

A TOUR THROUGH

 GRAPH THEORY

TEXTBOOKS in MATHEMATICS

Series Editors: Al Boggess and Ken Rosen

PUBLISHED TITLES

ABSTRACT ALGEBRA: A GENTLE INTRODUCTION
Gary L. Mullen and James A. Sellers

ABSTRACT ALGEBRA: AN INTERACTIVE APPROACH, SECOND EDITION
William Paulsen

ABSTRACT ALGEBRA: AN INQUIRY-BASED APPROACH
Jonathan K. Hodge, Steven Schlicker, and Ted Sundstrom

ADVANCED LINEAR ALGEBRA
Hugo Woerdeman

ADVANCED LINEAR ALGEBRA
Nicholas Loehr

ADVANCED LINEAR ALGEBRA, SECOND EDITION
Bruce Cooperstein

APPLIED ABSTRACT ALGEBRA WITH MAPLE™ AND MATLAB®, THIRD EDITION
Richard Klima, Neil Sigmon, and Ernest Stitzinger

APPLIED DIFFERENTIAL EQUATIONS: THE PRIMARY COURSE
Vladimir Dobrushkin

APPLIED DIFFERENTIAL EQUATIONS WITH BOUNDARY VALUE PROBLEMS
Vladimir Dobrushkin

APPLIED FUNCTIONAL ANALYSIS, THIRD EDITION
J. Tinsley Oden and Leszek Demkowicz

A BRIDGE TO HIGHER MATHEMATICS
Valentin Deaconu and Donald C. Pfaff

COMPUTATIONAL MATHEMATICS: MODELS, METHODS, AND ANALYSIS WITH MATLAB® AND MPI,
SECOND EDITION
Robert E. White

A COURSE IN DIFFERENTIAL EQUATIONS WITH BOUNDARY VALUE PROBLEMS, SECOND EDITION
Stephen A. Wirkus, Randall J. Swift, and Ryan Szypowski

A COURSE IN ORDINARY DIFFERENTIAL EQUATIONS, SECOND EDITION
Stephen A. Wirkus and Randall J. Swift

DIFFERENTIAL EQUATIONS: THEORY, TECHNIQUE, AND PRACTICE, SECOND EDITION
Steven G. Krantz

DIFFERENTIAL EQUATIONS: THEORY, TECHNIQUE, AND PRACTICE WITH BOUNDARY VALUE PROBLEMS
Steven G. Krantz

DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES, THIRD EDITION
George F. Simmons

DIFFERENTIAL EQUATIONS WITH MATLAB®: EXPLORATION, APPLICATIONS, AND THEORY
Mark A. McKibben and Micah D. Webster

DISCOVERING GROUP THEORY: A TRANSITION TO ADVANCED MATHEMATICS
Tony Barnard and Hugh Neill

DISCRETE MATHEMATICS, SECOND EDITION
Kevin Ferland

ELEMENTARY NUMBER THEORY
James S. Kraft and Lawrence C. Washington

ESSENTIALS OF MATHEMATICAL THINKING
Steven G. Krantz

EXPLORING CALCULUS: LABS AND PROJECTS WITH MATHEMATICA®
Crista Arangala and Karen A. Yokley

EXPLORING GEOMETRY, SECOND EDITION
Michael Hvidsten

EXPLORING LINEAR ALGEBRA: LABS AND PROJECTS WITH MATHEMATICA®
Crista Arangala

EXPLORING THE INFINITE: AN INTRODUCTION TO PROOF AND ANALYSIS
Jennifer Brooks

GRAPHS & DIGRAPHS, SIXTH EDITION
Gary Chartrand, Linda Lesniak, and Ping Zhang

INTRODUCTION TO ABSTRACT ALGEBRA, SECOND EDITION
Jonathan D. H. Smith

INTRODUCTION TO ANALYSIS
Corey M. Dunn

INTRODUCTION TO MATHEMATICAL PROOFS: A TRANSITION TO ADVANCED MATHEMATICS, SECOND EDITION
Charles E. Roberts, Jr.

INTRODUCTION TO NUMBER THEORY, SECOND EDITION
Marty Erickson, Anthony Vazzana, and David Garth

INVITATION TO LINEAR ALGEBRA
David C. Mello

PUBLISHED TITLES CONTINUED

PUBLISHED TITLES CONTINUED

LINEAR ALGEBRA, GEOMETRY AND TRANSFORMATION
Bruce Solomon

MATHEMATICAL MODELLING WITH CASE STUDIES: USING MAPLE™ AND MATLAB®, THIRD EDITION
B. Barnes and G. R. Fulford

MATHEMATICS IN GAMES, SPORTS, AND GAMBLING–THE GAMES PEOPLE PLAY, SECOND EDITION
Ronald J. Gould

THE MATHEMATICS OF GAMES: AN INTRODUCTION TO PROBABILITY
David G. Taylor

A MATLAB® COMPANION TO COMPLEX VARIABLES
A. David Wunsch

MEASURE AND INTEGRAL: AN INTRODUCTION TO REAL ANALYSIS, SECOND EDITION
Richard L. Wheeden

MEASURE THEORY AND FINE PROPERTIES OF FUNCTIONS, REVISED EDITION
Lawrence C. Evans and Ronald F. Gariepy

NUMERICAL ANALYSIS FOR ENGINEERS: METHODS AND APPLICATIONS, SECOND EDITION
Bilal Ayyub and Richard H. McCuen

ORDINARY DIFFERENTIAL EQUATIONS: AN INTRODUCTION TO THE FUNDAMENTALS
Kenneth B. Howell

PRINCIPLES OF FOURIER ANALYSIS, SECOND EDITION
Kenneth B. Howell

REAL ANALYSIS AND FOUNDATIONS, FOURTH EDITION
Steven G. Krantz

RISK ANALYSIS IN ENGINEERING AND ECONOMICS, SECOND EDITION
Bilal M. Ayyub

SPORTS MATH: AN INTRODUCTORY COURSE IN THE MATHEMATICS OF SPORTS SCIENCE AND
SPORTS ANALYTICS
Roland B. Minton

TRANSFORMATIONAL PLANE GEOMETRY
Ronald N. Umble and Zhigang Han

TEXTBOOKS in MATHEMATICS

KARIN R. SAOUB

A TOUR THROUGH

 GRAPH THEORY

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20171003

International Standard Book Number-13: 978-1-138-19780-0 (Paperback)
International Standard Book Number-13: 978-1-138-07084-4 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and
let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including
photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for
a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of
payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Library of Congress Cataloging-in-Publication Data

Names: Saoub, Karin R., author.
Title: A tour through graph theory / Karin R. Saoub.
Description: Boca Raton : Taylor & Francis, 2017. | “A CRC title, part of the
Taylor & Francis imprint, a member of the Taylor & Francis Group, the
academic division of T&F Informa plc.” | Includes bibliographical
references and index.
Identifiers: LCCN 2017025808 | ISBN 9781138197800 (paperback)
Subjects: LCSH: Graph theory--Textbooks.
Classification: LCC QA166 .S26 2017 | DDC 511/.5--dc23
LC record available at https://lccn.loc.gov/2017025808

www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
https://lccn.loc.gov/2017025808

For my children

http://taylorandfrancis.com

Contents

Preface xiii

1 Eulerian Tours 1

1.1 Königsberg Bridge Problem 1
1.2 Introduction to Graph Models 2
1.3 Touring a Graph . 6
1.4 Eulerian Circuit Algorithms 12

Fleury’s Algorithm . 12
Hierholzer’s Algorithm . 16

1.5 Eulerization . 19
Chinese Postman Problem . 24

1.6 Exercises . 27

2 Hamiltonian Cycles 35

2.1 Conditions for Existence . 36
2.2 Traveling Salesman Problem 41

Brute Force . 42
Nearest Neighbor . 47
Cheapest Link . 51
Nearest Insertion . 54

2.3 Digraphs . 63
Asymmetric Traveling Salesman Problem 65

2.4 Exercises . 72

3 Paths 81

3.1 Shortest Paths . 81
Dijkstra’s Algorithm . 82
Chinese Postman Problem Revisited 91

3.2 Project Scheduling . 93
Critical Paths . 97

3.3 Exercises . 103

ix

x Contents

4 Trees and Networks 109

4.1 Trees . 109
4.2 Spanning Trees . 113

Kruskal’s Algorithm . 115
Prim’s Algorithm . 123

4.3 Shortest Networks . 130
Steiner Trees . 136

4.4 Traveling Salesman Problem Revisited 140
4.5 Exercises . 144

5 Matching 151

5.1 Bipartite Graphs . 152
5.2 Matching Terminology and Strategies 154

Augmenting Paths and Vertex Covers 159
5.3 Stable Marriages . 168

Unacceptable Partners . 173
5.4 Matchings in Non-Bipartite Graphs 176

Stable Roommates . 178
5.5 Exercises . 180

6 Graph Coloring 189

6.1 Four Color Theorem . 189
6.2 Coloring Bounds . 192
6.3 Coloring Strategies . 196

General Strategies . 196
On-line Coloring . 200

6.4 Perfect Graphs . 207
Interval Graphs . 207
Tolerance Graphs . 213

6.5 Weighted Coloring . 216
6.6 Exercises . 221

7 Additional Topics 227

7.1 Algorithm Complexity . 227
Exercises . 232

7.2 Graph Isomorphism . 232
Exercises . 235

7.3 Tournaments . 236
Exercises . 245

7.4 Flow and Capacity . 245
Exercises . 255

Contents xi

7.5 Rooted Trees . 256
Depth-First Search Tree . 258
Breadth-First Search Tree . 261
Exercises . 264

7.6 Planarity . 265
Exercises . 272

7.7 Edge-Coloring . 274
Ramsey Numbers . 281
Exercises . 284

Appendix 285
Creating a Triangle . 285
Finding Angle Measure . 285
Finding the Fermat Point . 286
Other Items . 286
Exercises . 287

Selected Answers and Solutions 289

Bibliography 295

Image Credits 299

Index 301

http://taylorandfrancis.com

Preface

Graph theory has been my passion since senior year of college. I was hooked
after just one week of my first course in graph theory. I completely changed
my plans post-graduation, choosing to apply to graduate schools and study
more mathematics. I found the interplay between rigorous proofs and simple
drawings both appealing and a nice break from my more computationally
heavy courses. Since becoming a teacher I have found a new appreciation for
graph theory, as a concept that can challenge students’ notions as to what
mathematics is and can be.

You might wonder why I chose to write this book, as there are numerous
texts devoted to the study of graph theory. Most books either focus on the
theory and the exploration of proof techniques, or contain a chapter or two on
the algorithmic aspect of a few topics from graph theory. This book is intended
to strike a balance between the two — focus on the accessible problems for
college students not majoring in mathematics, while also providing enough
material for a semester long course.

The goal for this textbook is to use graph theory as the vehicle for a
one-semester liberal arts course focusing on mathematical reasoning. Expla-
nations and logical reasoning for solutions, but no formal mathematical proofs,
are provided. There are discussions of both historical problems and modern
questions, with each chapter ending in a section detailing some more in-depth
problems. The final chapter also provides more rigorous graph theory and
additional topics that I personally find interesting but for which there is not
enough material to warrant an entire chapter. Each chapter will include prob-
lems to test understanding of the material and can be used for homework
or quiz problems. In addition, project ideas and items requiring research are
included at the end of each exercise section. Selected answers are available on
page 289.

Advice for Students

Reading a mathematics textbook takes skill and more effort than reading
your favorite novel at the beach. Professors often complain that their students
are not getting enough out of the readings they assign, but fail to realize that
most students have not been taught how to read mathematics. My advice
can be boiled down to one sentence: anytime you read mathematics, have
paper and pencil next to your book. You should expect to work through

xiii

xiv Preface

examples, draw graphs, and play around with the concepts. We learn by doing,
not passively reading or watching someone perform mathematics. This book
contains examples often posed in the form of a question. You should attempt to
find the solution before reading the one provided. In addition, some definitions
and concepts can get technical (as happens in mathematics) and the best way
to truly understand these is through working examples. At times, details of
an example, especially if it is the second or third of a type, will be left for the
reader or will appear in the exercises.

Advice for Instructors

This book is split into three main areas. The first focuses on topics related
to tours within a graph (Eulerian circuits, Hamiltonian cycles, and short-
est paths), the second to finding structure within a graph (spanning trees,
maximum matchings, and optimal coloring), and the third is a collection of
additional topics that can be used to delve deeper into topics covered in pre-
vious chapters or topics that do no warrant an entire chapter. Definitions
will appear as needed, but as with most mathematics books, later chapters
build upon previously introduced concepts. The chart below outlines how the
sections are related.

1.1

1.2

1.3

1.4

1.5

2.1

2.2

2.3

3.1

3.2

4.1

4.2

4.3

4.4

6.1

6.2

6.3

6.4

6.5

5.1

5.2

5.3

5.4

The Additional Topics sections in Chapter 7 may relate to multiple ear-
lier sections and will indicate individually which prior material is necessary.
References to these sections will occasionally appear throughout the first six
chapters of the book.

Preface xv

Thanks

I owe a huge debt to the many people who made this book possible.
To my colleagues Adam Childers, Chris Lee, Roland Minton, Maggie Rah-

moeller, Hannah Robbins, and David Taylor for their unwavering support. In
particular, David Taylor who provided a great sounding board for my ideas,
gave advice on formatting, and found the typos I could not.

To my sister-in-law, Leena Saoub Saunders, for her expertise in designing
the cover of this book.

To my parents, David and Pamela Steece, who always supported my
dreams and taught me the benefit of hard work.

To my husband Samer and children, Layla and Rami, who bring joy to my
life and endured my excitement and exasperation while writing this book.

To my CRC Press team, namely editor Bob Ross, editorial assistant Jose
Soto, copy editor Michele Dimont, and designer Kevin Craig, for their guidance
through the long process of writing a book.

Finally, a very special thanks goes to Ann Trenk, my graph theory professor
at Wellesley College. If not for her, I would not have discovered my life’s
passion and you would not be reading this book.

Dr. Karin R. Saoub
MCSP Department
Roanoke College
Salem, Virginia 24153
saoub@roanoke.edu

mailto:saoub@roanoke.edu

http://taylorandfrancis.com

Chapter 1

Eulerian Tours

1.1 Königsberg Bridge Problem

You arrive in a new city and hear of an intriguing puzzle captivating the
population: can you leave your home, travel across each of the bridges in the
city exactly once and then return home? Upon one look at the map, you claim
“Of course it can’t be done!” You describe the requirements needed for such
a walk to take place and note this city fails those requirements. Easy enough!

The puzzle above is described by some as the birth of graph theory. In
1736, Leonhard Euler, one of the greatest mathematicians of all time, pub-
lished a short paper on the bridges of Königsberg, a city in Eastern Europe
(see the map above). Euler translated the problem into one of the “geometry
of location” (geometris situs) and determined that only certain configurations
would allow a solution to be possible. His publication set in motion an entirely
new branch of mathematics, one that has profound impact in modern math-
ematics, computer science, management science, counterterrorism, ... and the
list continues. This book will explore some of these topics, but we begin with
some basic terminology and mathematical modeling.

1

2 A Tour through Graph Theory

Without worrying about the technicalities, see if you can find a solution to
the Königsberg Bridge Problem! To aid in your analysis, note that Königsberg
contains seven brides and four distinct landmasses.

1.2 Introduction to Graph Models

Definition 1.1 A graph G consists of two sets: V (G), called the vertex set,
and E(G), called the edge set. An edge , denoted xy, is an unordered pair of
vertices. We will often use G or G = (V,E) as short-hand.

In a general graph xy and yx are treated equally, though it is customary to
write them in alphabetical order. In Chapter 2 we will study directed graphs
where the order in which an edge is written provides additional meaning.

Example 1.1 Let G be a graph where V (G) = {a, b, c, d, e} and E(G) =
{ab, cd, cd, bb, ad, bc}. Although G is defined by these two sets, we generally
use a visualization of the graph where a dot represents a vertex and an edge
is a line connecting the two dots (vertices). A drawing of G is given below.

a

b

cd

e

Note that two lines were drawn between vertices c and d as the edge cd is
listed twice in the edge set. In addition, a circle was drawn at b to indicate an
edge (bb) that starts and ends at the same vertex.

It should be noted that the drawing of a graph can take many different
forms while still representing the same graph. The only requirement is to
faithfully record the information from the vertex set and edge set. We often
draw graphs with the vertices in a circular pattern (as shown in the example

Eulerian Tours 3

above), though in some instances other configurations better display the de-
sired information. The best configuration is the one that reduces complexity
or best illustrates the relationships arising from the vertex set and edge set.

Example 1.2 Consider the graph G from Example 1.1. Below are two
different drawings of G.

a

b

c

d

e

a b c d e

To verify that these drawings represent the same graph from Example 1.1, we
should check the relationships arising from the vertex set and edge set. For
example, there are two edges between vertices c and d, a loop at b, and no
edges at e. You should verify the remaining edges.

To discuss the properties of graphs in mathematical models, we need the
proper terminology. The graph given in the examples above works as a good
reference for this initial terminology. The formal definitions are given below,
followed by the appropriate references to the graph in Example 1.1 (or Exam-
ple 1.2).

Definition 1.2 Let G be a graph.

• If xy is an edge, then x and y are the endpoints for that edge. We say
x is incident to edge e if x is an endpoint of e.

• If two vertices are incident to the same edge, we say the vertices are
adjacent . Similarly, if two edges share an endpoint, we say they are
adjacent. If two vertices are adjacent, we say they are neighbors and
the set of all neighbors of a vertex x is denoted N(x).

– ab and ad are adjacent edges since they share the endpoint a

– a and b are adjacent vertices since ab is an edge of G

– N(d) = {a, c} and N(b) = {a, b, c}

• If a vertex is not incident to any edge, we call it an isolated vertex .

– e is an isolated vertex

• If both endpoints of an edge are the same vertex, then we say the edge
is a loop.

4 A Tour through Graph Theory

– bb is a loop

• If there is more than one edge with the same endpoints, we call these
multi-edges.

– cd is a multi-edge

• If a graph has no multi-edges or loops, we call it simple .

• The degree of a vertex is the number of edges incident to that vertex,
with a loop adding two to the degree. Denote the degree of vertex v as
deg(v). If the degree is even, the vertex is called even ; if the degree is
odd, then the vertex is odd.

– deg(a) = 2, deg(b) = 4, deg(c) = 3, deg(d) = 3, deg(e) = 0

Now that we have some basic graph terms, let’s look back at the
Königsberg Bridge Problem. Euler brilliantly reduced the map of Königsberg
to a simpler version where only the relationships between landmasses was of
importance. In graph form, the vertices represent the landmasses in the city
and the bridges are the edges. This is what we refer to as modeling — taking
a complex real-world problem and representing it mathematically.

d

c

a

b

Modeling is used in many branches of
mathematics, but often the phenomenon
in question is being translated into an
equation or experiment; here we are rep-
resenting a puzzle as a graph and using
properties of graphs to find a solution.
To the right is the drawing from Euler’s
original paper, and below it a graph
model of Königsberg. You should see
how much simpler the graph is compared
to either the original map or Euler’s
drawing of the city. This is one bene-
fit of using a graph — only the relevant
information is displayed, which in this
case consists solely of bridges connect-
ing landmasses. The vertices represent
an island, a south bank, a north bank,
and a peninsula (a, b, c, and d, respec-
tively). The answer to the initial ques-
tion becomes more evident when using
the graph: can you leave your home (vertex), travel across each of the bridges
(edges) in the city (graph) exactly once and then return home? If you have
not done so already, try it again on the graph. Do you have an answer?

Before we get too much further into answering the Königsberg Bridge

Eulerian Tours 5

Problem and its subsequent generalization, let’s go through a few more mod-
eling problems.

Example 1.3 Professor Minton needs to create a seating chart for his overly
chatty class. He wants students seated away from their friends whenever pos-
sible. He knows that Adam is friends with Betty, Carlos, Dave and Frank;
Betty is friends with Adam, Carlos, Dave and Emily; Dave is friends with
Adam, Betty, Carlos and Emily; and Frank is friends with Adam and Carlos.
Draw a graph that depicts these friendships.

Solution: Each person is represented by a vertex and an edge denotes a friend-
ship.

Adam

Betty

Carlos

Dave

Emily

Frank

Note that since friendships are symmetric (e.g., Adam is friends with Betty
and so Betty is friends with Adam) we only draw one edge between the ver-
tices. In Chapter 2 we will explore asymmetric relationships where direction-
ality becomes important.

As the example above demonstrates, problems that can be modeled by a
graph need to consist of distinct objects (such as people) and a relationship
between them (such as a friendship). The proper model will allow the graph
structure, or properties of the graph, to answer the question being asked. The
example below gives a different approach to graph modeling.

Example 1.4 Three student organizations (Student Government, Math
Club, and the Equestrian Club) are holding meetings on Thursday afternoon.
The only available rooms are 105, 201, 271, and 372. Based on membership
and room size, the Student Government can only use 201 or 372, Equestrian
Club can use 105 or 372, and Math Club can use any of the four rooms. Draw
a graph that depicts these restrictions.

Solution: Each organization and room is represented by a vertex, and an edge
denotes when an organization is able to use a room.

6 A Tour through Graph Theory

Government

Student

Club

Math Equestrian

Club

372 201 105 271

Note that edges do not occur between two organizations or between two rooms,
as these would be nonsensical in the context of the problem. The graph above
is an example of a bipartite graph. This type of graph is often used to model
interactions between two distinct types of groups and will appear later in
Chapters 5 and 6.

Hopefully, you now have a clearer understanding of how modeling works.
We often need to think about what information is relevant, what question
we are trying to answer, and what type of visual display to employ. See the
exercises at the end of the chapter for more practice with graph modeling.

1.3 Touring a Graph

A part of the modeling process is determining what the answer we are
searching for looks like in graph form. What type of structure or operation
are we looking for? In our original search for a solution to the Königsberg
Bridge Problem, we discuss traveling through the city. What would traveling
through a graph mean? What types of restrictions might we place on such
travel? Below are additional definitions needed to answer these questions, after
which we will finally describe how to use a graph model to solve the Königsberg
Bridge Problem. As with the previous definitions, you are encouraged to refer
back to the graph in Example 1.1 for examples of these terms.

Definition 1.3 Let G be a graph.

• A walk is a sequence of vertices so that there is an edge between con-
secutive vertices. A walk can repeat vertices and edges.

• A trail is a walk with no repeated edges. A trail can repeat vertices but
not edges.

Eulerian Tours 7

• A path is a trail with no repeated vertex (or edges). A path on n vertices
is denoted Pn.

• A closed walk is a walk that starts and ends at the same vertex.

• A circuit is a closed trail; that is, a trail that starts and ends at the
same vertex with no repeated edges though vertices may be repeated.

• A cycle is a closed path; that is, a path that starts and ends at the
same vertex. Thus cycles cannot repeat edges or vertices. Note: we do
not consider the starting and ending vertex as being repeated since each
vertex is entered and exited exactly once. A cycle on n vertices is denoted
Cn.

The length of any of these tours is defined in terms of the number of edges.
For example, Pn has length n− 1 and Cn has length n.

Technically, since a path is a more restrictive version of a trail and a trail
is a more restrictive form of a walk, any path can also be viewed as a trail
and as a walk. However, a walk might not be a trail or a path (for example, if
it repeats vertices or edges). Similarly, a cycle is a circuit and a closed walk.
Unless otherwise noted, when we use any of the terms from Definition 1.3 we
are referring to the most restrictive case possible; for example, if we ask for a
walk in a graph then we want a walk that is not also a trail or a path.

In practice, it is often necessary to label the edges of a tour of a graph in
the sequential order in which they are traveled. This is especially important
when the graph is not simple.

Example 1.5 Given the graph below, find a trail (that is not a path) from
a to c, a path from a to c, a circuit (that is not a cycle) starting at b, and a
cycle starting at b.

a b c

d

e

f

g

8 A Tour through Graph Theory

Solution:

Trail from a to c

a b c

d

e

f

g

1

7

3

6

2
5

4

Path from a to c

a b c

d

e

f

g

1 5

32
4

Circuit starting at b

a b c

d

e

f

g

6

1
5

2

4 3

Cycle starting at b

a b c

d

e

f

g

4

1
3

2

Eulerian Tours 9

Note that the trail from a to c is not a path since the vertex f is repeated
and the circuit starting at b is not a cycle since the vertex d is repeated.
Moreover, the examples given above are not the only solutions but rather an
option among many possible solutions.

Earlier we defined what it meant for two vertices to be adjacent, namely
x and y are adjacent if xy is an edge in the graph. Notice that in common
language we may have wanted to say that x and y are connected since there
is a line that connects these dots on the page. However, in graph theory the
term connected refers to a different, though related, concept.

Definition 1.4 Let G be a graph. Two vertices x and y are connected if
there exists a path from x to y in G. The graph G is connected if every pair
of distinct vertices is connected.

This definition may seem overly technical when visually it is often easy to
determine if a graph is connected. The concept of connectedness is surprisingly
important in applications. The example below illustrates the importance of
connectedness for the Königsberg Bridge Problem.

Example 1.6 Island City has two islands, a peninsula, and left and right
banks, as shown on the left below. Modeling the relationship between the
landmasses and bridges of Island City gives us the graph below on the right.

r

i2i1p

l

If the same puzzle were posed to the citizens of Island City as the one
for Königsberg, it would be impossible to travel every bridge and then return
home. In particular, there is no way to even travel from one side of the river
to the other! Thus, if we even have a hope of finding a solution, the resulting
graph must, at a minimum, be connected.

The Königsberg Bridge Problem is not just looking for a circuit, but rather
a special type that hits every edge. In honor of Leonhard Euler, these special
circuits are named for him. A similar term is used when allowing differing
starting and ending location of the tour.

10 A Tour through Graph Theory

Definition 1.5 Let G be a graph. An Eulerian circuit (or trail) is a
circuit (or trail) that contains every edge and every vertex of G. If G contains
an Eulerian circuit it is called Eulerian and if G contains an Eulerian trail
but not an Eulerian circuit it is called semi-Eulerian .

Part of Euler’s brilliance was not only his ability to quickly solve a puzzle,
such as the Königsberg Bridge Problem, but also the foresight to expand on
that puzzle. What makes a graph Eulerian? Under what conditions will a city
have the proper tour? In his original paper, Euler laid out the conditions for
such a solution, though as was typical of the time, he only proved a portion
of the statement (see [2] or [14]).

Theorem 1.6 A graph G is Eulerian if and only if

(i) G is connected and

(ii) every vertex has even degree.

A graph G is semi-Eulerian if and only if

(i) G is connected and

(ii) exactly two vertices have odd degree.

The theorem above is of a special type in mathematics. It is written as an
“if and only if ” statement, which indicates that the conditions laid out are
both necessary and sufficient. A necessary condition is a property that must
be achieved in order for a solution to be possible and a sufficient condition is
a property that guarantees the existence of a solution.

For a more familiar example, consider renting and driving a car. If you
want to rent a car, a necessary condition would be having a driver’s license;
but this condition may not be sufficient since some companies will only rent a
car to a person of at least 25 years of age. In contrast, having a driver’s license
is sufficient to be able to drive a car, but is not necessary since you can drive
a car with a learner’s permit as long as a guardian is present.

Mathematicians often search for a property (or collection of properties)
that is both necessary and sufficient (such as a number is even if and only if
it is divisible by 2). The theorem above gives both necessary and sufficient
conditions for a graph to be Eulerian or semi-Eulerian. It should be clear why
connectedness must be achieved if every vertex is to be reached in a single
tour. Can you explain the degree condition? When traveling through a graph,
we need to pair each entry edge with an exit edge. If a vertex is odd, then
there is no pairing available and we would eventually get stuck at that vertex.
However, if the starting and ending locations are different, then exactly two
vertices must be odd since the first edge out of the starting vertex does not
need to be paired with a return edge and the last edge to the ending vertex
does not need to be paired with an exit edge.

Eulerian Tours 11

The proof that the conditions above were indeed both necessary and suf-
ficient was not published until 1873. The work was completed by German
mathematician Carl Hierholzer, who unfortunately died too young to see his
work in print. His contribution was recognized through the naming of one
procedure for finding Eulerian circuits that is discussed in the next section.

Example 1.7 Look back at each of the graphs appearing so far in this chap-
ter. Which ones are Eulerian? semi-Eulerian? neither?

