Tutorial 6

Bases and matrix operators

Question 1. Show that the following set of vectors forms a basis for \mathbb{R}^2 and \mathbb{R}^3 respectively.

- 1. $\{ (2, 1), (3, 0) \}$
- $2. \{ (3, 1, -4), (2, 5, 6) \}, (1, 4, 8)$

Question 2. Show that the following matrices form a basis for $\mathcal{M}_{\times 2}$ 2.

- 1. $\begin{pmatrix} 3 & 6 \\ 3 & -6 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -8 \\ -12 & -4 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$
- $2. \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Question 3. In each part, show that the set of vectors is not a basis for \mathbb{R}^3

- 1. $\{ (2, -3, 1), (4, 1, 1), (0, -7, 1) \}$
- 2. $\{ (1, 6, 4) \}, (2, 4, -1), (-1, 2, 5)$

Question 4. Show that the following matrices do not form a basis for $\mathcal{M}_{2\times 2}$.

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 2 & -2 \\ 3 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$$

Question 5. Find the coordinate vector of \boldsymbol{w} relative to the basis $S = \{\boldsymbol{u}_1, \boldsymbol{u}_2\}$ for \mathbb{R}^2 .

- 1. $u_1 = (2, -4), u_2 = (3, 8), w = (1, 1)$
- 2. $u_1 = (1, 1), u_2 = (0, 2), w = (a, b)$
- 3. $\mathbf{u}_1 = (1, -1), \mathbf{u}_2 = (1, 1), \mathbf{w} = (1, 0)$
- 4. $\mathbf{u}_1 = (1, -1), \mathbf{u}_2 = (1, 1), \mathbf{w} = (0, 1)$

Question 6. Find the coordinate vector of u relative to the basis $S = \{v_1, v_2, v_3\}$ for \mathbb{R}^3

1.
$$\mathbf{v}_1 = (1, 0, 0), \mathbf{v}_2 = (2, 2, 0), \mathbf{v}_3 = (3, 3, 3), \mathbf{u} = (2, -1, 3)$$

2.
$$\mathbf{v}_1 = (1, 2, 3), \mathbf{v}_2 = (-4, 5, 6), \mathbf{v}_3 = (7, -8, 9), \mathbf{u} = (5, -12, 3)$$

Question 7. For each case, first show that the set $S = \{A_1, A_2, A_3, A_4\}$ is a basis for $\mathcal{M}_{2\times 2}$, then express A as a linear combination of the vectors in S, and then find the coordinate vector of A relative to S.

1.
$$A_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $A_3 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $A_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$; $A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$

2.
$$A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $A_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A_4 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$; $A = \begin{pmatrix} 6 & 2 \\ 5 & 3 \end{pmatrix}$

Question 8. In each part, let $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ be multiplication by A, and let $\{e_1, e_2, e_3\}$ be the standard basis for \mathbb{R}^3 . Determine whether the set $\{T_A(e_1), T_A(e_2), T_A(e_3)\}$ is linearly independent in \mathbb{R}^3

1.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ -1 & 2 & 0 \end{pmatrix}$$

$$2. \ A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix}$$

Question 9. In each part, let $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ be multiplication by A, and let $\boldsymbol{u} = \begin{pmatrix} 1, & -2, & -1 \end{pmatrix}$. Find the coordinate vector of $T_A(\boldsymbol{u})$ relative to the basis $S = \{ \begin{pmatrix} 1, & 1, & 0 \end{pmatrix}, \begin{pmatrix} 0, & 1, & 1 \end{pmatrix}, \begin{pmatrix} 1, & 1, & 1 \end{pmatrix} \}$ for \mathbb{R}^3 .

1.
$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 2 \end{pmatrix}$$

$$2. \ A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Question 10. Find a basis for the solution space of the homogeneous linear system, and find the dimension of that space

1.

$$x_1 + x_2 - x_3 = 0$$

$$-2x_1 - x_2 + 2x_3 = 0$$

$$-x_1 + x_3 = 0$$

 $3x_1 + x_2 + x_3 + x_4 = 0$ $5x_1 - x_2 + x_3 - x_4 = 0$

3.

$$2x_1 + x_2 + 3x_3 = 0$$
$$x_1 + 5x_3 = 0$$
$$x_2 + x_3 = 0$$

4.

