since there is no half-unit of time, we know the optimal time in fact must be at
least 18 hours.

w did not place high on the priority list, but needed to be completed earlier since

516 8191101112 13|14 | 15| 16 | 17 | 18
Py rlr|r plp|p|lp|p|p | p | L] L] [ ]|=*
Py b |t tlt|lw|w|w| | m|m|m|m|m/|m
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What if we use 3 processors?

r—i—t—b—p-m-w-—-I0—f

1(2)[2]

Start(0)[15]

End(0)[0]

11213 |4 819 10|11 |12 |13 |14 | 15| 16 | 17 | 18
Po|lr|r|r|r r|r
Py | i |d|id]i
Py | b| % | x| %

At T' =1, there are no eligible tasks
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What if we use 3 processors?

r—i—t—b—p-m-w-—-I0—f

Start(0)[15]

1(2)[2]

End(0)[0]

1234567891011 ]12[13]14]15]16] 17 18
Pojr|r|r|jr|r|r|r|p|p|Pp|DP|DP|DP|DP
Polalilalalt]t]t]t
Py b || x| |*x|*x|*x|w|w|w

At T = 4, the only eligible task is t. At T' =7, the eligible tasks are p and w
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r—i—t—b—p-m-w-—-I0—f

Start(0)[15]

1(2)[2]

What if we use 3 processors?

End(0)[0]

1123456789 10|11 12|13 |14 |15 |16 | 17 | 18
Polr|r|r|jr|r|r|r|plp|P|P|DP|DP|DP
Pt |di|i|e|t|t]|t]t]|m|m|m|m/|m]|m
Py | b|* || *x|*|x|*x|w|w|w]|!l l

At T = 8, the next eligible task is m. At T' = 10, the next eligible task.is I.
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What if we use 3 processors?
r—i—t—b—p-m-w-—-I0—f
b(1)[9] w(3)[5] 12)[2]

End(0)[0]

Start(0)[15]

1123|456 |7|8| 91011 12|13 |14 |15 |16 | 17| 18
Polr|r|r|r|r|r|r|plp|lp|p|Dp|Dp|DP]|/f
Pole|i|i|e|t|t]|t]t|m|m|m|m/|m/|m/ | %

Ps|b || x| x|*x|*x|*x|w|lw|w]|.l l * *

The last task f is only eligible after p is completed. Thus, we get an optimal schedule

having a finishing time of 15 hours.
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Tree — example

Chemical Graph Theory uses concepts from graph theory to obtain results about
chemical compounds

Individual atoms in a molecule are represented by vertices and an edge denotes a
bond between the atoms

One way to determine the number of isomers (compounds with the same formula
but a different arrangement of atoms) for a molecule is to determine the number
of distinct graphs that contain the correct type of each atom

For hydrocarbons (molecules only containing carbon and hydrogen atoms) the
hydrogen-depleted graph is used since the bonds between the carbon atoms will
uniquely determine the locations of the hydrogen atoms.
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Tree — example
® Trees on four vertices: only two choices
® — the only possible isomers of butane C4Hqg

® By using graph theory, it can be proven that no other isomers of butane are
possible since no other trees on four vertices exist

e TH

H H *—o—o

n-butane isobutane 29/40



The Optos Cable Company is expanding its fiber optic network over the next few

years

The company will need to lay new cable, but wishes to do so with minimal cost
Cost of the cable is fixed per meter

The distances of required cables between any two towns is given in the table

Kruskal's Algorithm — example

Mesa Natick Quechee Rutland Tempe Vinton
Mesa . 18 35 36 20 45
Natick 18 . 50 42 40 45
Quechee 35 50 . 41 25 19
Rutland 36 42 41 . 37 38
Tempe 20 40 25 37 . 15
Vinton 45 45 19 38 15
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® Apply Kruskal’s Algorithm, the edges will be chosen directly from the table