Solution:

• The graph representing Königsberg is neither Eulerian nor semi-Eulerian
since all four vertices are odd.

• The graph in Example 1.1 is neither Eulerian nor semi-Eulerian since it
is not connected.

• The graph in Example 1.3 is Eulerian since it is connected and all the
vertices have degree 2 or 4.

• The graph in Example 1.4 is semi-Eulerian since it is connected and
exactly two vertices are odd (namely, 372 and 271).

• Even though the graph in Example 1.5 is connected, it is neither Eule-
rian nor semi-Eulerian since it has more than two odd vertices (namely,
a, b, e, and f).

Note that the solution discussed in the first bullet above definitively an-
swers the Königsberg Bridge Problem — there is no way to leave your home,
travel across every bridge in the city exactly once, and return home!

In addition to the result above, Euler also determined some basic properties
of graphs in his seminal paper. The most important of these is stated below.

Theorem 1.7 (Handshaking Lemma) Let G = (V,E) be a graph and |E|
denote the number of edges in G. Then the sum of the degrees of the vertices
equals twice the number of edges; that is if V = {v1, v2, . . . , vn}, then

deg(v1) + deg(v2) + · · ·+ deg(vn) = 2|E|

This is often referred to as the Handshaking Lemma, as a quick proof of the
statement is best described by a graph model of handshakes. Define a graph
where each vertex represents a person and an edge represents a handshake
that has occurred between the people represented by the endpoints of the
edge. Then the total number of handshakes is equal to the total number of
edges in the graph and the number of times a person shook hands is equal
to the degree of his or her representative vertex. When totaling the degrees
of all the vertices, each handshake will be counted twice (one for each person
involved) and so the sum of the degrees equals twice the number of edges.

12 A Tour through Graph Theory

If the sum total of a collection of integers is even, how many odd integers
could appear in the sum? If not immediately clear, try a few examples. If
we add an odd number of odd integers, will the sum be even? No! In graph
theoretic terms, we get the following corollary to the Handshaking Lemma.

Corollary 1.8 There must be an even number of odd vertices in any graph G.

Why is this true? Since the sum of the degrees in any graph is twice the
number of edges, we know that the sum of the degrees must be even. Based
on our discussion above, this implies the number of odd vertices must also be
even.

1.4 Eulerian Circuit Algorithms

The previous section was mainly concerned with the existence question
— under what conditions will a graph have an Eulerian circuit? This was
definitively answered with two conditions that are easy to check. This section
focuses on the construction question: how do we find an Eulerian circuit once
we know one exists?

There are numerous methods for finding an Eulerian circuit (or trail),
though we will focus on only two of these. Each of these is written in the form
of an algorithm.

Definition 1.9 [36] An algorithm is a procedure for solving a mathematical
problem in a finite number of steps that frequently involve repetition of an
operation.

For our purposes, algorithms will be described in terms of the input, steps
to perform, and output, so it is clear how to apply the algorithm in various
scenarios. For the pseudo-code or more technical forms of the algorithms in
this book, the reader is encouraged to explore [4] or [24].

Fleury’s Algorithm

The first method for finding an Eulerian circuit that we discuss is Fleury’s
Algorithm. Although Fleury’s solution was not the first in print, it is one of the
easiest to walk through (no pun intended) [16]. As with all future algorithms
presented in this book, an example will immediately follow the description of
the algorithm and further examples are available in the exercises. Note that
Fleury’s Algorithm will produce either an Eulerian circuit or an Eulerian trail
depending on which solution is possible.

Eulerian Tours 13

Fleury’s Algorithm

Input: Connected graph G where zero or two vertices are odd.

Steps:

1. Choose a starting vertex, call it v. If G has no odd vertices, then any
vertex can be the starting point. If G has exactly two odd vertices, then
v must be one of the odd vertices.

2. Choose an edge incident to v that is unlabeled and label it with the
number in which it was chosen, ensuring that the graph consisting of
unlabeled edges remains connected.

3. Travel along the edge to its other endpoint.

4. Repeat steps 2 and 3 until all edges have been labeled.

Output: Labeled Eulerian circuit or trail.

The intention behind Fleury’s Algorithm is that you are prevented from
getting stuck at a vertex with no edges left to travel. In practice, it may be
helpful to use two copies of the graph — one to keep track of the route and
the other where labeled edges are removed. This second copy makes it easier
to see which edges are unavailable to be chosen. In the example below, the
vertex under consideration during a step of the algorithm will be highlighted
and edges will be labeled in the order in which they are chosen.

Example 1.8 Input: A connected graph (shown below) where every vertex
has even degree. We are looking for an Eulerian circuit.

v

u

w

x

y z

Step 1: Since no starting vertex is explicitly stated, we choose vertex v to be
the starting vertex.

Step 2: We can choose any edge incident to v. Here we chose vx. The labeled
graph is on the left and the unlabeled portions are shown on the right with

14 A Tour through Graph Theory

edges removed that have already been chosen.

v

u

w

x

y z

v

u

w

x

y z

1

Step 3: Looking at the graph to the right, we can choose any edge out of x.
Here we chose xy. The labeled and unlabeled graphs have been updated below.

v

u

w

x

y z

v

u

w

x

y z

1

2

Step 4: At this point we cannot choose yv, as its removal would disconnect
the unlabeled graph shown above on the right. However, yx and yz are both
valid choices. Here we chose yx.

v

u

w

x

y z

v

u

w

x

y z

1

2

3

Step 5: There is only one available edge xz.

Eulerian Tours 15

v

u

w

x

y z

v

u

w

y z

1

2
4

3

Step 6: There is only one available edge zy.

v

u

w

x

y z

v

u

w

y

1

5

2
4

3

Step 7: There is only one available edge yv.

v

u

w

x

y z

v

u

w

1

5

2
4

3

6

Step 8: Both vw and vu are valid choices for the next edge. Here we chose vw.

v

u

w

x

y z

v

u

w

1

7

5

2
4

3

6

16 A Tour through Graph Theory

Step 9: There is only one available edge wu.

v

u

w

x

y z

v

u

1

7

8

5

2
4

3

6

Step 10: There is only one available edge uv.

v

u

w

x

y z

v1

7

8

9

5

2
4

3

6

Output: The graph above on the left has an Eulerian circuit labeled, starting
and ending at vertex v.

Hierholzer’s Algorithm

As mentioned above, Hierholzer’s Algorithm is named for the German
mathematician whose paper inspired the procedure described below. This ef-
ficient algorithm begins by finding an arbitrary circuit originating from the
starting vertex. If this circuit contains all the edges of the graph, then an
Eulerian circuit has been found. If not, then we join another circuit to the
existing one.

Hierholzer’s Algorithm

Input: Connected graph G where all vertices are even.

Steps:

1. Choose a starting vertex, call it v. Find a circuit C originating at v.

2. If any vertex x on C has edges not appearing in C, find a circuit C ′

originating at x that uses two of these edges.

Eulerian Tours 17

3. Combine C and C ′ into a single circuit C∗.

4. Repeat steps 2 and 3 until all edges of G are used.

Output: Labeled Eulerian circuit.

Note that Hierholzer’s Algorithm requires the graph to be Eulerian,
whereas Fleury’s Algorithm allows for the graph to be Eulerian or semi-
Eulerian. In the implementation of Hierholzer’s Algorithm shown below, a new
circuit will be highlighted in blue with other edges in gray. As with Fleury’s
Algorithm, the edges will be labeled in the order in which they are traveled.

Example 1.9 Input: A connected graph where every vertex has even degree.
We are looking for an Eulerian circuit.

v

u

w

x

y z

Step 1: Since no starting vertex is explicitly stated, we choose v and find a
circuit originating at v. One such option is highlighted below.

v

u

w

x

y z

3
1

2

Step 2: As deg(v) = 4 and two edges remain for v (shown in gray above), a
second circuit starting at v is needed. One option is shown below.

v

u

w

x

y z

1

4
2

3

18 A Tour through Graph Theory

Step 3: Combine the two circuits from Step 1 and Step 2. There are multiple
ways to combine two circuits, but it is customary to travel the first circuit
created and then travel the second.

v

u

w

x

y z

4

7

3
1

2

5

6

Step 4: As deg(x) = 4 and two edges remain for x (shown in gray above), a
circuit starting at x is needed. It is shown below.

v

u

w

x

y z

1 2

Step 5: Combine the two circuits from Step 3 and Step 4.

v

u

w

x

y z

4

9

3
1

2

7

8

5 6

Output: The graph above gives a labeled Eulerian circuit originating at v.

There are advantages and disadvantages for these two methods; in partic-
ular, both Fleury’s and Hierholzer’s Algorithms will find an Eulerian circuit
when one exists, whereas only Fleury’s can be used to find an Eulerian trail
(see the exercises for a modification of Hierholzer’s that will find an Eulerian
trail). Try a few more examples and make additional comparisons. In practice,
either algorithm is a good choice for finding an Eulerian circuit — pick the
method that works best for you.

Barring these differences, the two Eulerian algorithms are fairly efficient .

Eulerian Tours 19

Algorithm efficiency will be discussed in more detail in the next chapter (as
well as in Section 7.1), but for now think of algorithm efficiency as measuring
how much time is needed for an algorithm to find a solution. Efficiency takes
into account the number of calculations needed to run the algorithm as the
size of the problem grows. An algorithm is considered efficient if the run
time grows at roughly the same speed as the size of the graph. For example,
applying Fleury’s Algorithm to a graph with 25 vertices is not that much more
difficult than a graph on 10 vertices. An inefficient algorithm is one in which
the run time grows much faster than the size of the graph.

At this point, we have answered both the existence and construction ques-
tions. But what happens when a graph does not have an Eulerian circuit? Do
we give up and move on? Obviously, the answer is no. The next section will
introduce a third question: optimization.

1.5 Eulerization

Look back at the graph from Example 1.5. We have already determined
that there is no Eulerian circuit or Eulerian trail due to four odd vertices in
the graph. If this graph modeled a city (with quite a lot of bridges!) then we
could not make a tour like the one of interest in Königsberg.

This section looks at how to adjust a graph to ensure an Eulerian circuit
or trail can be found. There are two ways a graph will fail to be Eulerian (or
semi-Eulerian): the graph is disconnected or the graph contains too many odd
vertices. The processes described below focus on the degree condition.

Definition 1.10 Given a connected graph G = (V,E), an Eulerization of
G is the graph G′ = (V,E′) so that

(i) G′ is obtained by duplicating edges of G, and

(ii) every vertex of G′ is even.

A semi-Eulerization of G results in a graph G′ so that

(i) G′ is obtained by duplicating edges of G, and

(ii) exactly two vertices of G′ are odd.

Once the Eulerization of a graph G has been completed, the new graph
G′ satisfies the conditions necessary for an Euler circuit to exist, allowing the
algorithms from the previous section to be applied. Viewing this in terms of
the Königsberg Bridge Problem, duplicating an edge would be akin to walking
the same bridge twice. Although this solution would be outside the original
parameters (walking each bridge exactly once), it allows for an approximate

20 A Tour through Graph Theory

solution using the fewest number of duplications. This is often referred to as
finding an optimal exhaustive tour of a graph.

d

c

a

b

d

c

a

b

d

c

a

b

Eulerization semi-Eulerization not an Eulerization

Note that when creating the new graph, edges must be duplicated, not
added. In Königsberg, creating a new edge in the graph model corresponds
to building a new bridge within the city. While this certainly can happen
within a city over time (and in fact the bridges in Königsberg have changed
considerably over the past one hundred fifty years, see [31]), it is unrealistic
from the standpoint of a person touring the bridges of a city during a specific
moment in time. Hence, we only allow duplications of edges.

Since the Eulerization (or semi-Eulerization) only allows for edge dupli-
cation, we cannot consider disconnected graphs. To make such a graph con-
nected, we would need to add new edges between the individual pieces. Again,
in terms of the original problem being modeled, we would be creating bridges
that do not already exist (see Example 1.6).

We are now investigating the optimization question: how can we Eulerize
(or semi-Eulerize) a graph using the fewest number of edge duplications? We
are attempting to find an optimal tour of the graph, that is minimize the total
length of the circuit (or trail).

Unlike the processes for determining if a graph is Eulerian and then find-
ing an Eulerian circuit, Eulerizing a graph can be quite complicated and the
formal algorithms are beyond the scope of this book. Instead, we will dis-
cuss a process for Eulerizing a graph and provide examples that display the
complexity involved. Portions of this will be revisited in Chapter 3.

Eulerization Method

1. Identify the odd vertices of the graph.

2. Pair up the odd vertices, trying to pair as many adjacent vertices as
possible while also avoiding pairing vertices far away from each other.

3. Duplicate the edges along an optimal path from one vertex to its pair.

Eulerian Tours 21

In the process of determining which edges to duplicate along optimal paths,
never repeat an edge more than once. If an edge is crossed three times, re-
moving two of the duplications will not change the parity of the endpoint of
the edge; that is, a vertex will remain odd or remain even when subtracting
two from the degree.

Example 1.10 The citizens of the small island town of Sunset Island want to
hire a night patrol during the busy summer tourist season. A map of the town
is shown below. Model the town as a graph and find an optimal Eulerization
of the graph.

Solution: Below is the graph modeling the town of Sunset Island where vertices
represent intersections and edges represent street blocks. Note that there are
four odd vertices (namely a, i, j and k). Since these four odd vertices can be
split into two pairs of adjacent vertices (a and i, j and k), we can Eulerize the
graph using only two edge duplications. An optimal Eulerization is shown in
blue.

a

b

c

e

f

g

h

i

j

k
d

a

b

c

e

f

g

h

i

j

k
d

22 A Tour through Graph Theory

The example above, though small and with just a few odd vertices, demon-
strates the general procedure of Eulerizing a graph. The example below pro-
vides more complexity and insight into how to handle multiple odd vertices.
Note that these examples all focus on Eulerizing a graph; semi-Eulerization
will be addressed in the exercises.

Example 1.11 You have been hired to put up fliers along each block of a
small portion of your hometown. You need to travel along each street once
but cannot put up fliers in the park. Model the situation as a graph and find
an optimal Eulerization.

Park

Solution: As above, we begin by modeling the map as a graph and identifying
the odd vertices, shown in blue below.

a b c d

ef
h

i
k m

nopq

g

j

We want to pair the 8 odd vertices into 4 pairs. Four options for an optimal
Eulerization are given below.

Eulerian Tours 23

a b c d

ef
h

i
k m

nopq

g

j

a b c d

ef
h

i
k m

nopq

g

j

a b c d

ef
h

i
k m

nopq

g

j

a b c d

ef
h

i
k m

nopq

g

j

Note that each of these Eulerizations uses exactly 6 duplicated edges. Un-
like Example 1.10, we cannot split all the odd vertices into adjacent pairs
meaning we will need more than 4 edges in an optimal Eulerization. In ad-
dition, we cannot use 5 edges in any Eulerization since if we use exactly 2
adjacent odd pairs (and thus needing 2 edge duplications) we are left with 2
pairs each of which is of distance 2 apart and thus requiring another 4 edge
duplications; if we use 3 adjacent pairs, we are left with 1 pair with vertices
of distance 3 apart. Both of these require a total of 6 duplicated edges.

Both of the examples above treated the edges equally. For example, in the
graph from Example 1.11 we could have duplicated either edges fg, gh, jk
and ji or edges fg, gj, jk and hi to make the vertices f, h, i and k even. There
is no distinction between the edges and so either choice is optimal. What if
the edges are not equivalent? Can you think of a reason why one duplication
might be preferable over another?

24 A Tour through Graph Theory

Chinese Postman Problem

Consider the graph model of Sunset Island shown in Example 1.10 above.
Portions of the town have a very regular grid structure and so traveling down
one block versus another is inconsequential (think of Manhattan or Phoenix).
However, for cities with more of an evolutionary development (such as Boston
or Providence) or in rural towns where roads curve and blocks have different
lengths. Traveling down a stretch of road twice could look remarkably different
from one choice to the next. How then would you model these differences? One
solution might be to draw the edges in the graph with a length proportional
to the length of the road they model, but how do you code this information
into an algorithm? A better method would be to assign numbers to each edge
that correspond to the length of the road. These types of graphs are called
weighted graphs.

Definition 1.11 A weighted graph G = (V,E,w) is a graph where each of
the edges has a real number associated with it. This number is referred to as
the weight and denoted w(xy) for an edge xy.

Note that a weighted graph can also refer to a graph in which each of the
vertices is assigned a weight, and denoted w(v) for a vertex v. In the next few
chapters, we will focus on graphs in which the edges are weighted; the vertex
version will be addressed in Chapter 6. Also, the weight associated with an
edge can represent more than just length. For example, we may be interested
in time or cost as opposed to distance. Choose the appropriate measure based
upon the scenario in question.

The weighted version of an Eulerization problem is called the Chinese
Postman Problem . The name originates not from anything particular about
postmen in China, but rather from the mathematician who first proposed the
problem — the Chinese mathematician Mei-Ku Kwan in 1962. This problem
first appeared more than two centuries after Euler’s original paper! And its
full solution was published about a decade later (the impressive, though com-
plicated, algorithm can be found in [13]). The main idea is that a Postman
delivering mail in a rural neighborhood should repeat the shortest stretches
of road (provided any duplications are necessary).

Example 1.12 Even though the patrolman on Sunset Island enjoys his
evening strolls, he would like to complete a circuit through the town in as
little time as possible. The weights on the graph below represent the average
time it takes the patrolman to travel that stretch of road. Find an optimal
Eulerization taking into account these weights.

Eulerian Tours 25

a

b

c

e

f

g

h

i

j

k
d

10

12

20
4

3

6

55

5

5

57

5

8

2

6

Solution: The Eulerization from Example 1.10 is shown below on the left.
Note that the two duplicated edges total 18. A better Eulerization is on the
right which duplicates three edges for a total of 15.

a

b

c

e

f

g

h

i

j

k
d

10

12

20

12

4

3

6

55

5

5

57

5

8

2

66

a

b

c

e

f

g

h

i

j

k
d

10

12

20

10

4

3
3

6

55

5

5

57

5

8

2
2

6

Be careful when duplicating edges in a graph with multi-edges, indicating
which edge has been duplicated. The graph on the right duplicated one of the
edges between a and b, and including the edge weight clarifies which option
was used.

On a general graph, solving the Chinese Postman Problem can be quite
challenging. However, most small examples can be solved by inspection since
there are relatively few choices for duplicating edges. Would you duplicate 3
edges of weight 1 or one edge of weight 10? The choice should be obvious. In
addition, if the weight of an edge represents distance, then we can rely on the
real world properties of distance. For example, the shortest path between two
points is a straight line and no one side of a triangle is longer than the sum of
the other two (this is called the “triangle inequality”). These two properties
would eliminate many options when the weight of an edge models distance
along a road. The more difficult (and hence more interesting) problems occur

26 A Tour through Graph Theory

when the weight represents something other than distance. Such an example
is shown below.

Example 1.13 Find an optimal Eulerization for the graph below where the
weights given are in terms of cost.

a b c d

eh

i m

nopq

g

j

f

k

10

1

10

1

10

1 1

4

1

2

1

2

11

3

6 5

3

5 6

777

Solution: The optimal Eulerization uses 7 edge duplications with an added
weight total of 13 and is shown in blue below.

a b c d

eh

i m

nopq

g

j

f

k

10

1

10

1

10

1 1

4

1

2

1

2

11

3

6 5

3

5 6

777

The Eulerization for the unweighted graph would only use 5 edge duplica-
tions (try it!). On a weighted graph, we attempt to pair vertices along paths
using edges of weight 1 as much as possible. We are able to do this for all
vertices except o and p, and we duplicate edge op of weight 7. Any attempt
to avoid using this edge would still require both o and p to be paired with
another vertex (since they are both odd vertices) and would require the use
of edges ko and jp, both of which have weight 5. There is no way to pair the
remaining odd vertices while maintaining a total increase in weight of 13.

Eulerian Tours 27

The choice of which edges to duplicate when working with a weighted
graph relies in part on shortest paths between two vertices. The difficulty is
in choosing which vertices to pair. This will be revisited in Chapter 3 when
an algorithm for finding a shortest path is introduced.

1.6 Exercises

1.1 Let G be a graph with vertex set V (G) = {a, b, c, d, e} and edge set
E(G) = {ab, ae, bc, cd, de, ea, eb}.
(a) Draw G.
(b) Is G connected?
(c) Is G simple?
(d) List the degrees of every vertex.
(e) Find all edges incident to b.
(f) List all the neighbors of a.
(g) Find a walk, trail, and path in G, each of which has length 3.
(h) Find a closed walk, circuit, and cycle in G, each of which starts at e.
(i) Is G Eulerian, semi-Eulerian, or neither? Explain your answer.

1.2 Which of the following scenarios could be modeled using an Eulerian circuit?
Explain your answer.
(a) A photographer wishes to visit each of the seven bridges in a city, take
photos, then return to his hotel.

(b) Salem Public Works must repave all the streets in the downtown area.
(c) Frank’s Flowers needs to deliver bouquets to 6 customers throughout the
city, starting and ending at the flower shop.

(d) Richmond Water Authority must read all the water meters throughout the
town. One worker is tasked with this job.

(e) Sam works in sales for a Fortune 500 company. He spends each day vis-
iting his clients around southwest Virginia and must plan his route to avoid
backtracking as much as possible.

1.3 Use Theorem 1.6 to explain why a graph cannot be both Eulerian and semi-
Eulerian.

28 A Tour through Graph Theory

1.4 For each of the graphs below (i) find the degree of each vertex, and (ii) use
your results from (i) to determine if the graph is Eulerian, semi-Eulerian, or
neither. Explain your answer.

(a) (b)

a

b

c

d

e

f
g

h

a b

c

de

f

h

j

g i

(c) (d)

a b

c

de

f

gh

a

b

c

d

e

f

g

h

(e) (f)

a

e

d c

b

f

a b

c

de

f

h

j

g i

1.5 For those graphs from Exercise 1.4 that have one, find an Eulerian circuit or
Eulerian trail.

Eulerian Tours 29

1.6 Find an Eulerian circuit or Eulerian trail for each of the graphs below.

(a) (b)
a

b

c

d

e

f

a

e

d c

b

(c)

a b c

d

efg

h

i j

km

(d)

a b

c
d

e f

g

h
i

jk

m n

30 A Tour through Graph Theory

1.7 Find an optimal Eulerization and semi-Eulerization for each of the graphs
below.

(a) (b)

a b c

def

a
b c d

e

f

g

hij
k

m
n o p

(c)

a

b

c

d

e f

g

h

i

j k

(d)
a

c

e

f

gh
i

j

k

b

d

(e)

a b

d

e f

g

i

jk

m n

c h

Eulerian Tours 31

1.8 Find an optimal Eulerization and semi-Eulerization for the graph in Example
1.13 with the edge weights removed.

Use the following map for Problems 1.9 and 1.10.

Park

Post Office

1.9 Sarah is planning the route for the neighborhood watch night patrol for the
community shown in the map above. The person on patrol must walk along each
street at least once, including the perimeter of the park.
(a) Model this scenario as a graph.
(b) Determine if the graph is Eulerian or semi-Eulerian or neither. Eulerize
the graph if it is not Eulerian.

(c) Find an Eulerian circuit starting and ending at the post office.

1.10 A postal worker is delivering mail along her route shown in the map above.
She must walk down both sides of the street if there are houses on both sides
and does not need to walk the streets that only border the park (since no houses
are in the park).
(a) Model this scenario as a graph (Hint: make use of multi-edges).
(b) Determine if the graph is Eulerian or semi-Eulerian or neither. Eulerize
the graph if it is not Eulerian.

(c) Find an Eulerian circuit starting and ending at the post office.

32 A Tour through Graph Theory

1.11 Repeat Exercise 1.9 with the map below.

Park

Post Office

1.12 Repeat Exercise 1.10 with the map above.

1.13 The image below appeared in Euler’s original paper on the Königsberg
Bridge Problem [14].

(a) Model the map as a graph (Hint: make use of multi-edges).
(b) Determine if the graph is Eulerian or semi-Eulerian or neither. Eulerize
the graph if it is not Eulerian.

(c) Find an Eulerian circuit for either the original graph or its Eulerization.

Eulerian Tours 33

1.14 Find an optimal Eulerization and semi-Eulerization for each of the weighted
graphs below.

(a)

a b c d

e

fghi

j
k m

1

1

3

2

1

2 1

2

1

210

2

5

26

1 1

(b)

a
b c d

e

f

g

hij
k

m
n o p

1

5

1

6

3

5

4

2 2

5

1

102

3

4

1

2

52

2 1 1

1.15 Find an optimal semi-Eulerization for the graph in Example 1.13 on page 26.

1.16 Fleury’s Algorithm can be used to find an Eulerian circuit or an Eulerian
trail, yet Hierholzer’s is written in such a way as to only work for Eulerian cir-
cuits. Modify Hierholzer’s Algorithm so it can be used to find an Eulerian trail.
(Hint: think about how Fleury’s accounts for the two odd vertices.)

1.17 A connected graph G has 8 vertices and 15 edges. You know three vertices
have degree 5 and three vertices have degree 3. What are the possible degrees
for the remaining two vertices?

Projects

1.18 You have been hired to create a route for the bridge inspector for the city
of Pittsburgh, Pennsylvania, which is known for its bridges. The city needs the
bridges to be visually inspected on the first day of every month and so needs the
route to be as short as possible in order for the inspector to complete his tour in
one day. Use a high quality map to create a graph similar to the one that arose

34 A Tour through Graph Theory

from Königsberg. Add edge weights that correspond to distance or time and find
an optimal exhaustive route (a tour through the graph that visits each bridge
at least once). Write a detailed report for the Pittsburgh city manager outlining
your methodology, results, and recommendations for the bridge inspector.

1.19 Pick a city neighborhood. Using a quality map, model the neighborhood
as a graph and assign weights to the edges. You may use any logical metric in
assigning weights (such as time or distance). Find an optimal route for a street
sweeper that must visit each street in the neighborhood.

Chapter 2

Hamiltonian Cycles

d

c

a

b

Think back to the city of Königsberg. The previous
chapter introduced the notion of a circuit and
determined when a graph would contain an Eule-
rian circuit, a special type of circuit that must travel
through every edge and vertex. This concept arose
from a desire to cross every bridge in the city.

What if we change the requirements ever so
slightly so that we are only concerned with the land-
masses? This could model a delivery service with
customers in every sector of the city. In graph theo-
retic terms, we are looking for a tour through the graph that hits every vertex
exactly once. An example of such a tour on the graph representing Königsberg
is shown above. What type of tour is this? If we need to start and end at the
same location, we are searching for a cycle. If the starting and ending points
can differ, we are searching for a path.

Definition 2.1 A cycle in a graph G that contains every vertex of G is
called a Hamiltonian cycle. A path that contains every vertex is called a
Hamiltonian path.

Recall that a cycle or a path can only pass through a vertex once, so the
Hamiltonian cycles and paths travel through every vertex exactly once.

As with Eulerian circuits, these specific cycles (or paths) are named for
the mathematician who first formalized them, Sir William Hamilton. Hamilton
posed this idea in 1856 in terms of a puzzle, which he later sold to a game
dealer. The “Icosian Game” was
a wooden puzzle with numbered
ivory pegs where the player was
tasked with inserting the pegs so
that following them in order would
traverse the entire board (shown at
the right). Perhaps not too surpris-
ingly, this game was not a big money
maker.

It should be noted that T.P.
Kirkman, a contemporary of Hamil-

35

36 A Tour through Graph Theory

ton’s, did much of the early work in the study of Hamiltonian circuits. Whereas
Hamilton primarily focused on one graph, Kirkman was concerned with the
existence question: under what conditions will a graph have a Hamiltonian
cycle? However, Hamilton deserves credit for publicizing the concept of a cy-
cle that hits every vertex exactly once. This chapter will explore the existence
question (when does a graph have a Hamiltonian cycle?), the construction
question (how do we find a Hamiltonian cycle?), as well as the optimization
question (how do we obtain the best Hamiltonian cycle?).

2.1 Conditions for Existence

When comparing an Eulerian circuit with a Hamiltonian cycle, only one
requirement has been lifted: instead of a tour containing every edge and every
vertex, we are now only concerned with the vertices. However, as often happens
in mathematics, when restrictions are relaxed, the solution either does not
exist or finding a solution becomes more difficult.