2.

$$x_1 - 3x_2 + x_3 = 0$$

$$2x_1 - 6x_2 + 2x_3 = 0$$

$$3x_1 - 9x_2 + 3x_3 = 0$$

5.

$$x_1 - 4x_2 + 3x_3 - x_4 = 0$$
$$2x_1 - 8x_2 + 6x_3 - 2x_4 = 0$$

6.

$$x+y+z = 0$$

$$3x+2y-2z = 0$$

$$4x+3y-z = 0$$

$$6x+5y+z = 0$$

Question 11. In each part, find a basis for the given subspace of \mathbb{R}^3 , and sate its dimension

- 1. The plane 3x 2y + 5z = 0.
- 2. The plane x y = 0.
- 3. The line x = 2t, y = -t, z = 4t.
- 4. All vectors of the form (a, b, c), where b = a + c.

Question 12. In each part, find a basis for the given subspace of \mathbb{R}^4 , and state its dimension.

- 1. All vectors of the form (a, b, c, 0).
- 2. All vectors of the form (a, b, c, d), where d = a + b and c = a b.
- c) All vectors of the form (a, b, c, d), where a = b = c = d.

Question 13. Show that the matrices

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad M_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

form a basis for $\mathcal{M}_{2\times 2}$.

Question 14. Find the dimension of each of the following vector spaces.

- 1. The vector space of all diagonal $n \times n$ matrices.
- 2. The vector space of all symmetric $n \times n$ matrices.
- 3. The vector space of all upper triangular $n \times n$ matrices.
- 4. The vector space of all lower triangular $n \times n$ matrices.

Question 15. Find a standard basis vector in \mathbb{R}^3 that can be added to the set $\{v_1, v_2\}$ to produce a basis for \mathbb{R}^3 .

- 1. $\mathbf{v}_1 = (-1, 2, 3), \mathbf{v}_2 = (1, 2, -2).$
- 2. $\mathbf{v}_1 = (1, -1, 0), \mathbf{v}_2 = (3, 1, -2).$

Question 16. Find standard basis vectors for \mathbb{R}^4 that can be added to the set $\{v_1, v_2\}$ to produce a basis for \mathbb{R}^4 .

$$v_1 = \begin{pmatrix} 1, & -4, & 2, & -3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -3, & 8, & -4, & 6 \end{pmatrix}$$

Question 17. The vectors $\mathbf{v}_1 = \begin{pmatrix} 1, -2, 3 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 0, 5, -3 \end{pmatrix}$ are linearly independent. Enlarge the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ to a basis for \mathbb{R}^3 .

Question 18. The vectors $\mathbf{v}_1 = \begin{pmatrix} 1, & 0, & 0, & 0 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 1, & 1, & 0, & 0 \end{pmatrix}$ are linearly independent. Enlarge the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ to a basis for \mathbb{R}^4 .

Question 19. Consider the bases $B_1 = \{u_1, u_2\}$ and $B_2 = \{v_1, v_2\}$ for \mathbb{R}^2 , where

(a)
$$\boldsymbol{u}_1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \quad \boldsymbol{u}_2 = \begin{pmatrix} 4 \\ -1 \end{pmatrix}, \quad \boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \quad \boldsymbol{v}_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

(b)
$$\boldsymbol{u}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{u}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \boldsymbol{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \boldsymbol{v}_2 = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

1. Find the transition matrix from B_2 to B_1

- 2. Find the transition matrix from B_1 to B_2
- 3. Compute the coordinate vector $[\boldsymbol{w}]_{B_1}$, where

$$\boldsymbol{w} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$$

and compute $[\boldsymbol{w}]_{B_2}$ using the transition matrix from B_1 to B_2

4. Compute $[\boldsymbol{w}]_{B_2}$ directly

Question 20. Consider the bases $B_1 = \{u_1, u_2, u_3\}$ and $B_2 = \{v_1, v_2, v_3\}$ for \mathbb{R}^3 , where

(a)

$$\boldsymbol{u}_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \quad \boldsymbol{u}_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \quad \boldsymbol{u}_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \boldsymbol{v}_1 = \begin{pmatrix} 3 \\ 1 \\ -5 \end{pmatrix}, \quad \boldsymbol{v}_2 = \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}, \quad \boldsymbol{v}_3 = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$$