Kruskal's Algorithm — example

® Smallest weight is t-v

Mesa Natick Quechee Rutland Tempe Vinton
Mesa . 18 35 36 20 45
Natick 18 - 50 42 40 45
Quechee 35 50 . 41 25 19
Rutland 36 42 41 . 37 38
Tempe 20 40 25 37 . 15
Vinton 45 45 19 38 15
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Kruskal's Algorithm — example

® The next smallest weight is 18 for m-n

Mesa Natick Quechee Rutland Tempe Vinton

Mesa
Natick
Quechee
Rutland
Tempe
Vinton

. 18 35 36 20 45
18 . 50 42 40 45
35 50 ‘ 41 25 19 v
36 42 41 . 37 38
20 40 25 37 . 15
45 45 19 38 15 .

18
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Kruskal's Algorithm — example

The next smallest weight is 19 for g-v
Next is 20 for m-t
The next smallest weight is 25 for g-t. We need to skip it

The next is m-q with 35, skip

Next is m-r with 36, highlight mr

Mesa Natick Quechee Rutland Tempe Vinton
Mesa . 18 35 36 20 45
Natick 18 . 50 42 40 45
Quechee 35 50 . 41 25 19
Rutland 36 42 41 . 37 38
Tempe 20 40 25 37 - 15
Vinton 45 45 19 38 15

20

18

19
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Kruskal's Algorithm — example

® We have a spanning tree of total weight 180

m 18 n
®
%
o
N
19
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Let's solve the same problem with Prim’s Algorithm
The drawing of the underlying complete graph is omitted
Let us start from g

Prim's Algorithm — example

Edge with smallest weight: qu

Mesa Natick Quechee Rutland Tempe Vinton
Mesa . 18 35 36 20 45
Natick 18 . 50 42 40 45
Quechee | 35 50 . 41 25 19
Rutland 36 42 41 . 37 38
Tempe 20 40 25 37 . 15
Vinton 45 45 19 38 15

m n
e (]

19
@ [ ]
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® Next search for the edge of smallest weight with exactly one endpoint q or v

Prim's Algorithm — example

® Edge with smallest weight: vt

Mesa Natick Quechee Rutland Tempe Vinton
Mesa . 18 35 36 20 45
Natick 18 - 50 42 40 45
Quechee 35 50 . 41 25 19
Rutland 36 42 41 . 37 38
Tempe 20 40 25 37 . 15
Vinton 45 45 19 38 15

m n
[ ] ]

19
 J ®
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Prim's Algorithm — example

® Next search for the edge of smallest weight with exactly one endpoint q, t, or v

® Edge with smallest weight: tm

Mesa Natick Quechee Rutland Tempe Vinton
Mesa . 18 35 36 20 45
Natick 18 - 50 42 40 45
Quechee 35 50 . 41 25 19
Rutland 36 42 41 . 37 38
Tempe 20 40 25 37 . 15
Vinton 45 45 19 38 15

19
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® Next search for the edge of smallest weight with exactly one endpoint q, t, v, or m

Prim's Algorithm — example

® Edge with smallest weight: mn

Mesa Natick Quechee Rutland Tempe Vinton
Mesa . 18 35 36 20 45
Natick 18 - 50 42 40 45
Quechee 35 50 . 41 25 19
Rutland 36 42 41 . 37 38
Tempe 20 40 25 37 . 15
Vinton 45 45 19 38 15

@ 3

19

20
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® There is only one vertex left to add to the spanning tree, and so we must find the

Prim's Algorithm — example

smallest edge to r

® Edge with smallest weight: mr

Mesa Natick Quechee Rutland Tempe Vinton

Mesa
Natick
Quechee
Rutland
Tempe
Vinton

. 18 35 36 20 45
18 . 50 42 40 45
35 50 . 41 25 19 v
36 42 41 . 37 38
20 40 25 37 . 15
45 45 19 38 15

m 18 n
o—0
19
o
N
o
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Prim's Algorithm — example

m 18 n
19
v ® ¢
2
>\ |8 o
t r

® MST has total weight 108
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