For the past one hundred fifty years, numerous mathematicians have
searched for a solution to the Hamiltonian cycle problem; that is, what are
the necessary and sufficient conditions for a graph to contain a Hamiltonian
cycle? Recall that a necessary condition is a property that must be achieved
in order for a solution to be possible and a sufficient condition is a property
that guarantees the existence of a solution. As we saw in the previous chapter,
necessary and sufficient conditions were found for Eulerian circuits — a graph
simply needs to be connected with all even vertices in order for an Eulerian
circuit to exist. The same is not true for Hamiltonian cycles.

As an initial example, look back at the Königsberg Bridge Problem. The
resulting graph does not have an Eulerian circuit but does have a Hamiltonian
cycle! The examples below should give some insight into why the difficulty in
finding a solution to the Hamiltonian cycle problem occurs.

Example 2.1 Does the graph below have an Eulerian circuit or trail?
Hamiltonian cycle or path?

a

b

c

d

Hamiltonian Cycles 37

Solution: Since the graph is connected and all vertices are even, we know it
has an Eulerian circuit. There is no Hamiltonian cycle since we need to include
c in the cycle and by doing so we have already passed through b twice, making
it impossible to visit a and d.

a

b

c

d

5
1

2

3

4

a

b

c

d

Eulerian circuit Hamiltonian path

Example 2.2 Does the graph below have an Eulerian circuit or trail?
Hamiltonian cycle or path?

Solution: Since the graph is connected and all vertices are even, we know it
is Eulerian. Hamiltonian cycles and Hamiltonian paths also exist. To find one
such path, remove any one of the highlighted edges from the Hamiltonian
cycle shown below.

1

11

10

14

2

8

7

3 6

5
4

12

9

13

Eulerian circuit Hamiltonian cycle

38 A Tour through Graph Theory

Recall from Chapter 1 that if a graph has an Eulerian circuit, then it
cannot have an Eulerian trail, and vice versa. The same is not true for the
Hamiltonian version:

• If a graph has a Hamiltonian cycle, it automatically has a Hamiltonian
path (just leave off the last edge of the cycle to obtain a path).

• If a graph has a Hamiltonian path, it may or may not have a Hamiltonian
cycle.

Example 2.3 Does the graph below have an Eulerian circuit or trail?
Hamiltonian cycle or path?

Solution: Since some vertices are odd, we know the graph is not Eulerian.
Moreover, since more than two vertices are odd, the graph is not semi-Eulerian.
However, this graph does have a Hamiltonian cycle (and so also a Hamiltonian
path). Can you find it?

Example 2.4 Does the graph below have an Eulerian circuit or trail?
Hamiltonian cycle or path?

d

cb

h

f e

a

g

Solution: Since four vertices are odd, we know the graph is neither Eulerian nor
semi-Eulerian. This graph does not have a Hamiltonian cycle since d cannot
be a part of any cycle. Moreover, this graph does not have a Hamiltonian path
since any traversal of every vertex would need to travel through g multiple
times.

Hamiltonian Cycles 39

As should be obvious from the above examples, a few necessary conditions
can be placed on the graph to ensure a Hamiltonian cycle is possible. These
include, but are not limited to, the following:

(1) G must be connected.

(2) No vertex of G can have degree less than 2.

(3) G cannot contain a cut-vertex, that is a vertex whose removal discon-
nects the graph.

Note that none of the above conditions are sufficient. Look back at the previous
examples. Which of them demonstrate this? Can you find other examples?

There are sufficient conditions for a graph to contain a Hamiltonian cycle;
but again, although these properties guarantee a Hamiltonian cycle exists for
graph satisfying these conditions, not all Hamiltonian graphs must satisfy
these properties. We will only include one here for discussion. For further
information, see [9].

Theorem 2.2 [12] (Dirac’s Theorem) Let G be a graph with n ≥ 3 vertices.
If every vertex of G satisfies deg(v) ≥ n

2 , then G has a Hamiltonian cycle.

The proof of this theorem boils down to the fact that each vertex has so
many edges incident to it that in trying to find a cycle we will never get stuck
at a vertex. But this property is not a necessary condition.

Example 2.5 Each of the graphs below contains a Hamiltonian cycle, shown
in blue. However, only the graph on the left satisfies Dirac’s Theorem.

n = 7 n = 7

deg = 4 ≥ 7

2
deg = 2 <

7

2
for all vertices for all vertices

For the remainder of this chapter, we will be focusing not on if a graph
has a Hamiltonian cycle, but rather how to find one in a graph known to have
such a cycle. We will mainly focus on a special type of graph, known as a
complete graph.

40 A Tour through Graph Theory

Definition 2.3 A simple graphG is complete if every pair of distinct vertices
is adjacent. The complete graph on n vertices is denoted Kn. The first six
complete graphs are shown below.

K1 K2

K3 K4

K5 K6

Complete graphs are special for a number of reasons. In particular, if you
think of an edge as describing a relationship between two objects, then a
complete graph represents a scenario where every pair of vertices satisfies this
relationship. Other useful properties of complete graphs are given below.

Properties of Kn

(1) Each vertex in Kn has degree n− 1.

(2) Kn has
n(n− 1)

2
edges.

(3) Kn contains the most edges out of all simple graphs on n vertices.

Note that any complete graph (on at least 3 vertices) satisfies the con-
ditions of Dirac’s Theorem, and therefore contains a Hamiltonian cycle. In
fact, unlike in a general graph, we can easily count the number of distinct
Hamiltonian cycles in a complete graph. First we need to define factorial.

Hamiltonian Cycles 41

Definition 2.4 Given a positive integer n, define n factorial as

n! = n · (n− 1) · (n− 2) · · · (1)

and where we define 0! = 1.

Factorials are prevalent in many branches of mathematics and appear quite
often in counting problems. A few useful properties of factorial arithmetic
calculations are shown in the example below. Further computations using
factorials can be found in the exercises.

Example 2.6 Compute the following factorials.

• 4! = 4 · 3 · 2 · 1 = 24

• 5! = 5 · 4 · 3 · 2 · 1 = 5 · 4! = 120

• 6! = 6 · 5! = 720

• 6!

4!
=

6 · 5 · (4 · 3 · 2 · 1)

4!
=

6 · 5 · 4!

4!
= 6 · 5 = 30

When modeling a problem whose solution is a Hamiltonian cycle (or path)
in the appropriate graph, there is often a desired “home” location or starting
vertex. We call the starting vertex of a cycle the reference point .

Theorem 2.5 Given a specified reference point, the complete graph Kn has
(n − 1)! distinct Hamiltonian cycles. Half of these cycles are reversals of the
others.

The idea of the proof is as follows. When starting at the designated vertex
there are n−1 possible edges to choose from. Once that edge has been traveled
to arrive at a new vertex, we cannot pick the edge just traveled and so there
remain n− 2 edges to choose from. At the next vertex, we cannot travel back
to either of the previously chosen vertices, and so there remains n − 3 edges
available. Continuing in this manner, we have a total of (n−1) · (n−2) · · · (2) ·
(1) = (n− 1)! possible Hamiltonian cycles.

2.2 Traveling Salesman Problem

Think back to the question raised at the beginning of this chapter: How
should a delivery service plan its route through a city to ensure each customer
is reached? Historically, the extensive study of Hamiltonian circuits arose in
part from a similar question: A traveling salesman has customers in numerous

42 A Tour through Graph Theory

cities. He must visit each of them and return home, but wishes to do this with
the least total cost. Determine the cheapest route possible for the salesman.

In fact, Proctor and Gamble spurred the study of Hamiltonian circuits
in the 1960s with a seemingly innocent competition asking for a shortest
Hamiltonian circuit visiting 33 cities across the United States. Mathematicians
were intrigued and an entire branch of mathematics and computer science
developed. For over half a century, some of the brightest minds have tackled
the Traveling Salesman Problem (my graph theory professor in college called
it “the disease”) and numerous books and websites are devoted to finding an
optimal solution to both the general question and to specific instances (such
as a cycle through all cities in Sweden). A full discussion of the problem is
beyond the scope of this book, though you are encouraged to peruse [6] or [7].

The graph that models the general Traveling Salesman Problem is a
weighted complete graph. Recall from Definition 1.11 that a weighted graph is
one in which each edge is assigned a weight, which usually represents either
distance, time, or cost. It is standard to use a complete graph since theoreti-
cally it should be possible to travel between any two cities.

Brute Force

To find the Hamiltonian cycle of least total weight, one obvious method
is to find all possible Hamiltonian cycles and pick the cycle with the smallest
total. The method of trying every possibility to find an optimal solution is
referred to as an exhaustive search, or use of the Brute Force Algorithm. This
method can be used for any number of problems, not just the Traveling Sales-
man Problem, though the description below is only for finding Hamiltonian
cycles. Knowing this, you might be asking yourself why this problem is still
being studied. If we have an algorithm that will find the optimal Hamiltonian
cycle, why are mathematicians still interested? The answer will soon become
clear.

Brute Force Algorithm

Input: Weighted complete graph Kn.

Steps:

1. Choose a starting vertex, call it v.

2. Find all Hamiltonian cycles starting at v. Calculate the total weight of
each cycle.

3. Compare all (n− 1)! cycles. Pick one with the least total weight. (Note:
there should be at least two options).

Output: Minimum Hamiltonian cycle.

Hamiltonian Cycles 43

Although both K3 and K4 contain Hamiltonian cycles (try it!), the first
graph with some complexity is K5. The example below walks through the
process of finding all 24 possible weighted cycles. You are encouraged to find
these on your own and then check your solution with the chart provided.

Example 2.7 Liz is planning her next business trip from her hometown of
Addison and has determined the cost for travel between any of the five cities
she must visit. This information is modeled in the weighted complete graph
below, where the weight is given in terms of dollars. Use Brute Force to find
all possible routes for her trip.

Addison

Essex

Dover Chelsea

Bristol

325

3
0
0

1
2
5

10
0

3
1
537

5

225

600

360
3
0
5

Solution: One method for finding all Hamiltonian cycles, and ensuring you in-
deed have all 24, is to use alphabetical or lexicographic ordering of the cycles.
Note that all cycles must start and end at Addison and we will abbreviate
all cities with their first letter. For example, the first cycle is a b c d e a and
appears first in the list below. Below each cycle is its reversal and total weight.

a b c d e a a b c e d a
a e d c b a a d e c b a

1645 1430

44 A Tour through Graph Theory

a b d c e a a b d e c a
a e c d b a a c e d b a

1760 1665

a b e c d a a b e d c a
a d c e b a a c d e b a

1635 1755

a c b d e a a c b e d a
a e d b c a a d e b c a

1395 1270

a c d b e a a c e b d a
a e b d c a a d b e c a

1600 1385

Hamiltonian Cycles 45

a d b c e a a d c b e a
a e c b d a a e b c d a

1275 1365

From the data above we can identify the optimal cycle as a c b e d a, which
provides Liz with the optimal route of Addison to Chelsea to Bristol to Essex
to Dover and back to Addison, for a total at a cost of $1270.

If you attempted to find all 24 cycles by hand, how long did it take you?
You may have gotten into a rhythm and improved after the first few, but it
still took some time to complete. What if you tried K6? K7? K15? How many
cycles would you need to check? Ignoring reversals you have 120, 720, and
roughly 87 billion cycles to find.

The Traveling Salesman Problem is of interest to mathematicians in part
because of how quickly the size of the problem grows. As the size of the input
grows (say from K5 to K15) the number of calculations needed to obtain an
output explodes (from 24 to about 87 billion; see Section 7.1 for further discus-
sion). You may be thinking “Yeah...but we have these things called computers
that can work faster than any human, so that shouldn’t be a problem.”

Computer performance is often measured in FLOPS, an acronym for
floating-point operations per second. Roughly speaking, a floating-point op-
eration can consist of arithmetic calculations (such as adding or subtracting
two numbers). Top of the line desktop processors have performance ratings of
roughly 175 billion FLOPS, better known as 175 GFLOPS [23]. At the time
of publication, the best supercomputer in the world had a performance rating
of about 33 million GFLOPS and the sum of the top 500 supercomputers was
308 million GFLOPS [38].

To determine how quickly these computers would complete the Brute Force
Algorithm, we first need to determine the number of FLOPS required. Given
a specified starting vertex, we know there are essentially (n − 1)!/2 possible
Hamiltonian cycles for the complete graphKn. For each of these cycles we need
to perform n additions to find its total weight. Once a cycle and its weight have
been computed, we must compare them to the previously computed cycle, only
keeping in memory the one of least total weight, requiring another (n− 1)!/2
calculations. Altogether, we estimate the time required to fully implement the

46 A Tour through Graph Theory

Brute Force Algorithm on Kn is

n · (n− 1)!

2
+

(n− 1)!

2
=

(n+ 1) · ((n− 1)!)

2

=
(n+ 1)!

2n
FLOPS.

Suppose you have been given access to the highest rated supercomputer
(and also the top 500) in the world and would like to find the optimal Hamil-
tonian cycle on Kn for each n from 5 to 50. How long will this take? The table
below gives you an estimate of the time requirements for increasing values
of n. To put some of these numbers into context, scientists believe the earth
is about 4.54 billion years old, that is 4.54 × 109 years! Using Brute Force is
computationally impractical for graphs with more than 24 vertices, even when
using the top 500 supercomputers in the entire world!

The discussion above illustrates how ineffective Brute Force is when trying
to solve an instance of the Traveling Salesman Problem. Although it will even-
tually find a solution, the time necessary to finish all the computations can be
quite unreasonable. Mathematicians have been searching for algorithms that
will find the optimal cycle in a relatively short time span; that is, an algo-
rithm that is both efficient and optimal. Not only has no such algorithm been
found for the Traveling Salesman Problem, but some mathematicians believe
no such algorithm even exists. Further discussion of the difference between
efficient and optimal can be found in Section 7.1.

Supercomputers

n Best Top 500

5 2× 10−15 seconds 2× 10−16 seconds

15 2× 10−5 seconds 2× 10−6 seconds

20 40 seconds 4 seconds

21 14 minutes 2 minutes

22 5 hours 32 minutes

23 4.5 days 12 hours

24 16 weeks 12 days

25 7.5 years 10 months

26 2 centuries 2 decades

30 132 million years 14 million years

40 4.1× 1023 years 4.3× 1022 years

50 1.4× 1040 years 1.5× 1039 years

The next few sections discuss approximate algorithms, which are ef-
ficient but not optimal. This means they can find a good Hamiltonian cycle

Hamiltonian Cycles 47

without taking too much computational time. In some instances these algo-
rithms may in fact find the optimal cycle, but there is no guarantee that
this will always occur. This will become evident through the examples and
exercises.

Nearest Neighbor

If you do not have time to run Brute Force, how would you find a good
Hamiltonian cycle? You could begin by taking the edge to the “closest” vertex
from your starting location, that is the edge of the least weight. And then?
Maybe move to the closest vertex from your new location? This strategy is
called the Nearest Neighbor Algorithm.

Nearest Neighbor Algorithm

Input: Weighted complete graph Kn.

Steps:

1. Choose a starting vertex, call it v. Highlight v.

2. Among all edges incident to v, pick the one with the smallest weight. If
two possible choices have the same weight, you may randomly pick one.

3. Highlight the edge and move to its other endpoint u. Highlight u.

4. Repeat steps (2) and (3), where only edges to unhighlighted vertices are
considered.

5. Close the cycle by adding the edge to v from the last vertex highlighted.
Calculate the total weight.

Output: Hamiltonian cycle.

Example 2.8 Apply the Nearest Neighbor Algorithm to the graph from
Example 2.7.

Solution: At each step we will show two copies of the graph. One will indicate
the edges under consideration and the other traces the route under construc-
tion.

Step 1: The starting vertex is a.

Step 2: The edge of smallest weight incident to a is ae with a weight of 100.

48 A Tour through Graph Theory

a

e

d c

b

3253
0
0

1
2
5

10
0

a

e

d c

b

Step 3: From e we only consider edges to b, c or d. Choose edge eb with weight
225.

a

e

d c

b
225

360

3
0
5

a

e

d c

b

Step 4: From b we consider the edges to c or d. The edge of smallest weight is
bc with weight 315.

a

e

d c

b

3
1
537

5

a

e

d c

b

Step 5: Even though cd does not have the smallest weight among all edges
incident to c, it is the only choice available.

a

e

d c

b

600

a

e

d c

b

Step 6: Close the circuit by adding da.

Hamiltonian Cycles 49

a

e

d c

b

Output: The circuit is a e b c d a with total weight 1365.

In the example above, the final circuit was Addison to Essex to Bristol
to Chelsea to Dover and back to Addison. Although Nearest Neighbor did
not find the optimal circuit of total cost $1270, it did produce a fairly good
circuit with total cost $1365. Perhaps most important was the speed with
which Nearest Neighbor found this circuit.

Example 2.8 also illustrates some drawbacks for Nearest Neighbor. First,
the last two edges are completely determined since we cannot travel back to
vertices that have already been chosen. This could force us to use the heaviest
edges in the graph, as happened above. Second, the arbitrary choice of a
starting vertex could cause light edges to be eliminated from consideration.

Though we cannot do anything about the former concern, we can address
the latter. By using a different starting vertex, the Nearest Neighbor Algo-
rithm may identify a new Hamiltonian cycle, which may be better or worse
than the initial cycle. Instead of only considering the circuits starting at the
chosen vertex (for example, Liz’s hometown of Addison), we will run Nearest
Neighbor with each of the vertices as a starting point. This is called Repeti-
tive Nearest Neighbor.

Repetitive Nearest Neighbor Algorithm

Input: Weighted complete graph Kn.

Steps:

1. Choose a starting vertex, call it v.

2. Apply the Nearest Neighbor Algorithm.

3. Repeat steps (1) and (2) so each vertex of Kn serves as the starting
vertex.

4. Choose the cycle of least total weight. Rewrite it with the desired refer-
ence point.

Output: Hamiltonian cycle.

50 A Tour through Graph Theory

The last step of this algorithm calls for a cycle to be rewritten. Looking
back at the table of cycles in Example 2.7, if you did not know the starting
vertex was a, you could not discern this from the cycle highlighted in the
graph. In fact, any vertex in a cycle could be the reference point, though there
is often a designated reference point based on the scenario being modeled.

Example 2.9 Apply the Repetitive Nearest Neighbor Algorithm to the graph
from Example 2.7.

Solution: Each of the cycles is shown below, with its original name, the rewrit-
ten form with a as the reference point, and the total weight of the cycle. You
should notice that the cycle starting at d is the same as the one starting at
a, and the cycle starting at b is their reversal. You are encouraged to verify
these.

a

e

d c

b

a

e

d c

b

a e b c d a b e a d c b

a e b c d a a d c b e a

1365 1365

a

e

d c

b

a

e

d c

b

c a e b d c d a e b c d

a e b d c a a e b c d a

1600 1365

Hamiltonian Cycles 51

a

e

d c

b

e a d b c e

a d b c e a

1275

It should come as no surprise that Repetitive Nearest Neighbor performs
better than Nearest Neighbor; however, there is no guarantee that this im-
provement will produce the optimal cycle. In the example above, the algorithm
found the second best cycle, which only differed from the optimal by $5! This
small increase in cost would clearly be worth the time savings over Brute
Force.

Cheapest Link

Even though Repetitive Nearest Neighbor addressed the concern of missing
small weight edges, it is still possible that some of these will be bypassed as
we travel a cycle. The Cheapest Link Algorithm attempts to fix this by
choosing edges in order of weight as opposed to edges along a tour. Unlike
either version of Nearest Neighbor, Cheapest Link does not follow a path that
eventually closes into a cycle, but rather chooses edges by weight in such a
way that they eventually form a cycle.

Cheapest Link Algorithm

Input: Weighted complete graph Kn.

Steps:

1. Among all edges in the graph pick the one with the smallest weight. If
two possible choices have the same weight, you may randomly pick one.
Highlight the edge.

2. Repeat step (1) with the added conditions:

(a) no vertex has three highlighted edges incident to it; and

(b) no edge is chosen so that a cycle closes before hitting all the vertices.

52 A Tour through Graph Theory

3. Calculate the total weight.

Output: Hamiltonian cycle.

Example 2.10 Apply the Cheapest Link Algorithm to the graph from
Example 2.7.

Solution: In each step shown below, unchosen edges are shown in gray, previ-
ously chosen edges are in black, and the newly chosen edge in blue.

Step 1: The smallest weight is 100 for edge ae.

a

e

d c

b

325

3
0
0

1
2
5

10
0

3
1
537

5

225

600

360
3
0
5

Step 2: The next smallest weight is 125 with edge ad.

a

e

d c

b

325

3
0
0

10
0

3
1
537

5

225

600

360

3
0
5

1
2
5

Step 3: The next smallest weight is 225 for be. Since this does not close a circuit
or cause a vertex to have three incident highlighted edges, we can choose be.

a

e

d c

b

325

3
0
0

10
0

3
1
537

5

600

360

3
0
5

1
2
5

225

Hamiltonian Cycles 53

Step 4: Even though ac has weight 300, we must bypass it as it would force
a to have three incident edges that are highlighted. An edge that is skipped
will be marked with an X.

a

e

d c

b

32510
0

3
1
537

5

600

360

3
0
5

1
2
5

225

3
0
0X

Step 5: The next smallest weight is 305 for edge ed, but again we must bypass
it as it would close a cycle too early as well as force e to have three incident
edges that are highlighted.

a

e

d c

b

32510
0

3
1
537

5

600

360

1
2
5

3
0
0X

225

3
0
5

X

Step 6: The next available is bc with weight 315.

a

e

d c

b

32510
0

37
5

600

360

3
0
0X

3
0
5

X

1
2
5

225

3
1
5

Step 7: At this point, we must close the cycle and there is only one choice cd.

54 A Tour through Graph Theory

a

e

d c

b

32510
0

37
5

360

3
0
0X

3
0
5

X

1
2
5

225

3
1
5

600

Output: The resulting cycle is a e b c d a with total weight 1365.

In the example above, Cheapest Link ran into the same trouble as the
initial cycle created using Nearest Neighbor; although the lightest edges were
chosen, the heaviest also had to be included due to the outcome of the pre-
vious steps. However, Cheapest Link will generally perform quite well (in the
example above, it found the same cycle as Nearest Neighbor) and is an efficient
algorithm.

Nearest Insertion

The downfall of the previous two algorithms is the focus on choosing the
smallest weighted edges at every opportunity. In some instances, it may be
beneficial to work for a balance — choose more moderate weight edges to
avoid later using the heaviest. The Nearest Insertion Algorithm does just
this by forming a small circuit initially from the smallest weighted edge and
balances adding new edges with the removal of a previously chosen edge.

Nearest Insertion Algorithm

Input: Weighted complete graph Kn.

Steps:

1. Among all edges in the graph, pick the one with the smallest weight. If
two possible choices have the same weight, you may randomly pick one.
Highlight the edge and its endpoints.

2. Pick a vertex that is closest to one of the two already chosen vertices.
Highlight the new vertex and its edges to both of the previously chosen
vertices.

3. Pick a vertex that is closest to one of the three already chosen vertices.
Calculate the increase in weight obtained by adding two new edges and
deleting a previously chosen edge. Choose the scenario with the smallest

Hamiltonian Cycles 55

total. For example, if the cycle obtained from (2) was a− b− c− a and
d is the new vertex that is closest to c, we calculate:

w(dc) + w(db)− w(cb) and w(dc) + w(da)− w(ca)

and choose the option that produces the smaller total.

4. Repeat step (3) until all vertices have been included in the cycle.

5. Calculate the total weight.

Output: Hamiltonian cycle.

Example 2.11 Apply the Nearest Insertion Algorithm to the graph from
Example 2.7.

Solution: At each step shown below, the graph on the left highlights the edge
being added and the graph on the right shows how the cycle is built.

Step 1: The smallest weight edge is ae at 100.

a

e

d c

b

325

3
0
0

1
2
5

3
1
537

5

225

600

360

3
0
5

10
0

a

e

Step 2: The closest vertex to either a or e is d through the edge ad of weight
125. Form a cycle by adding ad and de.

a

e

d c

b

325

3
0
0

10
0

3
1
537

5

225

600

360

3
0
5

1
2
5

a

e

d

Step 3: The closest vertex to any of a, d or e is b through the edge be with
weight 225.

56 A Tour through Graph Theory

a

e

d c

b

325

3
0
0

1
2
5

10
0

3
1
537

5

600

360

3
0
5

225

a

e

d

b

In adding edge be, either ae or de must be removed so that only two
edges are incident to e. To determine which is the better choice, compute the
following expressions:

be+ ba− ea = 225 + 325− 100 = 450

be+ bd− ed = 225 + 375− 305 = 295

Since the second total is smaller, we create a larger cycle by adding edge bd
and removing ed.

a

e

d

b

Step 4: The only vertex remaining is c, and the minimum edge to the other
vertices is ac with weight 300.

a

e

d c

b

325

1
2
5

10
0

3
1
537

5

600

360

3
0
5

225

3
0
0

a

e

d c

b

Either ae or ad must be removed. As in the previous step, we compute the
following expressions:

ca+ cd− ad = 300 + 600− 125 = 775

ca+ ce− ae = 300 + 360− 100 = 560

The second total is again smaller, so we add ce and remove ae.

Hamiltonian Cycles 57

a

e

d c

b

Output: The cycle is a c e b d a with total weight 1385.

In the example above, Nearest Insertion performed slightly worse than
Cheapest Link and Repetitive Nearest Neighbor. Among all three algorithms,
Repetitive Nearest Neighbor found the cycle closest to optimal. In general,
when comparing algorithm performance we focus less on absolute error (1275−
1270 = 5) but rather on relative error.

Definition 2.6 The relative error for a solution is given by

ε =
Solution−Optimal

Optimal

Absolute error gives the exact measure away from optimal, but can be
misleading if the weights themselves are either very large or very small. Using
relative error allows us to compare the performance of an algorithm across
multiple examples where the scale may vary. It is important to remember that
relative error (and absolute error) can only be calculated when the optimal
solution is known.

Example 2.12 Find the relative error for each of the algorithms performed
on the graph from Example 2.7.

Solution:

• Repetitive Nearest Neighbor: ε =
1275− 1270

1270
= 0.003937 ≈ 0.39%

• Cheapest Link: ε =
1365− 1270

1270
= 0.074803 ≈ 7.48%

• Nearest Insertion: ε =
1385− 1270

1270
= 0.090551 ≈ 9.05%

It is possible for an approximation algorithm to find the optimal solution.

58 A Tour through Graph Theory

However, this is unlikely and any of these algorithms could in fact find the ab-
solute worst choice. In addition, no one approximation algorithm will always
perform better than the others. There are instances in which one of the algo-
rithms performs better than the others and instances where it performs worse.
The next example provides more practice with Cheapest Link and Nearest In-
sertion. The details of Repetitive Nearest Neighbor for this example can be
found in Exercise 2.7.

Example 2.13 Liz needs to head back on the road again but costs have
changed, as shown in the table below. Draw a weighted complete graph to
model this information. Working directly from the table, find a Hamiltonian
cycle using Cheapest Link and Nearest Insertion.

Addison Bristol Chelsea Dover Essex

Addison · 100 350 125 250

Bristol 100 · 265 425 400

Chelsea 350 265 · 300 325

Dover 125 425 300 · 375

Essex 250 400 325 375 ·

Solution:

Weighted Graph
To form the weighted graph, each city is represented by a vertex and the
cost to travel between them is given by the edge weight. Note that the table
above is symmetric. For example traveling from Addison to Bristol (row 1 and
column 2) has the same cost as traveling from Bristol to Addison (row 2 and
column 1). Thus only one edge is needed between any two vertices.

Addison

Essex

Dover Chelsea

Bristol

100

3
5
0

1
2
5

25
0

2
6
542

5

400

300

325

3
7
5

Cheapest Link
Working from the table, we begin with a graph consisting only of the vertices.

Hamiltonian Cycles 59

At each step we add in the chosen edge as indicated by the algorithm.