(b)

$$\boldsymbol{u}_1 = \begin{pmatrix} -3 \\ 0 \\ -3 \end{pmatrix}, \quad \boldsymbol{u}_2 = \begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}, \quad \boldsymbol{u}_3 = \begin{pmatrix} 1 \\ 6 \\ -1 \end{pmatrix}, \quad \boldsymbol{v}_1 = \begin{pmatrix} -6 \\ -6 \\ 0 \end{pmatrix}, \quad \boldsymbol{v}_2 = \begin{pmatrix} -2 \\ -6 \\ 4 \end{pmatrix}, \quad \boldsymbol{v}_3 = \begin{pmatrix} -2 \\ -3 \\ 7 \end{pmatrix}$$

- 1. Find the transition matrix from B_2 to B_1
- 2. Find the transition matrix from B_1 to B_2
- 3. Compute the coordinate vector $[\boldsymbol{w}]_{B_1}$, where

$$\boldsymbol{w} = \begin{pmatrix} -5\\8\\-5 \end{pmatrix}$$

and compute $[\boldsymbol{w}]_{B_2}$ using the transition matrix from B_1 to B_2

4. Compute $[\boldsymbol{w}]_{B_2}$ directly

Question 21. Let $B_1 = \{u_1, u_2\}$ and $B_2 = \{v_1, v_2\}$ be the bases for \mathbb{R}^2 , where

$$oldsymbol{u}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad oldsymbol{u}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \quad oldsymbol{v}_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \quad oldsymbol{v}_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}.$$

An efficient way to compute the transition matrix $P_{B_1 \to B_2}$ is as follows

Step 1. Form the matrix $(B_2 \mid B_1)$

- **Step 2.** Use elementary row operations to reduce the matrix in Step 1 to reduced row echelon form
- **Step 3.** The resulting matrix will be $(I \mid P_{B_1 \to B_2})$

Step 4. Extract the matrix $P_{B_1 \to B_2}$ from the right side of the matrix in Step 3

In diagram

(new basis | old basis)
$$\xrightarrow{\text{row operations}}$$
 (I | transition from old to new) (1)

- 1. Apply the above procedure to find the transition matrix $P_{B_2 \to B_1}$
- 2. Apply the above procedure to find the transition matrix $P_{B_1 \to B_2}$
- 3. Confirm that $P_{B_2 \to B_1}$ and $P_{B_1 \to B_2}$ are inverses of one another
- 4. Let $\mathbf{w} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Find $[\mathbf{w}]_{B_1}$ and then use the matrix $P_{B_1 \to B_2}$ to compute $[\mathbf{w}]_{B_2}$ from $[\mathbf{w}]_{B_1}$
- 5. Let $\mathbf{w} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$. Find $[\mathbf{w}]_{B_2}$ and then use the matrix $P_{B_2 \to B_1}$ to compute $[\mathbf{w}]_{B_1}$ from $[\mathbf{w}]_{B_2}$

Question 22. Let S be the standard basis for \mathbb{R}^2 , and let $B = \{v_1, v_2\}$ be the basis in which

$$\boldsymbol{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \boldsymbol{v}_2 = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

- 1. Find the transition matrix $P_{B\to S}$ by inspection
- 2. Use Formula (1) to find the transition matrix $P_{S\to B}$
- 3. Confirm that $P_{B\to S}$ and $P_{S\to B}$ are inverses of one another
- 4. Let $\mathbf{w} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$. Find $[\mathbf{w}]_B$ and then use the matrix $P_{B\to S}$ to compute $[\mathbf{w}]_S$ from $[\mathbf{w}]_B$
- 5. Let $\mathbf{w} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$. Find $[\mathbf{w}]_S$ and then use the matrix $P_{S \to B}$ to compute $[\mathbf{w}]_B$ from $[\mathbf{w}]_S$

Question 23. Let S be the standard basis for \mathbb{R}^3 , and let $B = \{v_1, v_2, v_3\}$ be the basis in which

$$\boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \boldsymbol{v}_2 = \begin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix}, \quad \boldsymbol{v}_3 = \begin{pmatrix} 3 \\ 3 \\ 8 \end{pmatrix}$$