Step 1: Begin with edge ab, as it has smallest weight of 100.

a

e

d c

b

100

Step 2: The next smallest weight is 125 for edge ad.

a

e

d c

b

100

1
2
5

Step 3: Even though ae has weight 250, we must bypass it as it would force a
to have three incident blue edges.

a

e

d c

b

100

1
2
5

25
0
X

Step 4: The next available is bc of weight 265.

a

e

d c

b

100

1
2
5

2
6
5

60 A Tour through Graph Theory

Step 5: The next smallest weight is 300 for edge cd, but again we must bypass
it as it would close the cycle too early.

a

e

d c

b

100

1
2
5

2
6
5

300
X

Step 6: The next available is ce with weight 325.

a

e

d c

b

100

1
2
5

2
6
5325

Step 7: At this point, we must close the cycle and there is only one choice de.

a

e

d c

b

100

1
2
5

2
6
5325

3
7
5

Output: The cycle is a b c e d a with total weight 1190 as shown above.

Nearest Insertion

Step 1: Pick edge ab of weight 100. The closest vertex to either a or b is d
through the edge ad of weight 125. Form a cycle by adding ad and bd.

Hamiltonian Cycles 61

a

d

b

100

1
2
5

42
5

Step 2: The closest vertex to any of a, b or d is e through the edge ae with
weight 250.

a

e

d

b

100

1
2
5

25
0

42
5

In adding edge ae, either ab or ad must be removed. To determine which is
the better choice, compute the following expressions:

ae+ be− ab = 250 + 400− 100 = 550

ae+ de− ad = 250 + 375− 125 = 500

Based on the computations above, create a larger cycle by adding edge de and
remove ad.

a

e

d

b

10025
0

42
53

7
5

Step 3: The only vertex remaining is c, with the minimum edge of bc.

62 A Tour through Graph Theory

a

e

d c

b

10025
0

2
6
542

53
7
5

This requires either ba or bd to be removed. As in the previous step, we
compute the following expressions:

bc+ ca− ba = 265 + 350− 100 = 515

bc+ cd− bd = 265 + 300− 425 = 140

Choose the addition of cd and the removal of bd.

a

e

d c

b

10025
0

2
6
5

300

3
7
5

Output: The cycle is a d c b e a with total weight of 1290 as shown above.

Note that we cannot calculate the relative error of the cycles obtained in
Example 2.13 since we do not know the weight of the optimal cycle. To do
so, we would need to apply Brute Force and pick the cycle of minimum total
weight.

Hopefully, you now have an idea of why the Traveling Salesman Problem
intrigues mathematicians. What appears to be a simple problem is in fact very
difficult (time-wise) to solve. There are many more approximation algorithms
for the Traveling Salesman Problem (one that is closely related to Nearest
Insertion is discussed in Exercise 2.15) and you are encouraged to peruse the
website [6] for further discussion of these approaches.

Hamiltonian Cycles 63

2.3 Digraphs

Thus far, we have restricted our study to symmetric relationships (edge
ab is the same as edge ba). In one sense this accurately models traveling
between cities since the distance from Bristol to Chelsea equals the distance
from Chelsea to Bristol (think back to the reversals from the application of
the Brute Force Algorithm). However, in another sense we are ignoring a
real possibility — that traveling between two vertices may not be symmetric.
For example, flying from one city to another rarely costs the same in both
directions due to customer demand and airport specific fees.

Definition 2.7 A directed graph , or digraph , is a graph G = (V,A) that
consists of a vertex set V (G) and an arc set A(G). An arc is an ordered pair
of vertices.

Example 2.14 Let G be a digraph where V (G) = {a, b, c, d} and A(G) =
{ab, ba, cc, dc, db, da}. A drawing of G is given below.

a

b

c

d

Analogous definitions to those in Definition 1.2 exist for digraphs. A few of
these are listed below along with the appropriate references to Example 2.14.
Other directed versions of previously defined terminology should be obvious
based on context.

Definition 2.8 Let G = (V,A) be a digraph.

• Given an arc xy, the head is the starting vertex x and the tail is the
ending vertex y.

– a is the head of arc ab and the tail of arcs da and ba

• Given a vertex x, the in-degree of x is the number of arcs for which x
is a tail, denoted deg−(x). The out-degree of x is the number of arcs
for which x is the head, denoted deg+(x).

64 A Tour through Graph Theory

– deg−(a) = 2, deg−(b) = 2, deg−(c) = 2, deg−(d) = 0

– deg+(a) = 1, deg+(b) = 1, deg+(c) = 1, deg+(d) = 3

• The underlying graph for a digraph is the graph G′ = (V,E) which is
formed by removing the direction from each arc to form an edge.

• A directed path is a path in which the tail of an arc is the head of the
next arc in the path.

– d→ a→ b is a directed path, but c→ d→ a→ b is not since cd is
not an arc in the graph.

• A directed cycle is a cycle in which the tail of an arc is the head of
the next arc in the cycle.

– a→ b→ a is a directed cycle, but d→ a→ b→ d is not.

Similar to the Handshaking Lemma (Theorem 1.7), the sum of the degrees
in a digraph has a relationship to the number of arcs.

Theorem 2.9 Let G = (V,A) be a digraph and |A| denote the number of arcs
in G. Then both the sum of the in-degrees of the vertices and the sum of the
out-degrees equals the number of arcs; that is, if V = {v1, v2, . . . , vn}, then

deg−(v1) + · · ·+ deg−(vn) = |A|
= deg+(v1) + · · ·+ deg+(vn)

Since each arc will contribute to the in-degree of its tail and to the out-
degree of its head, the sum of the in-degrees equals the sum of the out-degrees.
Moreover, each arc is counted exactly once in the sum of the in-degrees (or
out-degrees) since it has a unique tail (or head).

Recall that determining if a graph has a Hamiltonian cycle or path was
quite difficult and no set of properties have been proven to be both necessary
and sufficient. It should not come as much of a surprise that finding such
paths and cycles in digraphs is even more difficult. In fact, even when the
underlying graph is a complete graph, a digraph may not have a Hamiltonian
cycle. A few properties should be immediately apparent for a digraph to have
a Hamiltonian cycle; namely,

(1) G must be connected.

(2) No vertex of G can have in-degree or out-degree of 0.

(3) G cannot contain a cut-vertex.

The only property listed above that changed from graphs to digraphs was
(2). Can you explain the adjustment to considering in-degree and out-degree?
What would happen if either of these was 0?

Hamiltonian Cycles 65

Dirac’s Theorem (Theorem 2.2) provided a sufficient condition for a graph
to have a Hamiltonian cycle, namely the degree of every vertex must be quite
large. A similar result holds for digraphs that again uses in-degree and out-
degree.

Theorem 2.10 Let G be a digraph. If deg−(v) ≥ n
2 and deg+(v) ≥ n

2 for
every vertex of G, then G has a Hamiltonian cycle.

There has been extensive study of Hamiltonian digraphs; similar to the
section on graphs, we will focus on a specific type of digraph known to con-
tain a Hamiltonian cycle. In particular, the Asymmetric Traveling Salesman
Problem allows for the weights to differ based upon which direction is taken
between vertices.

Asymmetric Traveling Salesman Problem

Consider the problem of the delivery service posed at the beginning of the
chapter. The need to visit each customer was translated into the mathemat-
ical problem of finding a cycle that contained each vertex of a graph, called
a Hamiltonian cycle. When distance or cost was considered, we were search-
ing for the optimal Hamiltonian cycle, referred to as the Traveling Salesman
Problem. The Asymmetric Traveling Salesman Problem is to find the optimal
Hamiltonian directed cycle on a digraph in which the weight of arc ab need
not equal the weight of arc ba.

For our purposes, we are only using complete digraphs in which each arc
has a positive weight. A complete digraph is similar to a complete graph
with the added condition that between any two distinct vertices x and y
both arcs xy and yx exist in the digraph. This is different from a digraph
whose underlying graph is a complete graph, called a tournament, since in
tournaments exactly one of xy and yx is an arc. Section 7.3 addresses some
of the properties of tournaments and their use in mathematical modeling.

Instead of introducing new procedures for finding a Hamiltonian directed
cycle on a digraph, we choose to convert a digraph into an undirected graph.
This allows us to apply the algorithms from the previous section. Although
any of Nearest Neighbor, Cheapest Link, and Nearest Insertion can be used,
their implementation will be slightly different from earlier in the chapter due
to the nature of the resulting undirected graph.

Undirecting Algorithm

Input: Weighted complete digraph G = (V,A,w).

Steps:

1. For each vertex x make a clone x′. Form the edge xx′ with weight 0.

66 A Tour through Graph Theory

2. For each arc xy form the edge x′y.

3. The weight of an edge is equal to the weight of its corresponding arc;
that is

• w(xx′) = 0

• w(x′y) = w(xy)

• w(xy′) = w(yx).

Output: Weighted clone graph G′ = (V ′, E′, w), where V ′ consists of all ver-
tices from G and their clones and E′ the edges described above.

The duplication of vertices allows us to code the weight of an arc into the
weight of an edge of an undirected graph. But by adding these clones, we
need to ensure that when forming a cycle an arc into a vertex is immediately
followed by an arc out of that same vertex. By giving the edge between a
vertex and its clone a weight of 0 (when all other arcs have positive weights),
we ensure this edge will always be included in any Hamiltonian cycle. In
addition, this extra edge does not impact the total weight of the final cycle.

Example 2.15 Liz is once again heading out on the road to visit her cus-
tomers, yet this time the direction of a route impacts its cost. This information
is displayed below, both in digraph form and as a table. Note that the table is
no longer symmetric and an entry is given in terms of row to column; that is,
the cost of Addison to Bristol is 325 (row 1 – column 2) and the cost of Bristol
to Addison is 375 (row 2 – column 1). Apply the Undirecting Algorithm to
the digraph to get its weighted clone graph.

Addison

Essex

Dover Chelsea

Bristol

325

4
0
0

1
5
0

25
0

3
1
5

37
5

225

375

600

360

3
0
0

3
5
03

0
5

1
2
5

37
5

650

10
0

350

4004
0
0

Hamiltonian Cycles 67

Addison Bristol Chelsea Dover Essex

Addison · 325 400 150 250

Bristol 375 · 315 375 225

Chelsea 300 350 · 600 360

Dover 125 375 650 · 305

Essex 100 350 400 400 ·

Solution: Both the weighted clone graph and table of edge weights are given
below (with vertex names in place of cities). Note that the new table is sym-
metric, with a copy of the original table in the lower left quadrant and its
mirror image in the upper right quadrant. Edges that do not exist are indi-
cated by a dot in the table.

b′

b

a′a

e′

e

d′

d c′

c

0

375

3
0
0

1
2
5

10
0 325

4
0
0

1
5
0

25
0

350

37
5

3
5
0

0

3
1
5

37
5

225

400

650

0
600

360

4
0
0

0

3
0
5

0

a b c d e a′ b′ c′ d′ e′

a · · · · · 0 375 300 125 100

b · · · · · 325 0 350 375 350

c · · · · · 400 315 0 650 400

d · · · · · 150 375 600 0 400

e · · · · · 250 225 360 305 0

a′ 0 325 400 150 250 · · · · ·
b′ 375 0 315 375 225 · · · · ·
c′ 300 350 0 600 360 · · · · ·
d′ 125 375 650 0 305 · · · · ·
e′ 100 350 400 400 0 · · · · ·

68 A Tour through Graph Theory

Note that even though the input of the algorithm above is a complete
digraph, the output is not a complete graph (which edges are missing?). The
Undirecting Algorithm can be applied to a digraph that is not complete;
however, the resulting graph may not have a Hamiltonian cycle. When applied
to a complete digraph G on n vertices, the resulting graph G′ is guaranteed to
have a Hamiltonian cycle since the conditions of Dirac’s Theorem are satisfied
(G′ has 2n vertices, each of which has degree n). The cycle from G′ can then
be translated to a Hamiltonian directed cycle of the digraph G where vertex
copies get reduced back to a single vertex. Any cycle in a weighted clone graph
will alternate between original vertices from the digraph and their clones.

Example 2.16 Apply Nearest Neighbor to the graph from Example 2.15
with starting vertices a, a′, e and e′. Translate each of these cycles into its
directed cycles.

Solution: The table below lists the four cycles found using Nearest Neighbor
and their conversion to a directed cycle in the digraph. Note that cycles be-
ginning with a clone vertex must be reversed in the translation back into a
direct cycle.

Nearest Neighbor Cycle Conversion Total Weight

a a′ d d′ e e′ b b′ c c′ a a→ d→ e→ b→ c→ a 1420

a′ a e′ e b′ b c′ c d′ d a′ a→ d→ c→ b→ e→ a 1475

e e′ a a′ d d′ b b′ c c′ e e→ a→ d→ b→ c→ e 1300

e′ e b′ b c′ c a′ a d′ d e′ e→ d→ a→ c→ b→ e 1500

A drawing for the cycle beginning at a′ is shown below, as well as its
conversion in the digraph.

b′

b

a′a

e′

e

d′

d c′

c

0

375

3
0
0

1
2
5

10
0 325

4
0
0

25
0

350

37
5

0

3
1
5

37
5

3
0
5

600

360

4
0
0

0

400

650

0

0

1
5
0

3
5
0

225

Hamiltonian Cycles 69

a

e

d c

b

325

4
0
0

25
0

3
1
5

37
5

375

600

360

3
0
0

3
0
5

1
2
5

37
5

10
0

350

4004
0
0

1
5
0

225

3
5
0

650

Unlike in the symmetric case, reversals of a Hamiltonian cycle in a digraph
(that is not a complete digraph) might not exist, and those that do will most
likely result in a different total weight. Thus when applying the Nearest Neigh-
bor Algorithm to graphs formed using the Undirecting Algorithms, we must
consider starting at both copies of a vertex, such as a and a′ shown above.

Cheapest Link or Nearest Insertion Algorithms create new challenges when
applied to a graph formed using the Undirecting Algorithm. In particular, all
edges of weight 0 must be included in the final cycle. This happens naturally
for Cheapest Link since picking the edges of minimum weight would initially
result in choosing all the weight 0 edges as no two of these are adjacent (so
there is no concern of a vertex having degree 3 or closing the circuit too early).
The example below shows how to adjust the Cheapest Link Algorithm for use
on the weighted clone graph.

Example 2.17 Apply Cheapest Link to the graph from Example 2.15. Trans-
late the cycle into the directed cycle, find its total weight, and rewrite it for
a reference point of Addison.

Solution:

Step 1: Since all edges between a vertex and its clone have a weight of 0, all
of these edges will be chosen. We condense these into one step.

70 A Tour through Graph Theory

b′

b

a′a

e′

e

d′

d c′

c

0

0

0
0

0

Step 2: The edge of smallest weight is ae′ at 100. This is added to the graph
below.

b′

b

a′a

e′

e

d′

d c′

c

0

10
0

0

0
0

0

Step 3: The next lowest is 125 for ad′; however, we cannot choose this edge
since it would cause a to be incident to three highlighted edges. We skip this
edge and move to a′d, which has a weight of 150.

b′

b

a′a

e′

e

d′

d c′

c

0

10
0

1
5
0

0

0
0

0

Hamiltonian Cycles 71

Step 4: The next lowest edge weight is 225 for b′e. This is a valid choice and
added to the graph below.

b′

b

a′a

e′

e

d′

d c′

c

0

10
0

1
5
0

0
225

0
0

0

Step 5: The next five smallest weights come from ineligible edges (try it!). The
next smallest valid edge is c′b with weight is 350.

b′

b

a′a

e′

e

d′

d c′

c

0

10
0

1
5
0

3
5
0

0

225

0
0

0

Step 6: To close the circuit, we must choose cd′ with weight 650. The resulting
circuit in the weighted clone graph is a a′ d d′ c c′ b b′ e e′ a.

b′

b

a′a

e′

e

d′

d c′

c

0

10
0

1
5
0

3
5
0

0

225

650
0

0

0

72 A Tour through Graph Theory

Step 7: We now convert the cycle from the previous step into the digraph for
the original digraph. This gives the directed cycle a → d → c → b → e → a
with total weight 1640.

a

e

d c

b

325

4
0
0

25
0

3
1
5

37
5

375

600

360

3
0
0

3
0
5

1
2
5

37
5

10
0

350

4004
0
0

1
5
0

650

3
5
0

225

Unlike Cheapest Link, the Nearest Insertion Algorithm in its original form
does not function on the weighted clone graphs from this section. The main
concern is there are no cycles of length 3 in the graph created by the Undi-
recting Algorithm (see Exercise 2.13) and the second step of Nearest Insertion
results in a cycle on three vertices originating from the cheapest edge of the
graph. A modification of Nearest Insertion for the weighted clone graphs,
which treats the weight 0 edges differently, appears in Exercise 2.14.

2.4 Exercises

2.1 Compute the following factorials:
(a) 8!
(b) 12!
(c) 16!

2.2 Simplify the following factorials:
(a) 9 ∗ 8!

(b)
11!

8!

(c) 6! ∗ 7!

5!

2.3 How many different Hamiltonian cycles are there for K4? K8? K10? Draw all
possible Hamiltonian cycles for K4.

Hamiltonian Cycles 73

2.4 Find a solution to the Icosian Game shown on page 35.

2.5 Find a Hamiltonian cycle for the graph in Example 2.3.

2.6 For each of the graphs below, determine if G

(i) definitely has a Hamiltonian cycle;

(ii) definitely does not have a Hamiltonian cycle; or

(iii) may or may not have a Hamiltonian cycle.

Explain your answer.

(a) G has vertices of degree 3, 3, 3, 4, 4, 5.
(b) G is connected with 10 vertices, all of which have degree 6.
(c) G has vertices of degree 1, 2, 2, 3, 5, 5.
(d) G is connected with vertices of degree 2, 2, 3, 3, 4, 4.
(e) G has vertices of degree 0, 2, 2, 4, 4, 5, 5.

2.7 Apply Repetitive Nearest Neighbor to the graph from Example 2.13.

2.8 Find a Hamiltonian cycle for each of the graphs below using (i) Repetitive
Nearest Neighbor (ii) Cheapest Link and (iii) Nearest Insertion.

(a) (b)
a

e

d c

b

5

7

2

10

4

2

5

6

3

4
m

q

p o

n

150

2
5
0

1
7
5

10
0

1
9
540

0

525

350

415

5
6
0

(c) (d)

c

ba

f

e d

7
5

6

8

10

1

4

4

2

3

6

5

3

48

f

k

i h

g

41.50

3
7
.5
0

4
5
.0
0

50
.00

1
0
.7
5

30
.25

12.50

17.50

26.00

3
3
.0
0

74 A Tour through Graph Theory

(e)

m

kj

p

o n

265
212

159

3
0
6

53
0 123

2
1
2

31
8

53
0

31
8

26
5

424

424

371

259

2.9 Chris wants to visit his 4 brothers over the holidays and has determined the
costs as shown in the table below. Find a route (and its total weight) for Chris
using
(a) Repetitive Nearest Neighbor
(b) Cheapest Link
(c) Nearest Insertion

Chris David Evan Frank George

Chris · 325 300 125 100

David 325 · 215 375 225

Evan 300 215 · 400 275

Frank 125 375 400 · 305

George 100 225 275 305 ·

2.10 June and Tori are planning their annual winery tour of Virginia. They want
to plan their route so they can see as many of the wineries in one day as possible
and this year will be staying at the inn at Mt. Eagle Winery. The chart below
lists the wineries and the time (in minutes) between each one. Find a possible
route (and its total time) for June and Tori using
(a) Repetitive Nearest Neighbor
(b) Cheapest Link
(c) Nearest Insertion
(d) and determine if they can visit all six locations in one day.

Hamiltonian Cycles 75

Bluebird Cardinal Elk Point Red Fox Graybird Mt. Eagle

Wines Winery Vineyard Wines Vineyard Winery

Bluebird · 41 58 43 51 49

Cardinal 41 · 60 7 62 33

Elk Point 58 60 · 75 67 53

Red Fox 43 7 75 · 64 36

Graybird 51 62 67 64 · 68

Mt. Eagle 49 33 53 36 68 ·

2.11 Using the digraph below,
(a) Apply the Undirecting Algorithm to find the weighted clone graph.
(b) Using your result from (a), apply the Nearest Neighbor Algorithm with
starting vertices a, a′, c and c′ and convert your results to directed cycles in
the digraph. Find the total weight of each directed cycle.

(c) Using your result from (a), apply the Cheapest Link Algorithm and convert
your result to a directed cycle in the digraph and find its total weight.

a

e

d c

b

35

2
5

1
5

30
3
2

37

50

28

35

18

2
3

4
04

6

1
3

52

33

15

41

103
8

2.12 Leena will be visiting her clients around Europe for the month of April. She
has tried to estimate the cost of travel between two cities, using various modes
of transportation and discovered the cost depends on the direction of travel. The
table below gives these estimates (similar to that of Example 2.15).
(a) Draw the directed graph representing the information in the chart below.
(b) Apply the Undirecting Algorithm to find the weighted clone graph.
(c) Using your result from (a), apply the Nearest Neighbor Algorithm with
starting vertices a, a′, d and d′ and convert your results to directed cycles in
the digraph. Find the total weight of each directed cycle.

(d) Using your result from (a), apply the Cheapest Link Algorithm and con-
vert your result to a directed cycle in the digraph and find its total weight.

76 A Tour through Graph Theory

Amsterdam Bern Düsseldorf Genoa Munich

Amsterdam · 415 375 280 300

Bern 500 · 425 110 250

Düsseldorf 300 425 · 375 240

Genoa 150 200 500 · 400

Munich 275 350 315 400 ·

2.13 Explain why no cycles of length three exist in the graph resulting from ap-
plying the Undirecing Algorithm to a complete digraph.

2.14 Determine a modification of Nearest Insertion that will allow it to be used
on a graph obtained from complete digraph using the Undirecting Algorithm.
Use your modification on the graph from Example 2.15. (Hint: the initial cycle
should start from the lowest nonzero edge and should have length 4.)

Projects

2.15 The Nearest Insertion Algorithm finds a Hamiltonian cycle by expanding
smaller cycles through the addition of the closest vertex to that cycle. It suffers
from the same problem as the other algorithms in that a large edge may be cho-
sen in the last step of the algorithm. A variation, called Farthest Insertion ,
first considers the vertices farthest apart since any Hamiltonian cycle must in-
clude both of them. In doing so, later additions of vertices will either reduce the
cycle weight or increase it by small margins. The description of the algorithm
appears below.

Farthest Insertion Algorithm

Input: Weighted complete graph G = (V,E).

Steps:

1. Pick a starting vertex v1.

2. Choose the vertex v2 that has the highest weighted edge to v1.

3. Form a list (w1, w2, w3, . . . , wn) where the entry in location i is the mini-
mum weighted edge from vi to either of v1 and v2. The entries for v1 and
v2 will be left blank (denoted by −).

4. Choose vertex x with the largest value from the list created in Step 3. Form
the cycle v1 v2 x v1.

5. Update the list from Step 3 so the entries are now the weights from the
chosen to unchosen vertices. Choose the next vertex y with largest value
in the list.

6. Append the cycle of chosen vertices with y by removing one of the edges
from that cycle. Determine which edges to add and subtract by choosing

Hamiltonian Cycles 77

the lowest total as in Nearest Insertion; that is, if the cycle obtained from
Step 4 was a− b− c− a and d is the new vertex to add along with edge to
dc, we calculate:

w(dc) + w(db)− w(cb) and w(dc) + w(da)− w(ca)

and choose the option that produces the smaller total.

7. Repeat Steps (5) and (6) until all vertices have been included in the cycle.

Output: Hamiltonian cycle.

Apply Farthest Insertion to the graphs from Examples 2.7 and 2.13.

2.16 Each morning a collection of online orders arrives at the warehouse of a large
retailer. Steve, the warehouse manager, must ensure the items are packed and
put onto the truck for shipment. However, the items are different every morning
and are located in varying locations in the large warehouse. Steve has come to
you for help in determining the best method for pulling stock from the shelves.
Write a report detailing the Traveling Salesman Problem and how it applies to
the warehouse. As part of your report, determine a route for the items shown in
the map below. The route must start and end at the packaging bay (p) and the
time required for moving down a long aisle is 45 seconds and down a short aisle
or between aisles is 10 seconds. For example, it takes 85 seconds to get from item
a to item b since four short segments and one long segment are used. Include a
weighted graph and discussion of which algorithm(s) you used and if your route
is known to be optimal.

A *

*

*

*

*

*
*

B

C

D

E

F
Packaging

Bay

2.17 Come up with a business that needs to solve a Traveling Salesman Problem.
Name the business and describe why they are working on this problem. Make
sure to include a good reason why finding a Hamiltonian cycle is necessary
for their business. The table on the next two pages lists the distance between

78 A Tour through Graph Theory

the top 25 cities based on their population in 2014. Choose 6 cities, draw the
weighted graph, and apply the algorithms from this chapter to determine a good
Hamiltonian cycle. Discuss the advantages and disadvantages of each technique
and if you know any of your cycles is optimal.

Hamiltonian Cycles 79

T
o
p

2
5

U
.S

.
C

it
ie

s
b
y

P
o
p

u
la

ti
o
n

N
Y
C

L
A
X

C
H
I

H
O
U

P
H
I

P
H
X

S
A
T

S
N
D

D
A
L

S
J
C

A
U
S

J
A
X

S
F
O

N
ew

Y
o
rk

(N
Y
C
)

∗
2
4
4
8

7
1
2

1
4
1
9

8
1

2
1
4
2

1
5
8
3

2
4
3
1

1
3
7
2

2
5
5
2

1
5
1
3

8
3
6

2
5
6
9

L
o
s
A
n
g
el
es

(L
A
X
)

2
4
4
8

∗
1
7
4
4

1
3
7
2

2
3
9
1

3
5
7

1
2
0
3

1
1
2

1
2
3
9

3
0
6

1
2
2
6

2
1
4
6

3
4
8

C
h
ic
a
g
o

(C
H
I)

7
1
2

1
7
4
4

∗
9
4
3

6
6
4

1
4
5
3

1
0
5
4

1
7
3
3

8
0
6

1
8
4
0

9
8
1

8
6
5

1
8
5
7

H
o
u
st
o
n

(H
O
U
)

1
4
1
9

1
3
7
2

9
4
3

∗
1
3
4
1

1
0
1
5

1
8
9

1
3
0
3

2
2
5

1
6
1
0

1
4
6

8
2
2

1
6
4
4

P
h
il
a
d
el
p
h
ia

(P
H
I)

8
1

2
3
9
1

6
6
4

1
3
4
1

∗
2
0
8
0

1
5
0
7

2
3
7
0

1
2
9
9

2
5
0
2

1
4
3
7

7
5
9

2
5
2
0

P
h
o
en

ix
(P

H
X
)

2
1
4
2

3
5
7

1
4
5
3

1
0
1
5

2
0
8
0

∗
8
4
8

2
9
9

8
8
6

6
1
5

8
6
9

1
7
9
3

6
5
4

S
a
n
A
n
to
n
io

(S
A
T
)

1
5
8
3

1
2
0
3

1
0
5
4

1
8
9

1
5
0
7

8
4
8

∗
1
1
2
8

2
5
3

1
4
5
3

7
4

1
0
1
1

1
4
8
9

S
a
n
D
ie
g
o

(S
N
D
)

2
4
3
1

1
1
2

1
7
3
3

1
3
0
3

2
3
7
0

2
9
9

1
1
2
8

∗
1
1
8
3

4
1
7

1
1
5
6

2
0
9
0

4
5
9

D
a
ll
a
s

(D
A
L
)

1
3
7
2

1
2
3
9

8
0
6

2
2
5

1
2
9
9

8
8
6

2
5
3

1
1
8
3

∗
1
4
5
1

1
8
2

9
0
8

1
4
8
3

S
a
n
J
o
se

(S
J
C
)

2
5
5
2

3
0
6

1
8
4
0

1
6
1
0

2
5
0
2

6
1
5

1
4
5
3

4
1
7

1
4
5
1

∗
1
4
6
6

2
3
4
4

4
2

A
u
st
in

(A
U
S
)

1
5
1
3

1
2
2
6

9
8
1

1
4
6

1
4
3
7

8
6
9

7
4

1
1
5
6

1
8
2

1
4
6
6

∗
9
6
0

1
5
0
2

J
a
ck

so
n
v
il
le

(J
A
X
)

8
3
6

2
1
4
6

8
6
5

8
2
2

7
5
9

1
7
9
3

1
0
1
1

2
0
9
0

9
0
8

2
3
4
4

9
6
0

∗
2
3
7
3

S
a
n
F
ra
n
ci
sc
o

(S
F
O
)

2
5
6
9

3
4
8

1
8
5
7

1
6
4
4

2
5
2
0

6
5
4

1
4
8
9

4
5
9

1
4
8
3

4
2

1
5
0
2

2
3
7
3

∗
In
d
ia
n
a
p
o
li
s

(I
N
D
)

6
4
4

1
8
0
8

1
6
5

8
6
7

5
8
3

1
4
9
8

1
0
0
1

1
7
8
7

7
6
4

1
9
2
7

9
2
7

7
0
0

1
9
4
7

C
o
lu
m
b
u
s

(C
O
L
)

4
7
7

1
9
7
6

2
7
6

9
9
3

4
1
5

1
6
6
6

1
1
4
1

1
9
5
5

9
1
4

2
0
9
2

1
0
6
8

6
7
0

2
1
1
1

F
o
rt

W
o
rt
h

(F
T
W

)
1
4
0
0

1
2
0
9

8
2
5

2
3
7

1
3
2
7

8
5
5

2
4
1

1
1
5
2

3
1

1
4
2
2

1
7
4

9
3
8

1
4
5
4

C
h
a
rl
o
tt
e

(C
L
T
)

5
3
2

2
1
1
7

5
8
8

9
2
7

4
5
1

1
7
8
1

1
1
0
5

2
0
7
9

9
2
9

2
2
7
5

1
0
4
0

3
4
2

2
2
9
9

D
et
ro
it

(D
E
T
)

4
8
1

1
9
8
2

2
3
7

1
1
0
7

4
4
2

1
6
8
9

1
2
4
0

1
9
7
1

1
0
0
0

2
0
7
3

1
1
6
6

8
3
4

2
0
8
9

E
l
P
a
so

(E
L
P
)

1
8
9
9

7
0
3

1
2
5
0

6
7
2

1
8
3
1

5
6
0

5
0
0

6
3
0

5
6
8

9
5
9

5
2
6

1
4
6
9

9
9
6

S
ea

tt
le

(S
E
A
)

2
4
0
5

9
6
1

1
7
3
5

1
8
9
1

2
3
7
6

1
1
1
6

1
7
8
8

1
0
6
5

1
6
8
2

7
1
1

1
7
7
2

2
4
5
4

6
8
0

D
en

v
er

(D
E
N
)

1
6
2
9

8
3
1

9
1
9

8
7
9

1
5
7
7

5
8
6

8
0
3

8
3
4

6
6
3

9
2
8

7
7
3

1
4
6
7

9
4
8

W
a
sh

in
g
to
n
D
.C

.
(W

D
C
)

2
0
4

2
2
9
7

5
9
4

1
2
2
0

1
2
3

1
9
8
0

1
3
8
7

2
2
7
2

1
1
8
3

2
4
1
8

1
3
1
8

6
4
9

2
4
3
8

M
em

p
h
is

(M
E
M
)

9
5
4

1
6
0
2

4
8
3

4
8
5

8
8
0

1
2
6
1

6
3
3

1
5
6
0

4
2
0

1
7
7
4

5
6
1

5
9
1

1
8
0
1

B
o
st
o
n

(B
O
S
)

1
9
0

2
5
9
4

8
5
0

1
6
0
6

2
7
1

2
2
9
8

1
7
6
7

2
5
8
2

1
5
5
1

2
6
8
1

1
6
9
6

1
0
1
8

2
6
9
6

N
a
sh
v
il
le

(N
S
H
)

7
5
9

1
7
7
9

3
9
8

6
6
6

6
8
4

1
4
4
5

8
2
4

1
7
4
2

6
1
7

1
9
3
6

7
5
3

5
0
0

1
9
6
1

(c
o
n
ti
n
u
ed

o
n
th

e
n
ex

t
p
a
g
e)

80 A Tour through Graph Theory

T
o
p

2
5

U
.S

.
C

it
ie

s
b
y

P
o
p

u
la

ti
o
n

IN
D

C
O
L

F
T
W

C
L
T

D
E
T

E
L
P

S
E
A

D
E
N

W
D
C

M
E
M

B
O
S

N
S
H

N
ew

Y
o
rk

(N
Y
C
)

6
4
4

4
7
7

1
4
0
0

5
3
2

4
8
1

1
8
9
9

2
4
0
5

1
6
2
9

2
0
4

9
5
4

1
9
0

7
5
9

L
o
s
A
n
g
el
es

(L
A
X
)

1
8
0
8

1
9
7
6

1
2
0
9

2
1
1
7

1
9
8
2

7
0
3

9
6
1

8
3
1

2
2
9
7

1
6
0
2

2
5
9
4

1
7
7
9

C
h
ic
a
g
o

(C
H
I)

1
6
5

2
7
6

8
2
5

5
8
8

2
3
7

1
2
5
0

1
7
3
5

9
1
9

5
9
4

4
8
3

8
5
0

3
9
8

H
o
u
st
o
n

(H
O
U
)

8
6
7

9
9
3

2
3
7

9
2
7

1
1
0
7

6
7
2

1
8
9
1

8
7
9

1
2
2
0

4
8
5

1
6
0
6

6
6
6

P
h
il
a
d
el
p
h
ia

(P
H
I)

5
8
3

4
1
5

1
3
2
7

4
5
1

4
4
2

1
8
3
1

2
3
7
6

1
5
7
7

1
2
3

8
8
0

2
7
1

6
8
4

P
h
o
en

ix
(P

H
X
)

1
4
9
8

1
6
6
6

8
5
5

1
7
8
1

1
6
8
9

5
6
0

1
1
1
6

5
8
6

1
9
8
0

1
2
6
1

2
2
9
8

1
4
4
5

S
a
n
A
n
to
n
io

(S
A
T
)

1
0
0
1

1
1
4
1

2
4
1

1
1
0
5

1
2
4
0

5
0
0

1
7
8
8

8
0
3

1
3
8
7

6
3
3

1
7
6
7

8
2
4

S
a
n
D
ie
g
o

(S
N
D
)

1
7
8
7

1
9
5
5

1
1
5
2

2
0
7
9

1
9
7
1

6
3
0

1
0
6
5

8
3
4

2
2
7
2

1
5
6
0

2
5
8
2

1
7
4
2

D
a
ll
a
s

(D
A
L
)

7
6
4

9
1
4

3
1

9
2
9

1
0
0
0

5
6
8

1
6
8
2

6
6
3

1
1
8
3

4
2
0

1
5
5
1

6
1
7

S
a
n
J
o
se

(S
J
C
)

1
9
2
7

2
0
9
2

1
4
2
2

2
2
7
5

2
0
7
3

9
5
9

7
1
1

9
2
8

2
4
1
8

1
7
7
4

2
6
8
1

1
9
3
6

A
u
st
in

(A
U
S
)

9
2
7

1
0
6
8

1
7
4

1
0
4
0

1
1
6
6

5
2
6

1
7
7
2

7
7
3

1
3
1
8

5
6
1

1
6
9
6

7
5
3

J
a
ck

so
n
v
il
le

(J
A
X
)

7
0
0

6
7
0

9
3
8

3
4
2

8
3
4

1
4
6
9

2
4
5
4

1
4
6
7

6
4
9

5
9
1

1
0
1
8

5
0
0

S
a
n
F
ra
n
ci
sc
o

(S
F
O
)

1
9
4
7

2
1
1
1

1
4
5
4

2
2
9
9

2
0
8
9

9
9
6

6
8
0

9
4
8

2
4
3
8

1
8
0
1

2
6
9
6

1
9
6
1

In
d
ia
n
a
p
o
li
s

(I
N
D
)

∗
1
6
8

7
8
9

4
2
8

2
4
0

1
2
6
1

1
8
7
0

1
0
0
0

4
9
1

3
8
4

8
0
6

2
5
2

C
o
lu
m
b
u
s

(C
O
L
)

1
6
8

∗
9
3
9

3
4
8

1
6
4

1
4
2
5

2
0
1
1

1
1
6
5

3
2
7

5
1
0

6
4
3

3
3
4

F
o
rt

W
o
rt
h

(F
T
W

)
7
8
9

9
3
9

∗
9
6
0

1
0
2
3

5
3
7

1
6
6
1

6
4
4

1
2
1
2

4
4
9

1
5
7
8

6
4
6

C
h
a
rl
o
tt
e

(C
L
T
)

4
2
8

3
4
8

9
6
0

∗
5
0
6

1
4
9
1

2
2
8
3

1
3
5
7

3
3
0

5
2
0

7
2
1

3
4
0

D
et
ro
it

(D
E
T
)

2
4
0

1
6
4

1
0
2
3

5
0
6

∗
1
4
7
6

1
9
3
5

1
1
5
6

3
9
4

6
2
4

6
1
2

4
7
1

E
l
P
a
so

(E
L
P
)

1
2
6
1

1
4
2
5

5
3
7

1
4
9
1

1
4
7
6

∗
1
3
7
8

5
5
7

1
7
2
2

9
7
3

2
0
6
8

1
1
6
6

S
ea

tt
le

(S
E
A
)

1
8
7
0

2
0
1
1

1
6
6
1

2
2
8
3

1
9
3
5

1
3
7
8

∗
1
0
2
1

2
3
2
4

1
8
6
6

2
4
8
8

1
9
7
3

D
en

v
er

(D
E
N
)

1
0
0
0

1
1
6
5

6
4
4

1
3
5
7

1
1
5
6

5
5
7

1
0
2
1

∗
1
4
9
1

8
7
8

1
7
6
7

1
0
2
2

W
a
sh

in
g
to
n
D
.C

.
(W

D
C
)

4
9
1

3
2
7

1
2
1
2

3
3
0

3
9
4

1
7
2
2

2
3
2
4

1
4
9
1

∗
7
6
3

3
9
4

5
6
7

M
em

p
h
is

(M
E
M
)

3
8
4

5
1
0

4
4
9

5
2
0

6
2
4

9
7
3

1
8
6
6

8
7
8

7
6
3

∗
1
1
3
6

1
9
7

B
o
st
o
n

(B
O
S
)

8
0
6

6
4
3

1
5
7
8

7
2
1

6
1
2

2
0
6
8

2
4
8
8

1
7
6
7

3
9
4

1
1
3
6

∗
9
4
3

N
a
sh
v
il
le

(N
S
H
)

2
5
2

3
3
4

6
4
6

3
4
0

4
7
1

1
1
6
6

1
9
7
3

1
0
2
2

5
6
7

1
9
7

9
4
3

∗

Chapter 3

Paths

The previous two chapters focused on exhaustive routes through a graph.
Whether the objective was to visit vertices or edges, in both cases we were
concerned with including all of them. Compare that to the following scenario:

Pamela is driving from Bennington to Brattleboro and needs to do so
as quickly as possible (without speeding of course!). She has estimates
of how long each portion of the trip takes, but there are multiple routes
available.

If we drew the graph that models the possible routes, with weights assigned
to the edges representing expected time, would Pamela be interested in an
Eulerian circuit or trail? Hamiltonian cycle or path? No! The former would
mean she takes every possible road, whereas the latter would represent going
through every possible intersection. Neither of these is the correct graph model
for her scenario. So then, what graph model solves this route problem?

The following section will discuss a method for finding a shortest route
within a graph, as well as revisit the Chinese Postman Problem from Chapter
1. In addition, a method for determining a work schedule for various interde-
pendent processes provides another application of routes within a digraph.

3.1 Shortest Paths

The problem above can be described in graph theoretic terms as the search
for a shortest path on a weighted graph. Recall that a path is a sequence of
vertices in which there is an edge between consecutive vertices and no vertex
is repeated. As with the algorithms for the Traveling Salesman Problem, the
weight associated to an edge may represent more than just distance (e.g., cost
or time) and the shortest path really indicates the path of least total weight.
Note, in this section we will only investigate the construction question (how to
find a shortest path) since the existence question (does a shortest path exist)
is quickly answered by simply knowing if the graph is connected.

In 1956 Edsger W. Dijkstra proposed the algorithm we are about to study
not out of necessity for finding a shortest route, but rather as a demonstration
of the power of a new “automatic computer” at the Mathematical Centre in

81

82 A Tour through Graph Theory

Amsterdam. The goal was to have a question easily understood by a general
audience while also allowing for audience participation in determining the
inputs of the algorithm. In Dijkstra’s own words “the demonstration was a
great success.” [11] Perhaps more surprising is how important this algorithm
would become to modern society — almost every GIS (Geographic Information
System, or mapping software) uses a modification of Dijkstra’s algorithm to
provide directions. In addition, Dijkstra’s algorithm provides the backbone of
many routing systems and some studies in epidemiology.

Dijkstra’s Algorithm

Numerous versions of Dijkstra’s Algorithm exist, though two basic descrip-
tions adhere to Dijkstra’s original design. In one, the shortest paths from your
chosen vertex to all other vertices are found. Though useful in its own right,
this does not properly model the question we are trying to answer, namely
what is the shortest route from point a to (a specific) point b (or in Pamela’s
case, the shortest route from Bennington to Brattleboro). The version of Dijk-
stra’s Algorithm shown below stops once the required ending vertex has been
reached and is more faithful to the format in the original publication (see
[10]). For more discussion of the lengthier version, see Exercise 3.2 or [40].

Dijkstra’s Algorithm is a bit more complex than the algorithms we have
studied so far. Each vertex is given a two-part label L(v) = (x, (w(v)). The
first portion of the label is the name of the vertex used to travel to v. The
second part is the weight of the path that was used to get to v from the
designated starting vertex. At each stage of the algorithm, we will consider a
set of free vertices, denoted by an F below. Free vertices are the neighbors of
previously visited vertices that are themselves not yet visited.

Dijkstra’s Algorithm

Input: Weighted connected simple graph G = (V,E) and vertices designated
as Start and End.

Steps:

1. For each vertex x of G, assign a label L(x) so that L(x) = (−, 0) if
x = Start and L(x) = (−,∞) otherwise. Highlight Start.

2. Let u = Start and define F to be the neighbors of u. Update the labels
for each vertex v in F as follows:

if w(u) + w(uv) < w(v), then redefine L(v) = (u,w(u) + w(uv))

otherwise do not change L(v)

3. Highlight the vertex with lowest weight as well as the edge uv used to
update the label. Redefine u = v.

Paths 83

4. Repeat steps (2) and (3) until the ending vertex has been reached. In
all future iterations, F consists of the un-highlighted neighbors of all
previously highlighted vertices and the labels are updated only for those
vertices that are adjacent to the last vertex that was highlighted.

5. The shortest path from Start to End is found by tracing back from End
using the first component of the labels. The total weight of the path is
the weight for End given in the second component of its label.

Output: Highlighted path from Start to End and total weight w(End).

Perhaps the most complex portion of this algorithm is the labeling of the
vertices and how they are updated with iterations of Step (2) and Step (3).
In the initial step of Dijkstra’s Algorithm, all vertices have no entry in the
first part of the label and the second part is 0 for the starting vertex and ∞
for all others. Note that the set F of free vertices consists of all neighbors
of highlighted vertices and all are under consideration for becoming the next
highlighted vertex. It is important that we do not only consider the neighbors
of the last vertex highlighted, as a path from a previously chosen vertex may
in fact lead to the shortest path. The example below provides a detailed ex-
planation in the updating of the vertex labels and how to use them to find a
shortest path.

Example 3.1 Apply Dijkstra’s Algorithm to the graph below where
Start = g and End = c.

a b c

d

e

f

g

6

1
9

5

2 5
1

8
1

6

Solution: In each step, the label of a vertex will be shown as a subscript.

Step 1: Highlight g. Define L(g) = (−, 0) and L(x) = (−,∞) for all
x = a, · · · , f .

a(−,∞) b(−,∞) c(−,∞)

d(−,∞)

e(−,∞)

f(−,∞)

g(−,0)

6

1
9

5

2 5
1

8
1

6

84 A Tour through Graph Theory

Step 2: Let u = g. Then the neighbors of g comprise F = {a, f}. We compute

w(g) + w(ga) = 0 + 9 = 9 <∞ = w(a)

w(g) + w(gf) = 0 + 1 = 1 <∞ = w(f)

Update L(a) = (g, 9) and L(f) = (g, 1). Since the minimum weight for all
vertices in F is that of f , we highlight the edge gf and the vertex f .

a(g,9) b(−,∞) c(−,∞)

d(−,∞)

e(−,∞)

f(g,1)

g(−,0)

6

1
9

5

2 5
1

8
1

6

Step 3: Let u = f . Then the neighbors of all highlighted vertices are
F = {a, b, d, e}. We compute

w(f) + w(fa) = 1 + 1 = 2 < 9 = w(a)

w(f) + w(fb) = 1 + 2 = 3 <∞ = w(b)

w(f) + w(fd) = 1 + 1 = 2 <∞ = w(d)

w(f) + w(fe) = 1 + 8 = 9 <∞ = w(e)

Update L(a) = (f, 2), L(b) = (f, 3), L(d) = (f, 2) and L(e) = (f, 9). Since the
minimum weight for all vertices in F is that of a or d, we choose to highlight
the edge fa and the vertex a.

a(f,2) b(f,3) c(−,∞)

d(f,2)

e(f,9)

f(g,1)

g(−,0)

6

1
9

5

2 5
1

8
1

6

Step 4: Let u = a. Then the neighbors of all highlighted vertices are
F = {b, d, e}. Note, we only consider updating the label for b since this is
the only vertex adjacent to a, the vertex highlighted in the previous step.

w(a) + w(ba) = 2 + 6 = 8 ≮ 2 = w(b)

We do not update the label for b since the computation above is not less than
the current weight of b. The minimum weight for all vertices in F is that of
d, and so we highlight the edge fd and the vertex d.

Paths 85

a(f,2) b(f,3) c(−,∞)

d(f,2)

e(f,9)

f(g,1)

g(−,0)

6

1
9

5

2 5
1

8
1

6

Step 5: Let u = d. Then the neighbors of all highlighted vertices are
F = {b, c, e}. We compute

w(d) + w(dc) = 2 + 5 = 7 <∞ = w(c)

w(d) + w(de) = 2 + 6 = 8 < 9 = w(e)

Update L(c) = (d, 7) and L(e) = (d, 8). Since the minimum weight for all
vertices in F is that of b, we highlight the edge bf and the vertex b.

a(f,2) b(f,3) c(d,7)

d(f,2)

e(d,8)

f(g,1)

g(−,0)

6

1
9

5

2 5
1

8
1

6

Step 6: Let u = b. Then the neighbors of all highlighted vertices are F = {c, e}.
However, we only consider updating the label of c since e is not adjacent to
b. Since

w(b) + w(bc) = 3 + 5 = 8 ≮ 7 = w(c)

we do not update the labels of any vertices. Since the minimum weight for
all vertices in F is that of c we highlight the edge dc and the vertex c. This
terminates the iterations of the algorithm since our ending vertex has been
reached.

a(f,2) b(f,3) c(d,7)

d(f,2)

e(d,8)

f(g,1)

g(−,0)

6

1
9

5

2 5
1

8
1

6

Output: The shortest path from g to c is g f d c, shown in blue above. This
path has a total weight 7, as shown by the label of c.

86 A Tour through Graph Theory

The example below is a minor modification of the one above. By simply
changing the weight of one edge, the algorithm performs differently and we
find a change in the shortest path. This should further demonstrate the need
to consider all neighbors of the highlighted vertices, not just the last one
highlighted.

Example 3.2 Apply Dijkstra’s Algorithm to the graph below where
Start = g and End = c.

a b c

d

e

f

g

6

9
9

5

2 6
3

8
1

4

Solution: As in Example 3.1, the label of a vertex will be shown as a subscript.

Step 1: Highlight g. Define L(g) = (−, 0) and L(x) = (−,∞) for all
x = a, · · · , f .

a(−,∞) b(−,∞) c(−,∞)

d(−,∞)

e(−,∞)

f(−,∞)

g(−,0)

6

9
9

5

2 6
3

8
1

4

Step 2: Let u = g. Then the neighbors of g comprise F = {a, f}. We compute

w(g) + w(ga) = 0 + 9 = 9 <∞ = w(a)

w(g) + w(gf) = 0 + 1 = 1 <∞ = w(f)

Update L(a) = (g, 9) and L(f) = (g, 1). Since the minimum weight for all
vertices in F is that of f , we highlight the edge gf and the vertex f .

a(g,9) b(−,∞) c(−,∞)

d(−,∞)

e(−,∞)

f(g,1)

g(−,0)

6

9
9

5

2 6
3

8
1

4

Paths 87

Step 3: Let u = f . Then the neighbors of all highlighted vertices are
F = {a, b, d, e}. We compute

w(f) + w(fa) = 1 + 9 = 10 ≮ 9 = w(a)

w(f) + w(fb) = 1 + 2 = 3 <∞ = w(b)

w(f) + w(fd) = 1 + 3 = 4 <∞ = w(d)

w(f) + w(fe) = 1 + 8 = 9 <∞ = w(e)

Update L(b) = (f, 3), L(d) = (f, 4) and L(e) = (f, 9). Since the minimum
weight for all vertices in F is that of b, we highlight the edge fb and the
vertex b.

a(g,9) b(f,3) c(−,∞)

d(f,4)

e(f,9)

f(g,1)

g(−,0)

6

9
9

5

2 6
3

8
1

4

Step 4: Let u = b. Then the neighbors of all highlighted vertices are
F = {a, c, d, e}. Note, we only consider updating the labels for a and c since
these vertices are adjacent to b, the vertex highlighted in the previous step.

w(b) + w(ba) = 3 + 6 = 9 ≮ 9 = w(a)

w(b) + w(bc) = 3 + 5 = 8 <∞ = w(c)

We do not update the label for a, but the label for c is updated to L(c) = (b, 8).
Since the minimum weight for all vertices in F is that of d, we highlight the
edge fd and the vertex d.

a(b,8) b(f,3) c(b,8)

d(f,4)

e(f,9)

f(g,1)

g(−,0)

6

9
9

5

2 6
3

8
1

4

Step 5: Let u = d. Then the neighbors of all highlighted vertices are
F = {a, c, e}. We compute

w(d) + w(dc) = 4 + 6 = 10 ≮ 7 = w(c)

w(d) + w(de) = 4 + 4 = 8 < 9 = w(e)

88 A Tour through Graph Theory

Update L(e) = (d, 8). Since the minimum weight for all vertices in F is that
of c, we highlight the edge bc and the vertex c. This terminates the iterations
of the algorithm since our ending vertex has been reached.

a(b,8) b(f,3) c(b,8)

d(f,4)

e(d,8)

f(g,1)

g(−,0)

6

9
9

5

2 6
3

8
1

4

Output: The shortest path from g to c is g f b c, shown in blue above. This
path has a total weight 7, as shown by the label of c.

Although the form given above for Dijkstra’s Algorithm is written for an
undirected graph, with very little modification it can be applied to a digraph
as well. Recall from Section 2.3, that a digraph is a graph in which the edges
now have a direction associated to them, which could be used to model a
one-way street. If you have not already done so, you are encouraged to read
back through Section 2.3. The example below shows how to apply Dijkstra’s
Algorithm to a digraph, where the main change is that the neighbor set F
only consists of vertices with an arc from a previously highlighted vertex.

Example 3.3 Apply Dijkstra’s Algorithm to the digraph below where
Start = g and End = c.

a b c

d

e

f

g

9

2

5 6

1 5

2

4
8

9

2

5

1

Solution:

Step 1: Highlight g. Define L(g) = (−, 0) and L(x) = (−,∞) for all
x = a, · · · , f .

Paths 89

a(−,∞) b(−,∞) c(−,∞)

d(−,∞)

e(−,∞)

f(−,∞)

g(−,0)

9

2

5 6

1 5

2

4
8

9

2

5

1

Step 2: Let u = g. Then the neighbors of g are F = {f}. We compute

w(g) + w(gf) = 0 + 1 = 1 <∞ = w(f)

Update L(f) = (g, 1) and highlight the arc gf and the vertex f .

a(−,∞) b(−,∞) c(−,∞)

d(−,∞)

e(−,∞)

f(g,1)

g(−,0)

9

2

5 6

1 5

2

4
8

9

2

5

1

Step 3: Let u = f . Then the neighbors of all highlighted vertices are
F = {a, b, d}. We compute

w(f) + w(fa) = 1 + 9 = 10 <∞ = w(a)

w(f) + w(fb) = 1 + 2 = 3 <∞ = w(b)

w(f) + w(fd) = 1 + 5 = 6 <∞ = w(d)

Update L(a) = (f, 10), L(b) = (f, 3), and L(d) = (f, 6). Since the minimum
weight for all vertices in F is that of b, we highlight the arc fb and the vertex
b.

a(f,10) b(f,3) c(−,∞)

d(f,6)

e(−,∞)

f(g,1)

g(−,0)

9

2

5 6

1 5

2

4
8

9

2

5

1

90 A Tour through Graph Theory

Step 4: Let u = b. Then the neighbors of all highlighted vertices are
F = {a, c, d}. We compute

w(b) + w(ba) = 3 + 5 = 8 < 10 = w(a)

w(b) + w(bc) = 3 + 6 = 9 <∞ = w(c)

w(b) + w(bd) = 3 + 1 = 4 < 6 = w(d)

Update L(a) = (b, 8), L(c) = (b, 9), and L(d) = (b, 4). Since the minimum
weight for all vertices in F is that of d, we highlight the arc bd and the vertex
d.

a(b,8) b(f,3) c(b,9)

d(b,4)

e(−,∞)

f(g,1)

g(−,0)

9

2

5 6

1 5

2

4
8

9

2

5

1

Step 5: Let u = d. Then the neighbors of all highlighted vertices are
F = {a, c, e}. We compute

w(d) + w(dc) = 4 + 2 = 6 < 9 = w(c)

w(d) + w(de) = 4 + 4 = 8 <∞ = w(e)

Update w(c) = (d, 6) and L(e) = (d, 8). Since the minimum weight for all
vertices in F is that of c, we highlight the edge dc and the vertex c. This
concludes the algorithm since the ending vertex has been reached.

a(b,8) b(f,3) c(d,6)

d(b,4)

e(d,8)

f(g,1)

g(−,0)

9

2

5 6

1 5

2

4
8

9

2

5

1

Output: The shortest path from g to c is g f b d c, shown in blue above. This
path has a total weight 6, as shown by the weight of c.

One final note about paths in digraphs. It is possible for a path not to exist
from one vertex to another based upon the direction of the arcs (for example,
if all arcs pointed toward a, then no path originating at a could exist). In such

Paths 91

a situation, Dijkstra’s Algorithm would halt and note that a shortest path
could not be found.

Chinese Postman Problem Revisited

Section 1.5 discussed the Chinese Postman Problem, which consisted of
finding an exhaustive circuit of minimal total weight through a weighted
graph. The initial steps were determining which vertices had odd degree and
pairing these in the hopes of minimizing the weight along the path between
each pair. The examples studied in Chapter 1 did not need the complexity
of Dijkstra’s Algorithm in finding the shortest paths. Below we combine the
method for Eulerizing a graph and Dijkstra’s Algorithm to provide a more
complete answer to the Chinese Postman Problem.

Example 3.4 The graph below represents a town in which a postman must
deliver the mail, and so he must travel each edge at least once. Use Dijkstra’s
Algorithm to find the best pairing of odd vertices and the total weight of the
edges duplicated in the Eulerization of the graph.

a

b c

d

e

f

g

h

i

j

k

m

n

p

q

r

t

1 3

4

5 2

67
2

2

4

5

2

3

1

5

4

8

6

1
6

32

3

4

5

8

3

1

Solution: There are four odd vertices that must be paired in the optimal
Eulerization, namely a, g, k, and q. Three possible pairings of these vertices
exist: a− g and k − q, a− k and g − q, a− q and g − k. Applying Dijkstra’s
Algorithm, we can find the shortest paths between the paired vertices and the
total weight of the two paths needed to Eulerize the graph (the details are left
as Exercise 3.3).