- 1. Find the transition matrix $P_{B\to S}$ by inspection
- 2. Use Formula (1) to find the transition matrix $P_{S\to B}$
- 3. Confirm that $P_{B\to S}$ and $P_{S\to B}$ are inverses of one another
- 4. Let $\mathbf{w} = \begin{pmatrix} 5 \\ -3 \\ 1 \end{pmatrix}$. Find $[\mathbf{w}]_B$ and then use the matrix $P_{B\to S}$ to compute $[\mathbf{w}]_S$ from $[\mathbf{w}]_B$
- 5. Let $\mathbf{w} = \begin{pmatrix} 3 \\ -5 \\ 0 \end{pmatrix}$. Find $[\mathbf{w}]_S$ and then use the matrix $P_{S \to B}$ to compute $[\mathbf{w}]_B$ from $[\mathbf{w}]_S$

Question 24. Let $S = \{e_1, e_2\}$ be the standard basis for \mathbb{R}^2 , and let $B = \{v_1, v_2\}$ be the basis that results when the vectors in S are reflected about the line y = x.

- 1. Find the transition matrix $P_{B\to S}$
- 2. Show that $P_{B\to S}^{\top} = P_{S\to B}$

Question 25. Let $S = \{e_1, e_2\}$ be the standard basis for \mathbb{R}^2 , and let $B = \{v_1, v_2\}$ be the basis that results when the vectors in S are reflected about the line that makes an angle θ with the positive x-axis.

- 1. Find the transition matrix $P_{B\to S}$
- 2. Show that $P_{B\to S}^{\top} = P_{S\to B}$

Question 26. Find the domain and codomain of the transformation $T_A(x) = Ax$

1. $A \in \mathcal{M}_{3\times 2}$

3. $A \in \mathcal{M}_{3\times 3}$

5. $A \in \mathcal{M}_{4\times 5}$

7. $A \in \mathcal{M}_{4\times 4}$

2. $A \in \mathcal{M}_{2\times 3}$

4. $A \in \mathcal{M}_{1\times 6}$

6. $A \in \mathcal{M}_{5\times 4}$

8. $A \in \mathcal{M}_{3\times 1}$

Question 27. Find the domain and codomain of the transformation defined by the equations

1.

2.

$$w_1 = 4x_1 + 5x_2$$

$$w_2 = x_1 - 8x_2$$

$$w_1 = 5x_1 - 7x_2$$

$$w_2 = 6x_1 + x_2$$

$$w_3 = 2x_1 + 3x_2$$

3.

4.

$$w_1 = x_1 - 4x_2 + 8x_3$$

$$w_2 = -x_1 + 4x_2 + 2x_3$$

$$w_3 = -3x_1 + 2x_2 - 5x_3$$

$$w_1 = 2x_1 + 7x_2 - 4x_3$$

$$w_2 = 4x_1 - 3x_2 + 2x_3$$

Question 28. Find the standard matrix for the transformation defined below

1.

$$w_1 = 2x_1 - 3x_2 + x_3$$

$$w_2 = 3x_1 + 5x_2 - x_3$$

2.

$$w_1 = 7x_1 + 2x_2 - 8x_3$$

$$w_2 = -x_2 + 5x_3$$

$$w_3 = 4x_1 + 7x_2 - x_3$$

3.
$$T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -x_1 \\ x_1 + 3x_2 \\ x_1 - x_2 \end{pmatrix}$$

4.
$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 7x_1 + 2x_2 - x_3 + x_4 \\ x_2 + x_3 \\ -x_1 \end{pmatrix}$$

5.
$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

6.
$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_4 \\ x_1 \\ x_3 \\ x_2 \\ x_1 - x_3 \end{pmatrix}$$

Question 29. Find $T_A(x)$.

1.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \boldsymbol{x} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

2.
$$A = \begin{pmatrix} -1 & 2 & 0 \\ 3 & 1 & 5 \end{pmatrix}, \boldsymbol{x} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} -2 & 1 & 4 \\ 3 & 5 & 7 \\ 6 & 0 & -1 \end{pmatrix}, \ \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

4.
$$A = \begin{pmatrix} -1 & 1 \\ 2 & 4 \\ 7 & 8 \end{pmatrix}, \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Question 30. The images of the standard basis vectors for \mathbb{R}^3 are given for a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$. Find the standard matrix for the transformation, and find T(x).