92 A Tour through Graph Theory

Path Pairs Weight Total Weight

a d t e f g 12

k j i n q 12 24

a d t e i j k 18

g f e i n q 10 28

a dn q 15

g f e i j k 12 27

Once the paths are found, we duplicate the edges along these paths to obtain
the Eulerization. In doing so, we must be on alert for any edges that appear
in both paths of a pairing. For example, the paths in the second pairing both
use the edge e i, as shown on the graph below on the left where the path from
a to k is given by the edges with one arrow and the path from g to q the
edges with two arrows. As noted in Chapter 1, we should never duplicate an
edge more than once during an Eulerization. We modify the paths found by
Dijkstra’s Algorithm by removing both duplications of e i. This maintains the
degree condition (all vertices have even degree) and reduces the total weight
by 4. The second pairing now results in the same Eulerization as that of the
first pairing and has a total weight increase of 24, as shown on the graph below
on the right. This provides the optimal Eulerization as required.

a

b c

d

e

f

g

hi

j

k

m

n

p

q

r

t

a

b c

d

e

f

g

hi

j

k

m

n

p

q

r

t

The use of Dijkstra’s Algorithm allows for a methodical approach to the
Chinese Postman Problem. However, even for small examples the number of
paths to find can be quite large. In fact, the number of possible ways to pair n
vertices of odd degree (where n is even) is (n− 1)!!, called n double factorial.
For a given integer k, k!! is defined as the product of all even integers less
than or equal to k if k is even and the product of all odd integers less than
or equal to k if k is odd. Once the groups of pairings are formed, Dijkstra’s
Algorithm will be applied n/2 times to find the shortest paths between paired

Paths 93

vertices. In Example 3.4 above, four vertices required 3!! = 3 · 1 = 3 possible
groups of pairings, each of which contained two pairs, and so 6 possible paths
needed to be calculated. If there were 8 odd vertices, then we would calculate
8
2 · 7!! = 4 · 7 · 5 · 3 · 1 = 420 paths. This approach is inefficient and grows
quite quickly (along the magnitude of Brute Force from Chapter 2). The
optimal approach, which can be seen in [13], uses shortest paths but with a
matching algorithm (matchings will be discussed in Chapter 5) that reduces
the complexity and results in an efficient algorithm.

3.2 Project Scheduling

This section still focuses on finding a specific path within a graph, but we
are no longer interested in the shortest path. Instead, we will be searching for
a critical path within a graph representing multiple interdependent pieces of a
project. Critical paths will be defined later, but for now consider the following
scenario:

You are hosting a back to school party and a few friends have offered
to help with the preparations. You need to buy and cook the food, buy
and put out the drinks (and you prefer to set up the ice buckets once
the food is cooked so the drinks stay cold), dust and vacuum the house
(and you always vacuum after the dusting), and set the table (which
must be completed after the vacuuming and cooking is done). What is
the best way to finish the preparations on time and with as little help
as possible?

The project above contains multiple pieces that have varying levels of interde-
pendency and we must determine the best way to assign the various tasks to
the people available. To visualize the relationship between tasks in a schedul-
ing problem, we will use a digraph where the vertices represent the individual
tasks and an arc from a to b indicates that task a must be completed before
b can begin. Note that although the example above is grounded in the real
world, project scheduling is primarily used in computer programming and the
terminology reflects this.

Definition 3.1 Consider a project containing multiple parts or steps.

• A task in a required step of a project that cannot be broken into smaller
pieces. These will be labeled with lowercase letters (e.g., a, b, c).

• A processor is the unit (such as a person) that completes a task. Pro-
cessors will be labeled as P1, P2, P3, etc. At any time a processor will
either be idle or busy performing a task.

94 A Tour through Graph Theory

• At any stage of a project, a task can be in one of four states: eligible ,
ineligible , in execution , or completed . A task is eligible when all the
tasks it relies upon are completed.

• The processing time of a task is the time it takes to complete the task,
denoted by pt(v) for task v.

• If task b relies on the completion of task a before it can be eligible, we
call this a precedence relationship.

• The finishing time of a schedule is the total time used in that schedule.
The optimal time of a project is the minimum finishing time among
all possible schedules, denoted OPT .

In Example 3.5 below, the project introduced above is reworded to make
use of this new terminology. In addition, the information is displayed in di-
graph form and a method for assigning tasks to processors is discussed in
Example 3.6.

Example 3.5 Look back at the example on party planning described at the
start of this section. The table below provides the precedence relationships
and processing times of the tasks. The processing time is given in minutes.
Model the information with a digraph.

Vertex Processing Precedence

Task Name Time Relationships

Buy Food f 40

Buy Drinks b 20

Dust d 20

Vacuum v 30 d

Cook Food c 60 f

Set Out Drinks s 30 b, c

Set Table t 20 v, c

Solution: It is customary to include a vertex to represent the start and end of
a project, as well as lay out vertices to avoid edge crossings whenever possible.
The processing times are shown in parentheses next to the vertex labels.

Paths 95

Start

b(2)

f(4)

d(2)

c(6)

v(3)

s(3)

t(2)
End

Once a digraph has been created, the next step is to determine which pro-
cessor (or person) should complete each task. This may be easy in a project
with only a few tasks, or if the interplay between tasks is not complex. How-
ever, as complexity grows, we will need a procedure for assigning tasks to
people. We will use a Priority List Model for scheduling, which consists
of establishing an ordering of the tasks into a list. Tasks must be assigned to
processors according to their order in the priority list while precedence rela-
tionships, which are displayed in the digraph, are used to determine eligibility
of a given task. Later, we will discuss good approaches to finding a priority
list.

Example 3.6 Using the priority list b− d− t− v− s− f − c, find a schedule
for the project from Example 3.5 using two processors.

Solution: Each step represents a moment in time where a decision must be
made. The time in question will be noted in parentheses at the start of each
step.

Step 1: (T=0) The first item in the priority list is b. Since b does not rely on
any other task, assign it to P1. The next item in the priority list, d, is also
eligible. Assign d to P2.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 b b

P2 d d

Step 2: (T=20) The next point at which a processor is free to pick up a task is
at 20 minutes. Search the priority list to find the next eligible task. Although
t is the next item in the list, it is ineligible since neither c nor v is complete.
Since d is complete, v is eligible. Assign v to P1. Since P2 is also ready for a
new task, search again for the next eligible task in the list, which is f , and
assign it to P2.

96 A Tour through Graph Theory

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 b b v v v

P2 d d f f f f

Step 3: (T=60) At 60 minutes, Processor 1 is ready for a new task. Search
through the priority list for the next eligible task. Unfortunately, all other
tasks require f to be complete before they can begin. P1 will remain idle until
f is completed. Idle time will be noted by an asterisk (∗).

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 b b v v v ∗
P2 d d f f f f

Step 4: (T=70) At 70 minutes, both processors are ready to take up a new
task. The only eligible item is c. When more than one processor is ready to
start a new task but only one task is available, by convention we assign the
task to the lower indexed processor. The other processor remains idle.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 b b v v v ∗ c c c c c c

P2 d d f f f f ∗ ∗ ∗ ∗ ∗ ∗

Step 5: (T=130) Once task c is complete, we can assign task t to P1 and task
s to P2.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 b b v v v ∗ c c c c c c t t ∗
P2 d d f f f f ∗ ∗ ∗ ∗ ∗ ∗ s s s

The priority list b− d− t− v− s− f − c yields a finishing time of 150 minutes
using two processors.

A few items should stand out in the example above. First, although item
t came before v in the priority list we could not place it into the schedule at
time 20 since it was ineligible until both c and v were complete. Hence, we
skipped over t and moved to the next eligible item in the priority list. Next,
the schedule we obtained contains a large amount of idle time, 8 hours in total.
Although some idle time may be unavoidable, its presence should indicate that
more investigation is warranted. Finally, the priority list given did not seem
to have any connection with the digraph (in fact, it was generated randomly).
A better approach would be to use information from the digraph to obtain a
good priority list. To do that, we make use of a specific directed path within
a digraph.

Paths 97

Critical Paths

The first part of the chapter focused on finding the shortest path within a
graph (or digraph). For project scheduling, we are looking for the opposite —
the longest paths within the project digraph. For example, the path Start→
d → v → t → End from the digraph in Example 3.5 has a total time of
70 minutes and so the party preparations cannot be completed in less time.
Rather than looking at all possible paths, we focus on finding a critical path .
The critical path is the path with the highest total time out of all paths that
begin at vertex Start and finish at End. This path is of interest because it
easily identifies restrictions on the completion time of a project. In addition,
it indicates which tasks should be prioritized. To find the critical path, we
first need to find the critical times of all vertices in the graph.

Definition 3.2 The critical time ct[x] of a vertex x is defined as the sum
of the processing time of x with the maximum of the critical times for all
vertices y for which xy is an arc. That is,

ct[x] = pt(x) +maximum{ct[y], for all y where xy is an arc}.

Once the critical times are obtained, a critical path is found and the critical
path priority list is created. The algorithm below outlines the process of finding
the critical times, a critical path, and the priority list.

Critical Path Algorithm

Input: Project digraph G with processing times given.

Steps:

1. Label the vertex End with pt(0) and ct[0]. For any vertex x with an arc
to End, define ct[x] = pt(x).

2. Travel the arcs in reverse order. When a new vertex is encountered,
calculate its critical time.

3. Once all critical times have been obtained, find the path from Start to
End where if more than one arc exits out of a vertex, take the arc to
the neighbor vertex of largest critical time.

4. Create a priority list by ordering vertices by decreasing critical time.

Output: Critical path and critical path priority list.

98 A Tour through Graph Theory

Example 3.7 Apply the Critical Path Algorithm to the project digraph from
Example 3.5.

Solution: It is customary to use brackets for the critical times, distinguishing
them from the processing times.

Step 1: Label End with critical time 0. Since s and t have arcs to End, set
ct[s] = pt(s) = 3 and ct[t] = pt(t) = 2.

Start

b(2)

f(4)

d(2)

c(6)

v(3)

s(3)[3]

t(2)[2]

End(0)[0]

Step 2: As v has a single arc to t, define the critical time of v as

ct[v] = pt(v) + ct[t] = 3 + 2 = 5.

The vertex c has an arc to both s and t. Since ct[s] > ct[t] we get

ct[c] = pt(c) + ct[s] = 6 + 3 = 9.

Start

b(2)

f(4)

d(2)

c(6)[9]

v(3)[5]

s(3)[3]

t(2)[2]

End(0)[0]

Step 3: The remaining three vertices each have a single arc to previously
considered vertices. Define

ct[b] = pt(b) + ct[s] = 2 + 3 = 5

ct[f] = pt(f) + ct[c] = 4 + 9 = 13

ct[d] = pt(d) + ct[v] = 2 + 5 = 7

Paths 99

Start

b(2)[5]

f(4)[13]

d(2)[7]

c(6)[9]

v(3)[5]

s(3)[3]

t(2)[2]

End(0)[0]

Step 4: Label the processing time of Start as 0 and the critical time as 13
since f is the neighbor with the largest critical time.

Start(0)[13]

b(2)[5]

f(4)[13]

d(2)[7]

c(6)[9]

v(3)[5]

s(3)[3]

t(2)[2]

End(0)[0]

Step 5: Follow the path from Start to End where the vertices are chosen based
on the largest critical times. This gives the path Start→ f → c→ s→ End of
total time 130, which is highlighted below. Ordering the vertices in decreasing
order of critical times gives the critical path priority list of f−c−d−b−v−s−t.

Start(0)[13]

b(2)[5]

f(4)[13]

d(2)[7]

c(6)[9]

v(3)[5]

s(3)[3]

t(2)[2]

End(0)[0]

Now that the critical path priority list is complete, we can find a schedule
for the project. This will provide a better schedule than the random one from
Example 3.6. In general, the critical path priority list results in a very good,
though not always optimal, schedule.

100 A Tour through Graph Theory

Example 3.8 Use the critical path priority list from Example 3.7 to find a
schedule using two processors.

Solution: The critical path priority list is f − c− d− b− v − s− t.

Step 1: (T=0) Since f is the first item in the list, assign it to P1. We cannot
assign c to P2 since it relies on the completion of f . Moving to the next eligible
task puts d into P2.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 f f f f

P2 d d

Step 2: (T=20) P2 has completed d and can be assigned a new task. Since f
is still not complete, assign b, the next eligible task, to P2.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 f f f f

P2 d d b b

Step 3: (T=40) Both P1 and P2 can be assigned a new task. Task c is now
eligible and will be assigned to P1. The next eligible task is v; assign it to P2.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 f f f f c c c c c c

P2 d d b b v v v

Step 4: (T=70) P2 can be assigned a new task. However, all remaining tasks
are ineligible since they rely on the completion of c. P2 remains idle.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 f f f f c c c c c c

P2 d d b b v v v ∗ ∗ ∗

Step 5: (T=100) Both P1 and P2 can be assigned a new task. Since s is now
eligible and first in the priority list, it is assigned to P1. Task t is also eligible
and assigned to P2.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 f f f f c c c c c c s s s

P2 d d b b v v v ∗ ∗ ∗ t t ∗

The schedule above has a finishing time of 130 minutes and contains 4 total
hours of idle time.

Paths 101

Compare the schedule obtained using the Critical Path Algorithm with the
one using a random priority list from Example 3.6. A few observations should
stand out. Both schedules contained some idle time, though the one utilizing
the critical path priority list had half that of the initial example. This is in
part because items on the critical path were prioritized over less important
tasks. Moreover, the schedule above must be optimal since its finishing time
is equal to the critical time of Start.

In general, it can be difficult to determine if a schedule is optimal (you
could use brute force and find all possible priority lists and their resulting
schedules but there are n! possible lists for a project with n items). However,
we have two very quick calculations that can help identify when a schedule is
optimal:

• The optimal time of a schedule is no less than the critical time of Start;
that is, OPT ≥ cr[Start].

• Calculate the sum of all processing times of all tasks. The optimal time
is no less than this sum divided by the total number of processors used;

that is, OPT ≥ sum of processing times

number of processors
.

The first item above is not impacted by how many processors are being
used, whereas the second calculation may change depending on the number
of processors available. For example, in the party preparations the sum of all
processing times is 220 minutes. Using two processors gives OPT ≥ 220

2 = 110
and using three processors gives OPT ≥ 220

3 ≈ 73. However, since cr[Start] =
130, neither of these calculations provides additional insight into the optimal
schedule.

When determining if a schedule is optimal, there are two questions you
must ask: is the number of processors fixed or can the number of processors be
increased to give a shorter finishing time? What is more important, finishing in
the shortest time possible or reducing the number of processors needed? This
book does not provide answers to these questions, but rather the mathematical
tools for supporting your answer.

Example 3.9 This spring you are tackling the jungle that is your back-
yard. Some good friends have volunteered their time and you have split them
into two groups. You will need to buy plants, remove the old bushes and ivy
along the back fence, weed the flower beds, plant and fertilize the new bushes,
plant flowers, trim trees, mow and rake the lawn, and install solar powered
path lighting. The table below lists these tasks, their expected time, and any
precedence relationship that exists between tasks. Model this using a digraph,
apply the Critical Path Algorithm and construct a schedule. Determine if your
schedule is optimal.

102 A Tour through Graph Theory

Vertex Processing Precedence

Task Name Time Relationships

Buy plants b 1

Remove bushes r 7

Remove ivy i 4

Weed flower beds w 3 b, r

Plant bushes p 7 b, r

Plant flowers f 1 w, p

Trim trees t 4 i

Mow and rake lawn m 6 t

Install lighting l 2 w

Solution: The digraph is given below with the processing times in parentheses
and the critical times in brackets.

Start(0)[15]

b(1)[9]

r(7)[15]

i(4)[14]

p(7)[8]

w(3)[5]

t(4)[10]

l(2)[2]

f(1)[1]

m(6)[6]

End(0)[0]

From the digraph, we get the critical path

Start→ r → p→ f → End.

The critical path priority list is r− i− t− b− p−m−w− l− f and gives the
schedule shown below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P1 r r r r r r r b p p p p p p p ∗ ∗ l l

P2 i i i i t t t t m m m m m m w w w f ∗

By using the two metrics described above, we know OPT ≥ 15 and
OPT ≥ 17.5 when using two processors. Since there is no half-unit of time, we
know the optimal time in fact must be at least 18 hours. The schedule above

Paths 103

has 3 total hours of idle time. The optimal schedule is shown below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

P1 r r r r r r r p p p p p p p l l f ∗
P2 i i i i b t t t t w w w m m m m m m

Note that w did not place high on the priority list, but needed to be
completed earlier since both l and f relied upon its completion. By making
this small modification, we were able to find the optimal schedule using two
processors. Exercise 3.6 asks for a schedule using three processors and Exercise
3.7 asks you to verify the critical times.

3.3 Exercises

3.1 Apply Dijkstra’s Algorithm to each of the graphs below, where the starting
vertex is x and the ending vertex is y.

(a) (b)

x

a b

c
d

e f y

2

4

5

3

1
3

2

7
5

4
5

8 4

x b

c

ye

f

h

j

g i

3

2

1

5 6

3

4

7

7

24 2

2

5

5

3

(c) (d)

xa b

c

d

e

y

2 2

4

5 4
2

1

5

5

3

x a

f

yh

c

b

g

d e

2

10

4

6 3

7

4

11

2

2

10

5
8 9

3

7

6

5

2

9

4

104 A Tour through Graph Theory

(e) (f)

x

a b

e
f

g

y
c d

2

3

7

6

5
6

2 5

4

1 5

3

4

7

8

2

a

x

c

d

eyg

h

i

j

5

4

8

1

4

3

5

7

2

9
3

14

2 8

7
2

4

(g)

x b c d

eh

i m

ypq

g

j

f

k

5

2

4

1

6

7 4

3

1

2

5

1

31

10

3

5

1

5

3

102

3.2 Modify Dijkstra’s Algorithm so that the output is the shortest path from the
desired vertex to all other vertices in the graph.

3.3 Apply Dijkstra’s Algorithm to the graph from Example 3.4 and verify the
shortest paths are listed in the solution.

3.4 Apply Dijkstra’s Algorithm to each of the digraphs below, where the starting
vertex is x and the ending vertex is y.

(a)

x

a b c

e

f g y

d

1

4

4

8
10

3

1

7

8

9

2

6

2

4
10

11

2

8

Paths 105

(b)

x a b

c

yde

f

g h

ij

2

5

10

2

1

3

4 5

10

2

4

4

7

2

7

6

4
15

10

5
2

(c)
x

c

e

f

y
hi

j

k

b
d

1

2

6

4

2

5

7

1

3

1

2

73

6
5

3

3

15

4

8

3.5 Explain why a third processor for Example 3.5 would be unnecessary.

3.6 Find a schedule using three processors for the project outlined in Example
3.9. Compare your answer to the schedule provided using two processors.

3.7 Verify the critical times for Example 3.9.

106 A Tour through Graph Theory

3.8 Consider the project digraph shown below.

Start(0)

a(2)

b(5)

c(4)

d(6)

e(2)

f(4)

g(3)
End(0)

(a) Use the Critical Path Algorithm to find a schedule with 2 processors.
(b) Determine if the schedule is optimal. If not, find a better schedule using 2
processors.

3.9 Consider the project digraph shown below.

Start(0)

a(2)

b(3)

c(5)

d(7)

e(2)

f(4)

g(3)

h(4)

End(0)

(a) Use the Critical Path Algorithm to find a schedule with 2 processors.
(b) Determine if the schedule is optimal. If not, find a better schedule using 2
processors.

3.10 Consider the project digraph shown below.

Start(0)

a(5)

b(2)

c(4)

d(1)

e(7)

f(8)

g(4)

h(2)

i(2)

j(6)

k(5)

l(1)

End(0)

Paths 107

(a) Use the Critical Path Algorithm to find a schedule with 2 processors.
(b) Use the Critical Path Algorithm to find a schedule with 3 processors.
(c) Determine if either schedule is optimal.

3.11 The table below lists 9 tasks that comprise a project, as well as their pro-
cessing times and precedence relationships.

Processing Precedence

Task Time Relationships

a 2

b 5

c 1 a

d 2 a, b

e 4 b

f 6 c, e

g 7 d

h 6 e

i 2 f, g

(a) Draw the project digraph.
(b) Use the Critical Path Algorithm to find a schedule with 2 processors.
(c) Use the Critical Path Algorithm to find a schedule with 3 processors.
(d) Determine if either schedule is optimal.

3.12 The table below lists 10 tasks that comprise a project, as well as their pro-
cessing times and precedence relationships.

Processing Precedence

Task Time Relationships

a 2

b 4

c 6 a

d 5 a

e 4 a, b

f 5 b

g 2 b

h 10 c

i 3 d, e, f

j 4 f, g

(a) Draw the project digraph.
(b) Use the Critical Path Algorithm to find a schedule with 2 processors.

108 A Tour through Graph Theory

(c) Use the Critical Path Algorithm to find a schedule with 3 processors.
(d) Determine if either schedule is optimal.

3.13 The table below lists 13 tasks that comprise a project, as well as their pro-
cessing times and precedence relationships.

Processing Precedence

Task Time Relationships

a 2

b 3

c 1

d 3

e 4 a

f 6 b

g 4 c, d

h 4 e

i 3 e, f, g

j 2 e, f, g

k 11 d

l 2 h

m 1 i, j

(a) Draw the project digraph.
(b) Use the Critical Path Algorithm to find a schedule with 2 processors.
(c) Use the Critical Path Algorithm to find a schedule with 3 processors.
(d) Determine if either schedule is optimal.

Projects

3.14 You are starting a new business that will serve customers in 7 different
cities. You need to determine the distance from your hub location to each of
your customers. Choose 7 cities from the table at the end of Chapter 2 (on pages
79 and 80) and choose one to be your hub location. Use the modification of
Dijkstra’s Algorithm from Exercise 3.2 to minimize the mileage from your hub
location to each of the customer locations.

3.15 You have decided to start a small business that manufactures a product. You
are trying to determine the number of employees you will need, as well as how
long it will take to produce one item. Write a report where Critical Paths are used
to answer these questions. To complete the report, you will need to name your
business, the product, determine the different stages of production and their
precedence relationships, and draw the project digraph. Your product should
have at least 10 different tasks and at least 2 tasks must rely on multiple tasks.
Form schedules using the Critical Path Algorithm using 2, 3, and 4 processors.

Chapter 4

Trees and Networks

The three previous chapters focused on finding routes within a graph, whether
they were exhaustive (such as visiting every edge or every vertex), optimal
(shortest paths), or of greatest importance (critical paths). Consider the fol-
lowing scenario:

Jim’s start-up company recently secured investors, allowing him to hire
more employees and retrofit the new office space. The cost of setting up
and maintaining a computer network is directly related to the amount
of cable installed, so Jim wishes to use as little cable as possible while
still ensuring all employees can access the company’s central server.

It should be clear that this is not a routing problem; we are not interested in
visiting a sequence of edges or vertices, but rather ensure that all locations
are connected. What graph model solves this problem? As we will see in this
chapter, Jim needs to find a specific type of graph called a tree.

This seemingly different graph model and departure from previous routing
problems has strong connections to paths from Chapter 3, as well as a strategy
for solving an instance of the Traveling Salesman Problem from Chapter 2.

4.1 Trees

The scenario above is only concerned with ensuring the graph is connected,
or to put it another way, there must be a path between any two vertices. You
could obviously create a complete graph on the vertices, which would translate
to connecting every computer to all possible ports. Though this guarantees
every computer can access the central server, more cable than necessary would
be used. In effect, we want a graph where each computer has a single path
back to the central server, or in graph theoretic terms we do not want any
cycles. These graphs are called trees.

109

110 A Tour through Graph Theory

Definition 4.1 A graph G is

• acyclic if there are no cycles or circuits in the graph.

• a network if it is connected.

• a tree if it is an acyclic network; that is, a graph that is both acyclic
and connected.

• a forest if it is an acyclic graph.

In addition, a vertex of degree 1 is called a leaf.

Trees arise in many seemingly unrelated disciplines, including probability,
chemistry, and computer science. The next few examples provide context for
the interest in trees, but are in no way comprehensive in terms of the appli-
cations of trees. After which, we will discuss optimal trees and how to find
them.

Example 4.1 Adam comes to you with a new game. He flips a coin and you
roll a die. If he gets heads and you roll an even number, you win $2; if he gets
heads and you roll an odd number, you pay him $3. If he gets tails and you
roll either 1 or 4, you win $5; if he gets tails and any of 2, 3, 5, or 6 is rolled,
you pay him $2. What is the probability you win $5? What is the probability
you win any amount of money?

Solution:
A probability tree consists of vertices representing the possible outcomes of
each part of the experiment (here a coin and dice game) and the edges are
labeled with the probability that the outcome occurred. To find the probability
of any final outcome, multiply along the path from the initial vertex to the
ending result. The tree below has the edges labeled and the final probabilities
calculated for Adam’s game.

Start

H

T

evens

odds

{1, 4}

{2, 3, 5, 6}

1
2
· 1
2

= 1
4

1
2
· 1
2

= 1
4

1
2
· 1
3

= 1
6

1
2
· 2
3

= 1
3

1
2

1
2

1
2

1
2

1
3

2
3

Trees and Networks 111

Using the tree above, the probability you win $5 (which requires tails and a 1
or 4) is 1

6 and the probability you win any money is 1
6 + 1

4 = 5
12 . Do not play

this game with Adam! He is more likely to win than you!

Example 4.2 Chemical Graph Theory uses concepts from graph theory to
obtain results about chemical compounds. In particular, individual atoms in
a molecule are represented by vertices and an edge denotes a bond between
the atoms. One way to determine the number of isomers for a molecule is
to determine the number of distinct graphs that contain the correct type of
each atom. For hydrocarbons (molecules only containing carbon and hydrogen
atoms) the hydrogen-depleted graph is used since the bonds between the carbon
atoms will uniquely determine the locations of the hydrogen atoms.

Below are the only two trees on four vertices. These correspond to the only
possible isomers of butane (C4H10), namely n-butane (H3C(CH2)2CH3) and
isobutane ((H3C)3CH), whose full molecular forms are displayed below their
respective hydrogen-depleted graph. By using graph theory, we can prove no
other isomers of butane are possible since no other trees on four vertices exist.
[1]

C C C C
H

H H H H

H

H H H H

C C C

C

H

H H H

H

H

H H

H

H

n-butane isobutane

Example 4.3 Trees can be used to store information for quick access. Con-
sider the following string of numbers:

4, 2, 7, 10, 1, 3, 5

We can form a tree by creating a vertex for each number in the list. As
we move from one entry in the list to the next, we place an item below and
to the left if it is less than the previously viewed vertex and below and to the
right if it is greater. If we add the restriction that no vertex can have more
than two edges coming down from it, then we are forming a binary tree.

112 A Tour through Graph Theory

For the string above, we start with a tree consisting of one vertex, labeled
4 (see T1 below). The next item in the list is a 2, which is less than 4 and so
its vertex is placed on the left and below the vertex for 4. The next item, 7,
is larger than 4 and so its vertex is placed on the right and below the vertex
for 4 (see T2 below).

4 4

2 7

T1 T2

The next item in the list is 10. Since 4 already has two edges below it, we
must attach the vertex for 10 to either 2 or 7. Since 10 is greater than 4, it
must be placed to the right of 4 and since 10 is greater than 7, it must be
placed to the right of 7 (see T3 below). A similar reasoning places 1 to the left
and below 2 (see T4 below).

4

2 7

10

4

2 7

1 10

T3 T4

The next item is 3, which is less than 4 and so must be to the left of 4.
Since 3 is greater than 2, it must be placed to the right of 2 (see T5 below).
The final item is 5, which is greater than 4 but less than 7, placing it to the
right of 4 but to the left of 7 (see T6 below).

4

2 7

1 3 10

4

2 7

1 3 5 10

T5 T6

This final tree T6 represents the items in our list. If we want to search

Trees and Networks 113

for an item, then we only need to make comparisons with at most half of the
items in the list. For example, if we want to find item 5, we first compare it
to the vertex at the top of the tree. Since 5 is greater than 4, we move along
the edge to the right of 4 and now compare 5 to this new vertex. Since 5 is
less than 7 we move along the edge to the left of 7 and reach the item of
interest. This allows us to find 5 by making only two comparisons rather than
searching through the entire list.

This searching technique can be thought of as searching for a word in a
dictionary. Once you open to a page close to the word you are searching for,
you flip pages back and forth depending on if you are before or after the word
needed. Searching through the list item-by-item would be like flipping the
pages one at a time, starting from the beginning of the dictionary, until you
find the correct word (not a very efficient method).

The tree obtained in the example above is referred to as a rooted tree.
Rooted trees are often used when there is a clear starting point for the tree,
such as in a decision tree or family tree. For additional information on rooted
trees, see Section 7.5.

Due to their specialized nature, trees contain many unique properties,
similar to those of complete graphs from Chapter 2.

Properties of Trees

(1) For every n ≥ 1, any tree with n vertices has n− 1 edges.