1.
$$T(\mathbf{e}_1) = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, T(\mathbf{e}_2) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, T(\mathbf{e}_3) = \begin{pmatrix} 4 \\ -3 \\ -1 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

2.
$$T(e_1) = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
, $T(e_2) = \begin{pmatrix} -3 \\ -1 \\ 0 \end{pmatrix}$, $T(e_3) = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $\boldsymbol{x} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$

- Question 31. Use matrix multiplication to find the reflection of (-1, 2) about the
 - 1. x-axis

2. y-axis 3.

- line y = x
- Question 32. Use matrix multiplication to find the reflection of (a, b) about the
 - 1. x-axis

2. y-axis 3.

- line y = x
- Question 33. Use matrix multiplication to find the reflection of (2, -5, 3) about the
 - 1. xy-plane

- 2. xz-plane 3.
- yz-plane
- Question 34. Use matrix multiplication to find the reflection of $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ about the
 - 1. xy-plane

2. xz-plane

- 3. yz-plane
- Question 35. Use matrix multiplication to find the orthogonal projection of $\begin{pmatrix} 2 \\ -5 \end{pmatrix}$ onto the
 - 1. *x*-axis

- 2. *y*-axis
- **Question 36.** Use matrix multiplication to find the orthogonal projection of $\begin{pmatrix} a \\ b \end{pmatrix}$ onto the
 - 1. *x*-axis

- 2. *y*-axis
- Question 37. Use matrix multiplication to find the orthogonal projection of $\begin{pmatrix} -2\\1\\3 \end{pmatrix}$ onto the

1. xy-plane

2. xz-plane

3. yz-plane

Question 38. Use matrix multiplication to find the orthogonal projection of $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ onto the

1. xy-plane

2. xz-plane

3. yz-plane

Question 39. Use matrix multiplication to find the image of the vector $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$ when it is rotated about the origin through an angle of

- 1. $\theta = 30^{\circ}$
- 2. $\theta = -60^{\circ}$
- $3. \ \theta = 45^{\circ}$
- 4. $\theta = 90^{\circ}$

Question 40. Use matrix multiplication to find the image of the nonzero vector $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ when it is rotated about the origin through

- 1. a positive angle θ
- 2. a negative angle $-\theta$

Question 41. Use matrix multiplication to find the image of the vector $\begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ if it is rotated

- 1. 30° clockwise about the positive x-axis.
- 2. 30° counterclockwise about the positive y-axis.
- 3. 45° clockwise about the positive y-axis.
- 4. 90° counterclockwise about the positive z-axis.

Question 42. Use matrix multiplication to find:

- 1. The contraction of $\binom{-1}{2}$ with factor $\alpha = \frac{1}{2}$.
- 2. The dilation of $\binom{-1}{2}$ with factor $\alpha = 3$.

Question 43. Use matrix multiplication to find:

- 1. The contraction of $\begin{pmatrix} a \\ b \end{pmatrix}$ with factor $\frac{1}{\alpha}$, where $\alpha > 1$.
- 2. The dilation of $\binom{a}{b}$ with factor α , where $\alpha > 1$.

Question 44. Use matrix multiplication to find:

- 1. The contraction of $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ with factor $\frac{1}{4}$.
- 2. The dilation of $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ with factor 2.

Question 45. Use matrix multiplication to find:

- 1. The contraction of $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ with factor $\frac{1}{\alpha}$, where $\alpha > 1$.
- 2. The dilation of $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ with factor α , where $\alpha > 1$.

Question 46. Use matrix multiplication to find:

- 1. The compression of $\binom{-1}{2}$ in the x-direction with factor $\frac{1}{2}$.
- 2. The compression of $\binom{-1}{2}$ in the y-direction with factor $\frac{1}{2}$.

Question 47. Use matrix multiplication to find:

- 1. The expansion of $\binom{-1}{2}$ in the x-direction with factor 3.
- 2. The expansion of $\binom{-1}{2}$ in the y-direction with factor 3.

Question 48. Use matrix multiplication to find:

- 1. The compression of $\begin{pmatrix} a \\ b \end{pmatrix}$ in the x-direction with factor $\frac{1}{\alpha}$, where $\alpha > 1$.
- 2. The expansion of $\begin{pmatrix} a \\ b \end{pmatrix}$ in the y-direction with factor α , where $\alpha > 1$.

Question 49. In each part, determine whether the operators T_1 and T_2 commute, i.e. whether $T_1 \circ T_2 = T_2 \circ T_1$.