(2) For any tree with n ≥ 1 vertices, the sum of the degrees is 2n− 2.

(3) Every tree with at least two vertices contains at least two leaves.

(4) Any network on n vertices with n− 1 edges must be a tree.

(5) For any two vertices in a tree, there is a unique path between them.

(6) The removal of any edge of a tree will disconnect the graph.

These properties can be especially helpful when using algorithms to find
a tree within a larger graph. In particular, given a set number of vertices
we know the correct number of edges needed in a tree as well as the proper
degrees within a tree. Further uses of these properties appear in the exercises.

4.2 Spanning Trees

Returning to the scenario first proposed at the start of this chapter, Jim’s
predicament can be thought of as building a tree for his new office space.

114 A Tour through Graph Theory

However, since every possible connection is available, he must choose those
with the least length. Jim wants to find an underlying tree structure from a
weighted complete graph. These are called spanning trees.

Definition 4.2 A subgraph H of a graph G is a graph where H contains
some of the edges and vertices of G; that is, V (H) ⊆ V (G) and E(H) ⊆ E(G).

We say H is a spanning subgraph if it contains all the vertices but not
necessarily all the edges of G; that is, V (H) = V (G) and E(H) ⊆ E(G).

A spanning tree is a spanning subgraph that is also a tree.

Note that if an edge appears in a subgraph, then both endpoints must also
be included in the subgraph. However, if a vertex appears in a subgraph, any
number of its incident edges may be included.

Example 4.4 For each of the graphs below, find a spanning tree and a sub-
graph that does not span.

a b c

d

e

f

g

d

cb

h

f e

a

g

G1 G2

Solution: To find a spanning tree, we must form a subgraph that is connected,
acyclic, and includes every vertex from the original graph. The graphs T1 and
T2 below are two examples of spanning trees for their respective graphs; other
examples exist.

a b c

d

e

f

g

d

cb

h

f e

a

g

T1 T2

The subgraph H1 below is neither spanning nor a tree since some vertices

Trees and Networks 115

from G1 are missing and there is a multi-edge (and hence a circuit) between
d and e. The subgraph H2 below is not spanning since it does not contain
vertex a but is a tree since no circuits or cycles exist. As above, these are
merely examples and other non-spanning subgraphs exist.

a b

d

e

f
d

cb

h

f e

g

H1 H2

Kruskal’s Algorithm

Similar to Dijkstra’s Algorithm studied in Chapter 3, Kruskal’s Algorithm
is fairly modern, first published in 1956. Joseph Kruskal was an American
mathematician best known for his work in statistics and computer science.
This algorithm is unique in that it is both efficient and optimal while still
easily implemented and understandable for a non-scientist. In fact, it is the
preferred method for finding a minimum spanning tree when the edges can be
easily sorted.[19]

Kruskal’s Algorithm

Input: Weighted connected graph G = (V,E).

Steps:

1. Choose the edge of least weight. Highlight it and add it to T = (V,E′).

2. Repeat step (1) so long as no circuit is created. That is, keep picking
the edges of least weight but skip over any that would create a cycle in
T .

Output: Minimum spanning tree T of G.

Kruskal’s algorithm does not distinguish between two edges of the same
weight, in part because it does not influence the outcome. If at any point there
are two edges to choose from of the same weight, you can pick either one. In
addition, at each step of the algorithm we are building a forest subgraph that
will eventually result in a spanning tree.

116 A Tour through Graph Theory

Example 4.5 Find the minimum spanning tree of the graph G below using
Kruskal’s Algorithm.

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3

Solution: At each step, the newest edge added will be highlighted in blue and
the previously chosen edges will be in black. Unchosen edges will be shown in
gray.

Step 1: Pick the smallest edge, gd and highlight it.

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3

Step 2: Pick the next smallest edge. There are two edges of weight 2. Either
is a valid choice. We choose bc.

Trees and Networks 117

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3

Step 3: The other edge of weight 2, ef , is still a valid choice. Add it to T .

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3

Step 4: The next smallest edge weight is 3, and there are 3 edges to choose
from. We randomly pick bf .

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3

Step 5: Both of the other edges of weight 3 are still available. We choose bd.

118 A Tour through Graph Theory

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3

Step 6: At this point, we cannot choose the last edge of weight 3, fg, since it
would create a circuit (namely, b d g f b).

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3
X

The next smallest edge is bg of weight 5. Again, we cannot choose this edge
since it would create a circuit (b d g b).

a
b

c

d

e

f
g

10

7

6

2

33
5X 7

7

1

2

3
X

Trees and Networks 119

The next available edge is af of weight 6. This is also the last edge needed
since we now have a tree containing all the vertices of G. In addition, we know
this is a tree since we have 7 vertices and 6 edges.

a
b

c

d

e

f
g

10

7

6

2

33
5X 7

7

1

2

3
X

Output: The tree below with total weight 17.

a
b

c

d

e

f
g

6

2

33

1

2

In Steps 4 and 5 above, we made a choice of which edge of weight 3 to add
to the subgraph (that would eventually become a spanning tree). There are
two other possible minimum spanning trees (each of which has total weight
17) that correspond to the other options for picking two of the three edges of
weight 3. These are shown below.

120 A Tour through Graph Theory

a
b

c

d

e

f
g

a
b

c

d

e

f
g

6

2

3

1

2

3

6

2

3

1

2

3

Perhaps the most surprising aspect of Kruskal’s Algorithm is the process
you would like to take (namely picking the small edges) also guarantees a
minimum spanning tree. Looking back at the example above, when we skipped
over an edge (say bg of weight 5), we did so because including it would create
a cycle. This means a path between the endpoints of that edge (say b and g)
must already exist and the other edges along that path must each be of weight
no greater than the edge we skip over. In essence, Kruskal’s Algorithm is
focused on not creating cycles and eventually arrives at a connected subgraph.
Conversely, if you think of finding a spanning tree as breaking cycles, then the
largest edge on that cycle should never be chosen. This is the basis behind
another algorithm, Reverse Delete, described in Exercise 4.8, that focuses on
maintaining connectedness and eventually arrives at an acyclic subgraph.

Example 4.6 The Optos Cable Company is expanding its fiber optic network
over the next few years. The company will need to lay new cable, but wishes
to do so with minimal cost. A cost analysis estimates $15,000 per mile of cable
installed. The distances (in miles) of required cable between any two towns is
given in the table below. Determine an optimal network and its total cost.

Mesa Natick Quechee Rutland Tempe Vinton

Mesa · 18 35 36 20 45

Natick 18 · 50 42 40 45

Quechee 35 50 · 41 25 19

Rutland 36 42 41 · 37 38

Tempe 20 40 25 37 · 15

Vinton 45 45 19 38 15 ·

Solution: Apply Kruskal’s Algorithm. The edges will be chosen directly from
the chart above and a graph will be drawn. The chart indicates that the un-
derlying graph is a complete graph, the drawing of which is omitted.

Step 1: Search the table for the smallest weight. This is Tempe-Vinton with
weight 15.

Trees and Networks 121

q

nm

v

t r

15

Step 2: The next smallest weight is 18 for Mesa-Natick.

q

nm

v

t r

15
18

Step 3: Next is 19 for Quechee-Vinton.

q

nm

v

t r

15

19

18

Step 4: The smallest weight is 20 for Mesa-Tempe. Since no circuit is created
with its inclusion, we add the edge to the network.

122 A Tour through Graph Theory

q

nm

v

t r

15

19

18

2
0

Step 5: The smallest weight remaining is 25 for Quechee-Tempe; however, this
cannot be chosen since a circuit would be created between Quechee, Tempe,
and Vinton.

q

nm

v

t r

15

19

18

2
0

X25

Skipping to the next smallest weight is Mesa-Quechee with 35. As above, we
cannot choose this edge since it would create a circuit between Mesa, Quechee,
Vinton, and Tempe.

q

nm

v

t r

15

19

18

2
0

X 35

The next smallest edge is 36 for Mesa-Rutland; this is a valid edge. The
network now spans the original graph and no further edges need to be added.

Trees and Networks 123

q

nm

v

t r

15

19

18

2
0

36

Output: Spanning tree of total length 108 miles and estimated cost $1,620,000.

Look back at the graphs obtained during each step of Kruskal’s algorithm
in Examples 4.5 and 4.6. Notice that the subgraphs obtained are acyclic but
may not be connected; these subgraphs are forests. This is not problematic in a
purely mathematical sense, but could pose complications if the original graph
modeled a real world scenario. In Example 4.6, the Optos Cable Company
needed to expand their fiber-optic network. Would it make sense for them to
lay cable between two cities that are not connected to their hub, when this
implies the fiber optic service could not yet be activated?

Prim’s Algorithm

The algorithm described below is widely known as Prim’s Algorithm,
named for the American mathematician and computer scientist Robert C.
Prim. Prim worked closely with Kruskal at Bell Laboratories and published
this algorithm in 1957 (one year after the publication of Kruskal’s Algorithm).
However, it was originally discovered in 1930 by the Czech mathematician
Vojtěch Jarnik and also republished in 1959 by Dijkstra (who should be fa-
miliar from Chapter 3).[19]

Prim’s Algorithm contrasts from Kruskal’s in that the structure obtained
in each step is itself a tree. By the end of the process, a spanning tree will be
found. It begins by denoting a starting vertex for the tree, similar to the root
from Example 4.3.

Prim’s Algorithm

Input: Weighted connected graph G = (V,E).

Steps:

1. Let v be the root. If no root is specified, choose a vertex at random.
Highlight it and add it to T = (V ′, E′).

124 A Tour through Graph Theory

2. Among all edges incident to v, choose the one of minimum weight. High-
light it. Add the edge and its other endpoint to T .

3. Let S be the set of all edges with exactly endpoint from V (T). Choose
the edge of minimum weight from S. Add it and its other endpoint to
T .

4. Repeat step (3) until T contains all vertices of G, that is V (T) = V (G).

Output: Minimum spanning tree T of G.

Similar to Dijkstra’s Algorithm from Chapter 3, we will consider vertices
adjacent to previously chosen vertices. Unlike Dijkstra’s Algorithm, however,
we are not concerned with weights along a path but rather the total weight
of all edges chosen.

Example 4.7 Use Prim’s algorithm to find a minimum spanning tree for the
graph given in Example 4.5.

Solution: As before, previously chosen edges will be in black and the newly
chosen edge in blue.

Step 1: Since no root was specified, we choose a as the starting vertex.

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3

Trees and Networks 125

Step 2: We consider the edges incident to a, namely ab, ac and af . These are
shown in blue in the graph on the left. The edge of least weight is af . This is
added to the tree, shown in blue on the right.

a
b

c

d

e

f
g

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3

10

7

6

2

33
5 7

7

1

2

3

Step 3: The set S consists of edges with one endpoint as a or f . These are
shown in blue on the graph to the left. The edge of minimum weight from
these is ef . This is added to the tree, as shown on the right.

a
b

c

d

e

f
g

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3

10

7

6

2

33
5 7

7

1

2

3

126 A Tour through Graph Theory

Step 4: The new set S consists of edges with one endpoint as a, e, or f , as
shown in blue on the left. The next edge added to the tree could either be fg
or fb. We choose fg.

a
b

c

d

e

f
g

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3

10

7

6

2

33
5 7

7

1

2

3

Step 5: We consider the edges where exactly one endpoint is from a, e, f, or
g. The next edge to add to the tree is dg.

a
b

c

d

e

f
g

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3

10

7

6

2

33
5 7

7

1

2

3

Trees and Networks 127

Step 6: The edges to consider must have exactly one endpoint from a, d, e, f,
or g. Note that de is no longer available since both endpoints are already part
of the tree (and its addition would create a cycle). There are two possible
minimum weight edges, bf or bd. We choose bf .

a
b

c

d

e

f
g

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3

10

7

6

2

33
5 7

7

1

2

3

Step 7: The only edges we can consider are those with one endpoint of c since
this is the only vertex not part of our tree. The edge of minimum weight is bc.

a
b

c

d

e

f
g

a
b

c

d

e

f
g

10

7

6

2

33
5 7

7

1

2

3

10

7

6

2

33
5 7

7

1

2

3

128 A Tour through Graph Theory

Output: A minimum spanning tree of total weight 17.

a
b

c

d

e

f
g

6

2

3

1

2

3

Unlike Kruskal’s Algorithm, Prim’s provides a plan for how to build the
spanning tree. As noted earlier, this is beneficial for use in real world problems
that have been modeled mathematically. One such example is outlined below.

Example 4.8 Use Prim’s Algorithm to find a minimum spanning tree if
Optos Cable Company from Example 4.6 must expand its fiber optic network
from its headquarters in Quechee.

Solution: As with Example 4.6, the drawing of the underlying complete graph
is omitted. The possible choices are shown in gray and the edge of minimum
weighted is highlighted in blue.

Step 1: First look for the smallest edge from Quechee. This is Quechee-Vinton
of weight 19.

q

nm

v

t r

5035

25

41

19

Step 2: Next search for the edge of smallest weight with exactly one endpoint
as Quechee or Vinton. Pick Vinton-Tempe with weight 15.

Trees and Networks 129

q

nm

v

t r

5035

25

41

4545

38

15

Step 3: We now need edges with exactly one endpoint from Quechee, Tempe,
or Vinton. The smallest is Tempe-Mesa with weight 20.

q

nm

v

t r

5035

41

4545

38

40

37

2
0

Step 4: The edges we consider must have exactly one endpoint from Mesa,
Quechee, Tempe, or Vinton. The smallest weight is 18 for Mesa-Natick.

q

nm

v

t r

50

41

45

38

40

37

36

18

130 A Tour through Graph Theory

Step 5: There is only one vertex left to add to the spanning tree, and so we
must find the smallest edge to Rutland, which is Mesa-Rutland with weight
36.

q

nm

v

t r

41

38

37
36

4
2

Output: A minimum spanning tree with total weight 108.

q

nm

v

t r

Both minimum spanning tree algorithms described in this chapter are effi-
cient and optimal, and result in roughly the same computation requirements.
It should be noted that many other algorithms exist and the study of mini-
mum spanning trees did not originate with Kruskal and Prim. In fact, both
mathematicians cited the work of Otakar Bor̊uvka, a Czech mathematician
who is credited with the first minimum spanning tree algorithm from 1926.
Bor̊uvka’s Algorithm, which can be found in Exercise 4.14, is slightly more
complex and requires all edge weights to be unique, though is better suited
for parallel computing.

4.3 Shortest Networks

In Example 4.6 Optos Cable Company is building a fiber-optic network to
connect their customers in six cities. The junction point of two stretches of

Trees and Networks 131

cable always appeared within one of the cities. From a truly practical stand-
point, this may not always be optimal. By adding new vertices in strategic
locations, the total weight of the network may be reduced; however, the net-
work created likely will not be a spanning tree of the original graph. So as not
to confuse it with the Minimum Spanning Tree Problem from the previous
section, we refer to this as the Shortest Network Problem.

The Shortest Network Problem is at the intersection of graph theory and
geometry, and we will be using some geometric properties and results in our
search for a solution. One item of caution before we delve much deeper into
Shortest Networks: up to this point, we have not been concerned with how a
graph is drawn, but rather making the visualization as easy to understand as
possible. For the remainder of this section, it is imperative that edge lengths
are drawn to scale since the angle created by the edges will play a large role
in determining where to place shortcuts.

We begin with the smallest example that can have any interest — a net-
work with three vertices. Consider the two triangles shown below, with lengths
of the sides indicated. To find a shortest network, we begin by finding a min-
imum spanning tree, which consists of two of the three legs of the triangle.
For T1, the two edges of length 10.3 would be chosen for a total tree weight
of 20.6; for T2, any two of the three edges could be chosen for a tree of weight
20. But could we do better than a Minimum Spanning Tree?

a

b c

d

e f

10.3 10.3

20

10 10

10

T1 T2

A similar question was posed by the 17th century French mathematician
Pierre de Fermat in a letter to Evangelista Torricelli, an Italian physicist and
mathematician. In his letter, Fermat challenged Torricelli to find a point that
minimizes the distance to each of the vertices in a triangle; such a point is
called the Fermat point of a triangle.

Definition 4.3 A Fermat point for a triangle is the point p so that the
total distance from p to the vertices of the triangle is minimized. Each of the
three angles formed by these segments measures 120◦.

Notice triangle T1 appears rather flat in comparison with triangle T2, which
is an equilateral triangle. Thinking of visiting the third vertex (a or d) as a
detour along the straight line path between the other two (b to c or e to f), we
find this detour is much closer to the straight line distance in the flat triangle
(20.6 vs. 20) than in the equilateral triangle (20 vs. 10). This implies there is

132 A Tour through Graph Theory

less room for improvement by adding a new vertex. In fact, Torricelli proved
that triangles with a rather large angle (making the triangle appear flatter)
prohibits the existence of a shorter network than the minimum spanning tree.
His result is summarized in Theorem 4.4 below.

Theorem 4.4 Given three points and a triangle T formed by these points,
the Shortest Network connecting the three points will either be

1. the two shortest sides of T provided T has one angle of at least 120◦; or

2. the three segments connecting the Fermat point for T to the original
three vertices of T .

In addition to determining the existence question (when does a triangle
have a Fermat point), Torricelli also answered the construction question (how
to find the Fermat point) and in fact gave more than one solution. The algo-
rithm described below is a modified form of one of these solutions.

Torricelli’s Construction

Input: Triangle T = 4abc where all angles measure less than 120◦.

Steps:

1. Along edge ab of T construct an equilateral triangle using that edge and
a new point x that is on the opposite side of the edge as c.

2. Repeat Step (1) for the other two edges of T , introducing new points y
and z across from b and a, respectively.

3. Join x and c, y and b, and z and a by a line segment.

4. The point of concurrency (intersection point of three lines) is the Fermat
point p for T .

5. The shortest network is the line segments joining each of the original
vertices, a, b, and c, with p.

Output: Fermat point p and shortest network connecting a, b, and c.

Note that this construction does not require anything other than a ruler
and a compass (or protractor). The example below demonstrates how to apply
Torricelli’s Construction to a triangle in which all the angles measure less than
120◦.

Trees and Networks 133

Example 4.9 Use Torricelli’s Construction to find the Fermat point and
Shortest Network for the triangle below.

a b

c

10.6

7.9 10

Solution:

Step 1: Form an equilateral triangle off edge ab with new point x on the
opposite side of ab as c.

a b

c

x

Step 2: Repeat for edge ac.

a b

c

x

y

134 A Tour through Graph Theory

Step 3: Repeat for edge bc

a b

c

x

y

z

Step 4: Join the new vertices to their opposite vertex.

a b

c

x

y

z

Step 5: Find the point of concurrency p and highlight the edges from p to each
of the original vertices to find the shortest network.

Trees and Networks 135

a b

c

x

y

z

p

Output: The shortest network consists of the edges from p back to each of the
original vertices.

a b

c

p

The beauty of Torricelli’s Construction is the ease at which the Fermat
point and Shortest Network are found. There is slight difficulty in determin-
ing the length of the line segments from the Fermat point to the original
vertices. Since we will always be concerned with the network itself, we have
the following formula for finding the length of the network connecting 3 points.

If l denotes the length of the shortest network connecting vertices of a triangle
having angles that measure less than 120◦ each and sides of lengths a, b, and c,
then

l =

√
a2 + b2 + c2

2
+

√
3

2

√
2a2b2 + 2a2c2 + 2b2c2 − (a4 + b4 + c4)

Note that l gives the total length of the three legs introduced with the Steiner
point.

Example 4.10 Find the length of the network obtained in Example 4.9 and
compare it to the Minimum Spanning Tree for the graph.

136 A Tour through Graph Theory

Solution: Using the formula above with a = 7.9, b = 10 and c = 10.6, we
estimate the shortest network to have length

l =

√
274.77

2
+

√
3

2

√
48978.7752− 26519.7777 ≈ 16.345

The Minimum Spanning Tree has a total length of 17.9 (choose the two small-
est edges) and so the shortest network saves 1.555, or 8.69%.

In the instances when the exact length of the segments are needed, the
open source (and free!) software package GeoGebra makes the process of find-
ing Fermat points and the lengths of individual segments much easier. It is
recommended for use whenever more accurate calculations are required. See
the Appendix for more information on using GeoGebra for finding Fermat
points.

Steiner Trees

As the example above demonstrates, finding a shortest network for a situa-
tion with only three locations can be done with very little advanced mathemat-
ics. When the original graph contains more than three points, we encounter a
bit more difficulty in finding the shortest network. We will continue to investi-
gate the optimization question (what is the shortest network between a given
set of points) though our improvement on the minimum spanning tree may
not always be optimal. In situations where we have more than three original
points, the short-cut points are no longer called Fermat points, but rather
Steiner points.

Definition 4.5 For a graph G, a Steiner point is a new point p added to
the graph that has vertex degree of 3 where the three edges incident to p form
120◦ angles. A Steiner tree is a tree that only consists of Steiner points and
the original vertices of G.

Note that when describing a Steiner point, we make use of two different
notions of degree: vertex degree, as we have primarily been using throughout
this text, and angle measure in degrees, as is more familiar from geometry
courses.

A Steiner point is similar to a Fermat point in that it is added to graph to
find the shortest network connecting the original vertices. It has been shown
that finding a shortest network amounts to finding a minimum Steiner tree.
This problem is named for the 19th century Swiss mathematician Jakob
Steiner who mainly studied geometry. Though the Steiner Tree Problem
sounds fairly simple, it is in fact among a class of problems known as NP -
Hard which can be thought of as problems for which solutions can be verified
quickly, though finding a solution can be quite hard. For further information

Trees and Networks 137

on NP -Hard and other computation classification of problems, see Section
7.1.

Consider the simplest example with more than three vertices (since the
three-vertex problem has already been answered) — a graph with four ver-
tices that lie on a square as shown below on the left. A minimum spanning
tree consists of three of the four edges of length 10. One such example is shown
below on the right.

a b

cd

a b

cd

10

10

10
√ 2 10

10 √
2

10

10

10

10

We can think of phantom triangles existing in this network, by adding in
one of the removed diagonals and thus allowing us to find a Fermat point for
this triangle. The example below uses the triangle formed by a, c and d.

a b

cd

a b

cd s1

If we do this again, working from the triangle using the new point s1 and
the previously unconsidered vertex (b), we can find another Fermat point for
this triangle. This produces a network of length roughly 27.852, an improve-
ment of 2.148 over the minimum spanning tree.

a b

cd s1

a b

cd s1

s2

138 A Tour through Graph Theory

However, these two points are not Steiner points, since they do not both
have edges that form 120◦ angles and so this tree, although shorter than
the minimum spanning tree, is not the minimum Steiner tree. The minimum
Steiner tree is given below and has a total length of 27.321.

a b

cd
s1

s2

We will not be concerned with finding the minimum Steiner tree, but rather
use the ideas behind a Steiner tree to find a shorter network than a minimum
spanning tree, if this is possible. The use of GeoGebra is recommended for the
remainder of this section.

Steiner Network Method

1. Find the minimum spanning tree of the network.

2. Form a triangle from two existing edges of the minimum spanning tree.
If all angles of this triangle measure less than 120◦, find the Fermat
point.

3. Update the network by removing the two edges from the minimum span-
ning tree used in Step (2) and adding new edges to the Fermat point.

4. Repeat Steps (2) and (3) until all possible triangles have been considered.

The example below describes how to use the Steiner Network Method in
finding a shorter network than the minimum spanning tree. All calculations
were done through the use of GeoGebra.

Example 4.11 Optos Cable Company has hired you to find the shortest net-
work connecting seven locations for their newest fiber optic network expan-
sion. You have already found the minimum spanning tree for these locations,
as shown below, where the edge labels represent the distance in miles. Find a
shorter network using the Steiner Network Method and determine the savings
if the cost of cable installation is $15,000 per mile.

Trees and Networks 139

a b c

d

e

f

g

20

20

10 14
.1

14.1 14
.1

Solution: We begin with the vertices a, b, and g since the angle at a is 90◦.
Using Torricelli’s Construction, we get an improved network shown below.

a b c

d

e

f

g

s1 10 14
.1

14.1 14
.1

6 16.3

1
6
.3

We next work with vertices f, e, and d since these also have a 90◦ at e. Using
Torricelli’s Construction, we get an improved network shown below.

a b c

d

e

f

g

s1

s2

10 14
.1

6 16.3

1
6
.3 11.6 11

.6

4.2

At this point, due to angle measures, there is only one location that can be
improved. This occurs between vertices b, f and s1 since the triangle formed
has angles of 75◦, 70◦ and 35◦. The updated network is shown below.

a b c

d

e

f

g

s1

s2

s3 14
.1

6

1
6
.3 11.6 11

.6

4.2

5.
5

6.1

12.9

140 A Tour through Graph Theory

The shorter network shown above has a total length of 88.3 versus 92.3 miles
for the minimum spanning tree. The cost savings is $60,000 by using the
network above.

Although we did not fully answer the optimization question for networks
containing more than three points, using the Steiner Network Method provides
a quick and simple procedure for finding locations for improvements to the
minimum spanning tree.

4.4 Traveling Salesman Problem Revisited

In Chapter 2, we discussed multiple algorithms for finding an approxi-
mate solution to a Traveling Salesman Problem. Within each of these, we
allowed the weight on an edge to represent either cost, distance, or time. The
metric Traveling Salesman Problem (mTSP) only considers scenarios where
the weights satisfy the triangle inequality ; that is, for a weighted graph
G = (V,E,w), given any three vertices x, y, z we have

w(xy) + w(yz) ≥ w(xz)

The triangle inequality is named to reference a well-known fact in geometry
that no one side of a triangle is longer than the sum of the other two sides.
When the weight function is modeling distance, we are within the mTSP
realm; when the weight function models cost or time, we may or may not be
in a scenario that satisfies the triangle inequality.

Minimum spanning trees, and the algorithms used to find such subgraphs,
can be used to find an approximate solution to a metric Traveling Salesman
Problem. The algorithm below combines three ideas we have studied so far:
Eulerian circuits, Hamiltonian cycles, and minimum spanning trees. A mini-
mum spanning tree is modified by duplicating every edge, ensuring all vertices
have even degree and allowing an Eulerian circuit to be obtained. This circuit
is then modified to create a Hamiltonian cycle. Note that this procedure is
guaranteed to work only when the underlying graph is complete. It may still
find a proper Hamiltonian cycle when the graph is not complete, but cannot
be guaranteed to do so.

mTSP Algorithm

Input: Weighted complete graph Kn, where the weight function w satisfies the
triangle inequality.

Trees and Networks 141

Steps:

1. Find a minimum spanning tree T for Kn.

2. Duplicate all the edges of T to obtain T ∗.

3. Find an Eulerian circuit for T ∗.

4. Convert the Eulerian circuit into a Hamiltonian cycle by skipping any
previously visited vertex (except for the starting and ending vertex).

5. Calculate the total weight.

Output: Hamiltonian cycle for Kn.

The example below is similar to those from Chapter 2, except the dis-
tances shown satisfy the triangle inequality. Recall that to find an optimal
Hamiltonian cycle on a graph with 6 vertices, we would need to calculate all
60 possible Hamiltonian cycles.

Example 4.12 Nour must visit clients in six cities next month and needs
to minimize her driving mileage. The table below lists the driving distances
between these cities. Use the mTSP Algorithm to find a good plan for her
travels if she must start and end her trip in Philadelphia. Include the total
distance.

Boston Charlotte Memphis New York Philadelphia D.C.

Boston · 840 1316 216 310 440

Charlotte 840 · 619 628 540 400

Memphis 1316 619 · 1096 1016 876

New York City 216 628 1096 · 97 228

Philadelphia 310 540 1016 97 · 140

Washington, D.C. 440 400 876 228 140 ·

Solution: The details for finding a minimum spanning tree and an Eulerian
circuit will be omitted (You are encouraged to work through these!). In addi-
tion, city names will be represented by their first letter.

Step 1: A minimum spanning tree for the six cities is given below.

142 A Tour through Graph Theory

m

cb

w

p n

Step 2: Duplicate all the edges of the tree above.

m

cb

w

p n

Step 3: Find an Eulerian circuit starting at p. The circuit shown below is
p n b n pw cmcw p.

m

cb

w

p n

3

2

4

1

5
10

6

9

7
8

Step 4: We follow the Eulerian circuit from Step 3 until we reach vertex b.
Since we are looking for a Hamiltonian cycle, we cannot repeat vertices and
so we cannot return to n. The next vertex along the circuit that has not been
previously visited is w.