- 1. $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ is the reflection about the line y = x, and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ is the orthogonal projection onto the x-axis.
- 2. $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ is the reflection about the x-axis, and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ is the reflection about the line y = x.
- 3. $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ is the orthogonal projection onto the x-axis, and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ is the orthogonal projection onto the y-axis.
- 4. $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ is the rotation about the origin through an angle of $\frac{\pi}{4}$, and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ is the reflection about the y-axis.
- 5. $T_1: \mathbb{R}^3 \to \mathbb{R}^3$ is a dilation with factor α , and $T_2: \mathbb{R}^3 \to \mathbb{R}^3$ is a contraction with factor $\frac{1}{\alpha}$, where $\alpha > 1$.
- 6. $T_1: \mathbb{R}^3 \to \mathbb{R}^3$ is the rotation about the x-axis through an angle θ_1 , and $T_2: \mathbb{R}^3 \to \mathbb{R}^3$ is the rotation about the z-axis through an angle θ_2 .

Question 50. Find the standard matrix for the stated composition in \mathbb{R}^2 .

- 1. A rotation of 90°, followed by a reflection about the line y = x.
- 2. An orthogonal projection onto the y-axis, followed by a contraction with factor $\frac{1}{2}$.
- 3. A reflection about the x-axis, followed by a dilation with factor 3, followed by a rotation about the origin of 60° .
- 4. A rotation about the origin of 60° , followed by an orthogonal projection onto the x-axis, followed by a reflection about the line y = x.
- 5. A dilation with factor 2, followed by a rotation about the origin of 45° , followed by a reflection about the y-axis.
- 6. A rotation about the origin of 15°, followed by a rotation about the origin of 105°, followed by a rotation about the origin of 60°.

Question 51. Find the standard matrix for the stated composition in \mathbb{R}^3 .

- 1. A reflection about the yz-plane, followed by an orthogonal projection onto the xz-plane.
- 2. A rotation of 45° about the y-axis, followed by a dilation with factor $\sqrt{2}$.
- 3. An orthogonal projection onto the xy-plane, followed by a reflection about the yz-plane.
- 4. A rotation of 30° about the x-axis, followed by a rotation of 30° about the z-axis, followed by a contraction with factor $\frac{1}{4}$.
- 5. A reflection about the xy-plane, followed by a reflection about the xz-plane, followed by an orthogonal projection onto the yz-plane.
- 6. A rotation of 270° about the x-axis, followed by a rotation of 90° about the y-axis, followed by a rotation of 180° about the z-axis.

Question 52. Let $\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ be a vector in \mathbb{R}^2 . Consider the linear transformations $T_1 : \mathbb{R}^2 \to \mathbb{R}^2$ and $T_2 : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$T_1(\mathbf{x}) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix}, \quad T_2(\mathbf{x}) = \begin{pmatrix} 3x_1 \\ 2x_1 + 4x_2 \end{pmatrix}$$

- 1. Find the standard matrices for T_1 and T_2 .
- 2. Find the standard matrices for $T_1 \circ T_2$ and $T_2 \circ T_1$.
- 3. Find the standard matrices for $T_1 \circ T_2 \circ T_1$ and $T_1 \circ T_2 \circ T_2$.
- 4. Use the matrices obtained in part 2 to find formulas for $T_1(T_2(\boldsymbol{x}))$ and $T_2(T_1(\boldsymbol{x}))$

Question 53. Let $\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ be a vector in \mathbb{R}^3 . Consider the linear transformations $T_1: \mathbb{R}^3 \to \mathbb{R}^3$ and $T_2: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T_1(\mathbf{x}) = \begin{pmatrix} 4x_1 \\ -2x_1 + x_2 \\ -x_1 - 3x_3 \end{pmatrix}, \quad T_2(\mathbf{x}) = \begin{pmatrix} x_1 + 2x_2 \\ 2x_3 \\ 4x_1 - x_3 \end{pmatrix}$$

- 1. Find the standard matrices for T_1 and T_2 .
- 2. Find the standard matrices for $T_1 \circ T_2$ and $T_2 \circ T_1$.
- 3. Find the standard matrices for $T_1 \circ T_2 \circ T_1$ and $T_1 \circ T_2 \circ T_2$.
- 4. Use the matrices obtained in part 2 to find formulas for $T_1(T_2(\boldsymbol{x}))$ and $T_2(T_1(\boldsymbol{x}))$