Trees and Networks 143

m

cb

w

p n

3

2

4

1

5
10

6

9

7
8

m

cb

w

p n

3

2

4

1

5
10

6

9

7
8

We follow the circuit again until m is reached. Again, we cannot return to c
and at this point we must return to p since all other vertices have been visited.

m

cb

w

p n

3

2

4

1

5
10

6

9

7
8

m

cb

w

p n

3

2

4

1

5
10

6

9

7
8

Output: The final Hamiltonian cycle is shown below (Philadelphia – New York
– Boston – Washington, D.C. – Charlotte – Memphis – Philadelphia) with a
total weight of 2788 miles.

m

cb

w

p n1

2

3

4

5

6

In the example above, our minimum spanning tree had a total weight of
1472, implying that the worst possible Hamiltonian cycle that can arise from
it will have weight at most two times that, 2944, due to the doubling of the
edges. In fact, for this scenario, the optimal cycle has total weight of 2781
miles, making the result of 2788 from the mTSP within 7 miles of optimal, or
off by a relative error of only 0.25%!

144 A Tour through Graph Theory

In general, the mTSP Algorithm performs on par with the approximation
algorithms from Chapter 2. A modification of this algorithm, Christofides’
Algorithm, appears in the exercises in the next chapter as it makes use not only
of minimum spanning trees but also the topic of Chapter 5, graph matchings.

4.5 Exercises

4.1 For each of the graphs described below, determine if G is (i) definitely a tree,
(ii) definitely not a tree, or (iii) may or may not be a tree. Explain your answer
or demonstrate with a proper graph.
(a) G has 10 vertices and 11 edges.
(b) G has 10 vertices and 9 edges.
(c) G is connected and every vertex has degree 1 or 2.
(d) There is exactly one path between any two vertices of G.
(e) G is connected with 15 vertices and 14 edges.
(f) G is connected with 15 vertices and 20 edges.
(g) G has two components, each with 9 vertices and 8 edges.

4.2 Find a spanning tree for each of the graphs below.

(a) (b)
a

e

d c

b

f

a b c

d
e

f

g h

i

(c)

a

b

c

d

e f

g

h

i

j k

Trees and Networks 145

(d)

a b

c
d

e f

g

h
i

jk

m n

4.3 Find a minimum spanning tree for each of the graphs below using (i) Kruskal’s
Algorithm and (ii) Prim’s Algorithm.

(a) (b)
a

e

d c

b

5

7

2

10

4

2

5

6

3

4

a b c

def

h
g

18

913
7

13

15

10

8

7

1620

10

18
11

16

(c) (d)

x

a b

e
f

g

y
c d

2

3

7

6

5
6

2 5

4

1 5

3

4

7

8

2

x a

f

yh

c

b

g

d e

2

10

4

6 3

7

4

11

2

2

10

5
8 9

3

7

6

5

2

9

4

146 A Tour through Graph Theory

(e)

m

kj

p

o n

265
212

159

3
0
6

53
0 123

2
1
2

31
8

53
0

31
8

26
5

424

424

371

259

4.4 Find a minimum spanning tree for the graph represented by the table below.

a b c d e f g

a · 5 7 8 10 3 11

b 5 · 2 4 1 12 7

c 7 2 · 6 7 5 4

d 8 4 6 · 2 10 12

e 10 1 7 2 · 6 9

f 3 12 5 10 6 · 15

g 11 7 4 12 9 15 ·

4.5 Kruskal’s Algorithm and Prim’s Algorithm are both written with a connected
graph as an input. Determine how each of these would perform if the input was
a disconnected graph.

4.6 How would you modify Kruskal’s and Prim’s algorithm if a specific edge must
be included in the spanning tree? Would the resulting tree be a minimum span-
ning tree? Explain your answer.

4.7 Optos Cable Company from Example 4.8 has completed the first two steps
of their fiber optic expansion (so edges qv and vt have been created). Due to
other infrastructure construction, the mileage need for cable between some of
the cities has changed. Use the edges already constructed and the new weights
shown below to finish their network expansion. Find the total weight and cost
of building their network.

Trees and Networks 147

Mesa Natick Quechee Rutland Tempe Vinton

Mesa · 29 32 25 34 45

Natick 29 · 50 46 45 51

Quechee 32 50 · 41 28 19

Rutland 25 46 41 · 40 35

Tempe 34 45 28 40 · 15

Vinton 45 51 19 35 15 ·

4.8 The Reverse Delete Algorithm finds a minimum spanning tree by deleting the
largest weighted edges as long as you do not disconnect the graph. In essence, it
is Kruskal’s Algorithm in reverse. Verify that Reverse Delete produces the same
minimum spanning trees for the graphs from Examples 4.5 and 4.6.

4.9 Under what circumstances would Reverse Delete be a better choice than
Kruskal’s Algorithm? Under what circumstance would Kruskal’s be a better
choice? Explain your answer.

For Problems 4.10 and 4.11, a protractor and ruler or the computer program
GeoGebra (using the vertex coordinates given below the graph) is required.

4.10 For each of the following triangles, perform Torricelli’s Construction to find
the Fermat point. It is recommended that you trace the triangles onto another
piece of paper and use a protractor and ruler.

(a) (b)

a

b

c a

b

c

a = (−1, 0) b = (1, 1) c = (2, 0) a = (−1, 0) b = (−0.5, 1.32) c = (2, 0)

(c) (d)

a

b

c a

b

c

a = (−1, 0) b = (0, 2) c = (2, 0) a = (−1, 0) b = (1.34, 2.54) c = (2, 0)

148 A Tour through Graph Theory

4.11 Each of the following graphs represents the spanning tree for a network. Use
the Steiner Network Method to find a shorter network.

(a)

a

b c

d

e f
14
.1
4

14.14 14
.1
4

14.14
20

a = (0, 0) b = (0, 2) c = (2, 2) d = (1, 1) e = (2, 0) f = (4, 0)

(b)

a

b

c

d

e f

g

2
0

20

1
0

1
1
.2
7

11.56

17.37

a = (0, 0) b = (0, 2) c = (2, 3) d = (2, 2) e = (1.52, 0.98)

f = (3, 1.42) g = (4, 0)

(c)

a

b

c

d

e

f
g

3
3
.0
8

25.73

1
0

11
.0
3

1
4
.8
5

15.12

a = (0, 0) b = (−0.56, 3.26) c = (2, 3) d = (2, 2) e = (1.2, 1.24)

f = (2.64, 0.66) g = (4, 0)

Trees and Networks 149

4.12 Nour must visit clients in six cities next month and needs to minimize her
driving mileage. The table below lists the distances between these cities. Use the
mTSP Algorithm to find a good plan for her travels if she must start and end
her trip in Dallas. Include the total distance.

Austin Dallas El Paso Fort Worth Houston San Antonio

Austin · 182 526 174 146 74

Dallas 182 · 568 31 225 253

El Paso 526 568 · 537 672 500

Fort Worth 174 31 537 · 237 241

Houston 146 225 672 237 · 189

San Antonio 74 253 500 241 189 ·

4.13 The weight of the edges of the graph in Exercise 4.3(e) satisfies the triangle
inequality. Apply the mTSP Algorithm to find a Hamiltonian cycle and compare
it to those found from Chapter 2 (Exercise 2.8(e)).

Projects

4.14 In Section 4.2, we studied two different algorithms for finding a minimum
spanning tree. As mentioned earlier, both Kruskal and Prim cited the work of the
Czech mathematician Otakar Bor̊uvka. Below is a description of his algorithm,
first published in 1926.

Bor̊uvka’s Algorithm

Input: Weighted connected graph G = (V,E) where all the weights are distinct.

Steps:

1. Let T be the forest where each component consists of a single vertex.

2. For each vertex v of G, add the edge of least weight incident to v to T .

3. If T is connected, then it is a minimum spanning tree for G. Otherwise, for
each component C of T , find the edge of least weight from a vertex in C
to a vertex not in C. Add the edge to T .

4. Repeat Step (3) until T has only one component, making T a tree.

Output: A minimum spanning tree for G.

Apply Bor̊uvka’s Algorithm to the following two graphs. Use either Kruskal’s
Algorithm or Prim’s Algorithm to verify that Bor̊uvka’s Algorithm found a min-
imum spanning tree.

150 A Tour through Graph Theory

(a) (b)

a b c

def

h
g

18

912
6

13

15

17

8

7

1620

10

19
11

14

x a

f

yh

c

b

g

d e

2

10

4

6 3

7

12

14

16

8

14

20
18 15

19

21

1

5

11

9

13

4.15 Come up with a business that needs to find a shortest network. Name the
business and describe why they are working on this problem. Make sure to include
a good reason why finding a shortest network is necessary for their business.
Using the table at the end of Chapter 2 (on pages 79 and 80), choose 7 locations
and draw the weighted graph. Apply one of the algorithms from this chapter
to find the minimum spanning tree. Draw your minimum spanning tree on a
map showing all 7 locations, and use the Steiner Network Method to find an
improvement from the minimum spanning tree, or argue why one does not exist.
Find locations for improvements.

Chapter 5

Matching

This chapter and the next one are big departures from the previous four. Up
to this point we have mainly used graphs to model routing problems (circuits,
cycles, paths) or exhaustive problems (spanning trees, shortest networks, Eu-
lerian and Hamiltonian tours). While are still concerned with maximizing or
minimizing items, the graph models we will use focus on resource requirements
for a specific problem. This chapter investigates the optimization of pairings
through the use of edge-matchings within a graph, more commonly known as
a matching.

Definition 5.1 Given a graph G = (V,E), a matching M is a subset of the
edges of G so that no two edges share an endpoint. When two edges do not
share an endpoint, we call them independent edges. The size of a matching,
denoted |M |, is the number of edges in the matching.

The most common application of matchings is the pairing of people, usually
described in terms of marriages. Other applications of a graph matching are
task assignment, distinct representatives, and roommate selection. Consider
the following scenario:

A company receives a last minute order that needs to be filled in time
to be shipped. None of the tasks rely on each other but no person has
enough time to complete more than one task. In addition, most employ-
ees are only qualified to complete some of the tasks. Determine the best
way to assign tasks to employees so the order can be completed in time.

Although this scenario resembles those in the Project Scheduling section of
Chapter 3, the slight change in details makes the digraph model approach
a poor fit. Instead, bipartite graphs will be utilized to model a matching
problem. The last section of the chapter will discuss matchings in graphs that
are not bipartite.

151

152 A Tour through Graph Theory

5.1 Bipartite Graphs

Bipartite graphs first appeared in Example 1.4 when considering room re-
strictions for various student organizations. As noted earlier, bipartite graphs
are often used to model interactions between two distinct types of groups.

Definition 5.2 A graph G = (V,E) is bipartite if the vertices can be
partitioned (or split) into two sets, X and Y , so that X and Y have no
vertices in common, every vertex appears in either X or Y , and every edge
has exactly one endpoint in X and the other endpoint in Y . We denote this
by G = (X ∪ Y,E).

The graph shown below is bipartite. The vertices have been partitioned
into sets X = {a, b, c} and Y = {d, e, f}.

a b c

def

G1

At the beginning of Chapter 1, we discussed how a graph can be drawn in
more than one way. The drawing of G1 above emphasizes the bipartite nature
of the graph, with the two sets of the partition drawn on a different level.
However, a graph can be bipartite without being drawn in this form.

Determining if a graph is bipartite is much easier than it may first appear.
If you are traveling along a path or cycle in a graph, the vertices will need to
alternate between the two parts of the vertex set, such as a vertex from X,
then Y , then X, etc. So if a cycle exists in the graph, it must have even length
since otherwise two vertices along the cycle would come from the same part.
This result is surprisingly useful and restated in the theorem below.

Theorem 5.3 A graph G is bipartite if and only if there are no odd cycles
in G.

In practice, we usually search for odd cycles within a graph and if we
cannot find any, we try to redraw the graph to emphasize that it is bipartite.
Note that a bipartite graph can have multi-edges (and so need not be simple)
but cannot have loops (since these are odd cycles of length 1).

Matching 153

Example 5.1 Which of the following graphs are bipartite?

a b c d

e

fghi

j
k m

ba

h

g

f e

d

c

G2 G3

Solution:

• G2 is bipartite. We can partition the vertices as X = {a, c, e, g, i, k}
and Y = {b, d, f, h, j,m} and the drawing below emphasizes this vertex
partition.

a

b

c

d

e

f

g

h

i

j

k

m

• G3 is not bipartite since there are odd cycles, such as the 5-cycle
a e f g h a (highlighted below) or the 3-cycle c d e c. Can you find any
other odd cycles?

ba

h

g

f e

d

c

154 A Tour through Graph Theory

The graph G1 from above is a special type of bipartite graph since every
vertex from X has exactly one edge to every vertex from Y . These are called
complete bipartite graphs to parallel the notion of a complete graph.

Definition 5.4 A simple bipartite graph G = (X ∪ Y,E) is a complete
bipartite graph if every vertex in X is adjacent to every vertex in Y . If the
size of X is m and the size of Y is n, then we write Km,n.

With this notation, G1 above is named K3,3. Further examples of complete
bipartite graphs appear in Section 5.3 and in the exercises.

5.2 Matching Terminology and Strategies

Matching problems often (though not always) make use of bipartite graphs
since the items being matched are usually of two distinct types. The example
below illustrates how to model a task assignment problem as a matching in a
bipartite graph.

Example 5.2 The Vermont Maple Factory just received a rush order for 6
dozens of maple cookies, 3-dozen bags of maple candy, and 10-dozen bottles
of maple syrup. Some employees have volunteered to stay late tonight to help
finish the orders. In the chart below, each employee is shown along with the
jobs for which he or she is qualified. Draw a graph to model this situation and
find a matching.

Employee Task

Dan Making Cookies Bottling Syrup

Jeff Labeling Packages Bottling Syrup

Kate Making Candy Making Cookies

Lilah Labeling Packages

Tori Labeling Packages Bottling Syrup

Solution: Model using a bipartite graph where X consists of the employees
and Y consists of the tasks. We draw an edge between two vertices a and b if
employee a is capable of completing the task b.

Matching 155

Dan Jeff Kate Lilah Tori

Making

Cookies

Bottling

Syrup

Labeling

Packages

Making

Candy

A matched edge, which is shown in blue below, represents the assignment
of a task to an employee. One possible matching is shown below.

Dan Jeff Kate Lilah Tori

Making

Cookies

Bottling

Syrup

Labeling

Packages

Making

Candy

With any matching problem, you should ask yourself what is the important
criteria for a solution and how does that translate to a matching. In Example
5.2, is it more important for each employee to have a task or for every task to
be completed? We need a way to describe which vertices are the endpoint of
a matched edge.

Definition 5.5 A vertex is saturated by a matching M if it is incident to
an edge of the matching; otherwise, x is called unsaturated .

The matching displayed in Example 5.2 has saturated vertices (Dan, Jeff,
Kate, Making Cookies, Bottling Syrup, and Labeling Packages) representing
the three tasks that will be completed by the three employees. The unsaturated
vertices (Making candy, Lilah, and Tori) represent the tasks that are not
assigned or the employees without a task assignment. Is this a good matching?
No; some parts needed to complete the order are not assigned and so the order
will not be fulfilled. When searching for a matching in a graph, we need to
determine what type of matching properly describes the solution.

156 A Tour through Graph Theory

Definition 5.6 Given a matching M on a graph G, we say M is

• maximal if M cannot be enlarged by adding an edge.

• maximum if M is of the largest size amongst all possible matchings.

• perfect if M saturates every vertex of G.

• an X-matching if it saturates every vertex from the collection of ver-
tices X (a similar definition holds for a Y matching).

Note that a perfect matching is automatically maximum and a maximum
matching is automatically maximal, though the reverse need not be true. Con-
sider the two graphs below, with a matching shown in blue. The matching on
the left is maximal as no other edges in the graph can be added since the
remaining edges require the use of a saturated vertex (either a for edges ac
and ae or d for edge bd). The matching on the right is maximum since there is
no way for a matching to contain three edges (since then vertex a would have
two matched edges incident to it). In addition, the matching on the right is
an X matching if we define X = {a, b}. Finally, neither matching is perfect
since not every vertex is saturated.

a b

c d e

a b

c d e

Maximal Matching Maximum Matching

Depending on the scenario, the existence question we are examining trans-
lates to a search for a perfect matching or an X-matching. However, when
neither of these can be found, we need a good explanation as to the size of a
maximum matching, which will appear later in Section 5.2. For now, we will
find a solution to the rush order at the Vermont Maple Factory.

Example 5.3 Determine and find the proper type of matching for the Ver-
mont Maple Factory from Example 5.2.

Solution: Since we need the tasks to be completed but do not need every
employee to be assigned a task, we must find an X-matching where X consists
of the vertices representing the tasks. An example of such a matching is shown
below.

Matching 157

Dan Jeff Kate Lilah Tori

Making

Cookies

Bottling

Syrup

Labeling

Packages

Making

Candy

Note that all tasks are assigned to an employee, but not all employees have
a task (Lilah is not matched with a task). In addition, this is not the only
matching possible. For example, we could have Lilah labeling packages and
Tori bottling syrup with Jeff having no task to complete.

Example 5.3 above illustrates that many matchings can have the same
size. Thus when finding a maximum matching, it is less important which
people get paired with a task than it does that we make as many pairings
possible. Section 5.3 addresses the scenario when we not only need to find a
maximum matching, but also one that fulfills additional requirements, such
as preferences.

As with finding Eulerian circuits from Chapter 1, it is often quite clear how
to form a matching in a small graph. However, as the size of the graph grows or
the complexity increases, finding a maximum matching can become difficult.
Moreover, once you believe a maximum matching has been found, how can
you convince someone that a better matching does not exist? Consider the
graph below with a matching shown in blue.

a b c d e

f g h i j

G4

If you tried to adjust which edges appear in the matching to find one of
larger size (try it!), you would find it impossible. But trial and error is a
poor strategy for providing a good argument that you indeed have found a
maximum matching. The theorem below addresses this through the use of
a neighbor set. Recall that given a set of vertices S, the neighbor set N(S)
consists of all the vertices incident to at least one vertex from S.

158 A Tour through Graph Theory

Theorem 5.7 (Hall’s Marriage Theorem) Given a bipartite graph G = (X ∪
Y,E), there exists an X-matching if and only if any collection S of vertices
from X satisfies |S| ≤ |N(S)|.

Looking back at the graph G4 above, if we consider S = {f, i, j}, then
N(S) = {d} and so by Hall’s Marriage Theorem there is no X-matching. In
addition, since at most one of the vertices from S can be paired with d, we
know the maximum matching can contain at most 3 edges. Since we found a
matching with 3 edges, we know our matching is in fact maximum.

The theorem above is often referred to as Hall’s Marriage Theorem since
the early examples of matching were often described in terms of marriages
between boys and girls within a small town. Note that the marriages con-
sidered in this text will be heterosexual marriages simply due to the need
for two distinct groups that can only be matched with someone of a different
type. Same sex marriages can be viewed as matchings in non-bipartite graphs,
which appear in Section 5.4.

Example 5.4 In a small town there are 6 boys and 6 girls whose parents
wish to pair into marriages where the only requirement is that a girl must
like her future spouse (pretty low standards in my opinion). The table below
lists the girls and the boys she likes. Find a pairing with as many marriages
occurring as possible.

Girls Boys She Likes

Opal Henry Jack

Penny Gavin Isa Henry Lucas

Quinn Henry Jack

Rose Kristof Isa Jack

Suzanne Henry Jack

Theresa Gavin Lucas Kristof

Solution: The information from the table will be displayed using a bipartite
graph, where X consists of the girls and Y consists of the boys.

Opal Penny Quinn Rose Suzanne Theresa

Gavin Henry Isa Jack Kristof Lucas

Matching 159

Notice that Opal, Quinn, and Suzanne all only like the same two boys
(Henry and Jack), so at most two of these girls can be matched, as shown
below.

Opal Penny Quinn Rose Suzanne Theresa

Gavin Henry Isa Jack Kristof Lucas

This means at most 5 marriages are possible; one such solution is shown
below.

Opal Penny Quinn Rose Suzanne Theresa

Gavin Henry Isa Jack Kristof Lucas

Hall’s Marriage Theorem allows us to answer the existence question (when
a graph has a perfect matching or X-matching) for bipartite graphs. When the
answer to this question is negative, we move onto the optimization question
(what is the size of a maximum matching). Hall’s Marriage Theorem does not
give a definitive answer about the size of a maximum matching but rather
gives us the tools to reason why an X-matching does not exist. The next
section uses a specific type of path and a collection of vertices as a way to
determine the answer to the optimization question. In addition, an algorithm
is described that finds a maximum matching within a bipartite graph, thus
answering the construction question (how do we find a maximum matching?).

Augmenting Paths and Vertex Covers

Consider the graphs on page 156 showing the difference between a maximal
and maximum matching, which are reproduced as graphs G5 and G6 below.
Other than using trial and error to find a better matching, we need a way to
determine if a matching is in fact maximum. We do this through the use of
alternating and augmenting paths.

160 A Tour through Graph Theory

Definition 5.8 Given a matching M of a graph G, a path is called

• M-alternating if the edges in the path alternate between edges that
are part of M and edges that are not part of M .

• M-augmenting if it is an M -alternating path and both endpoints of
the path are unsaturated by M , implying both the starting and ending
edges of the path are not part of M .

Both graphs below have alternating paths; for example, the path c a d b is
alternating in both graphs. However, this path is only augmenting in G5 since
both c and b are unsaturated by the matching. If we switch the edges along this
path we get a larger matching. This switching procedure removes the matched
edges and adds the previously unmatched edges along an augmenting path.
Since the path is augmenting, the matching increases in size by one edge. Note
that switching along the path c a d b in G5 produces the matching shown in
G6.

a b

c d e

a b

c d e

G5 G6

We previously discussed that the matching shown in G6 is the maximum
matching for that graph. Based on the discussion above, this should imply that
no augmenting path exists (try it!), since otherwise we could switch along such
a path to produce a larger matching. This result is stated in the theorem below
and was first published by the French mathematician Claude Berge in 1959.
Note that unlike Hall’s Theorem, Berge’s Theorem holds for both bipartite
graphs and non-bipartite graphs.

Theorem 5.9 (Berge’s Theorem) A matching M of a graph G is maximum
if and only if G does not contain any M -augmenting paths.

Now that we understand how to determine if a matching is maximum
(search for augmenting paths), we need a procedure or algorithm for the con-
struction question (how do we find a maximum matching). The algorithm
described below is closely related to the Hungarian Algorithm proposed by
Harold Kuhn in 1955 [30]. He named this algorithm in honor of the work of
the Hungarian mathematicians Dénes König and Jenö Egerváry whose largest
contributions to graph matchings appear later in Theorem 5.11.

Matching 161

Augmenting Path Algorithm

Input: Bipartite graph G = (X ∪ Y,E).

Steps:

1. Find an arbitrary matching M .

2. Let U denote the set of unsaturated vertices in X.

3. If U is empty, then M is a maximum matching; otherwise, select a vertex
x from U .

4. Consider y in N(x).

5. If y is also unsaturated by M , then add the edge xy to M to obtain a
larger matching M ′. Return to Step 2 and recompute U . Otherwise, go
to Step 6.

6. If y is saturated by M , then find a maximal M -alternating path from x
using xy as the first edge.

(a) If this path is M -augmenting, then switch edges along that path to
obtain a larger matching M ′; that is, remove from M the matched
edges along the path and add the unmatched edges to create M ′.
Return to Step (2) and recompute U .

(b) If the path is not M -augmenting, return to Step (4), choosing a
new vertex from N(x).

7. Stop repeating Steps (2) – (4) when all vertices from U have been con-
sidered.

Output: Maximum matching for G.

The arbitrary matching in Step 1 could be the empty matching (no edges
are initially included in the matching), though in practice starting with a quick
simple matching allows for fewer iterations of the algorithm. You should not
spend much time trying to determine if the initial matching is maximum, but
rather choose obvious edges to include. Also, even though Berge’s Theorem
holds for graphs that are not bipartite, this algorithm requires the input of a
bipartite graph. A modification for general graphs is discussed in Section 5.4.

Example 5.5 Apply the Augmenting Path Algorithm to the bipartite graph
below, where X = {a, b, c, d, e, f, g} and Y = {h, i, j, k,m, n}, with an initial
matching shown in blue.

162 A Tour through Graph Theory

a b c d e f g

h i j k m n

Solution:

Step 1: Define U = {c, d, e} since these are the unsaturated vertices from X.

Step 2: Choose c. The only neighbor of c is h, which is saturated by M . Form
an M -alternating path starting with the edge ch. This produces the path c h a
shown below, which is not augmenting.

a b c d e f g

h i j k m n

Step 3: Choose a new vertex from U , say d. Then N(d) = {h, i, j}. Below are
the alternating paths originating from d.

a b c d e f g

h i j k m n

a b c d e f g

h i j k m n

Matching 163

a b c d e f g

h i j k m n

Note that the last path (d j f k) is M -augmenting. Form a new matching
M ′ by removing edge fj from M and adding edges dj and fk, shown below.

a b c d e f g

h i j k m n

Step 4: Recalculate U = {c, e}. We must still check c since it is possible for
the change in matching to modify possible alternating paths from a previously
reviewed vertex; however, the path obtained is c h a, the same as from Step 2.

Step 5: Check the paths from e. The possible alternating paths are shown
below.

a b c d e f g

h i j k m n

a b c d e f g

h i j k m n

164 A Tour through Graph Theory

a b c d e f g

h i j k m n

Note that none of these paths are augmenting. Thus no M ′-augmenting
paths exist in G and so M ′ must be maximum by Berge’s Theorem.

Output: The maximum matching is M ′ = {ah, bi, dj, fk, gn} as shown in
Step 3.

The Augmenting Path Algorithm provides a method for not only finding a
maximum matching, but also a reasoning why a larger matching does not exist
since no augmenting paths exist at the completion of the algorithm. However,
there are other ways to determine if a matching is maximum without the need
to work through this algorithm. The simplest, and most elegant, is through
the use of a specific set of vertices known as a vertex cover.

Definition 5.10 A vertex cover Q for a graph G is a subset of vertices so
that every edge of G has at least one endpoint in Q.

Every graph has a vertex cover (for example if Q contains all the vertices in
the graph), yet we want to optimize the vertex cover; that is, find a minimum
vertex cover. If every edge has an endpoint to one of the vertices in a vertex
cover, then at most one matched edge can be incident to any single vertex
in the cover. This result, stated in the theorem below, was first published
in 1931 by the Hungarian mathematicians Dénes König and (independently)
Jenö Egerváry, and as noted above was the inspiration behind the Augmenting
Path Algorithm.

Theorem 5.11 (König-Egerváry Theorem) For a bipartite graph G, the size
of a maximum matching of G equals the size of a minimum vertex cover for
G.

This theorem again provides a basis for the optimization question. Con-
sider the graph G4 from page 157 (reproduced below) in the discussion leading
to Hall’s Marriage Theorem. Based on the König-Egerváry Theorem, to show
the matching in blue is maximum we need to find a vertex cover of size 3. One
such cover is shown below. You should check that every edge has an endpoint
that is either d, g or h.

Matching 165

a b c d e

f g h i j

a b c d e

f g h i j

In most cases, a minimum vertex cover for a bipartite graph will require
some vertices from both pieces of the vertex partition. It should not come to
much surprise that the Augmenting Path Algorithm can be used to find a
vertex cover. In fact, many texts include the procedure below as part of the
algorithm itself.

Vertex Cover Method

1. Let G = (X ∪ Y,E) be a bipartite graph.

2. Apply the Augmenting Path Algorithm and mark the vertices considered
throughout its final implementation.

3. Define a vertex cover Q as the unmarked vertices from X and the marked
vertices from Y .

4. Q is a minimum vertex cover for G.

In Step 2, a vertex is marked if it was considered during the final step in
the implementation of the Augmenting Path Algorithm. Note that this is not
just the vertices in U , the unsaturated vertices from X, but also any vertex
that was reached through an alternating path that originated at a vertex from
U . Thus the unmarked vertices will be those that are never mentioned during
the final step of the implementation of the Augmenting Path Algorithm.

Example 5.6 Apply the Vertex Cover Method to the output graph from
Example 5.5.

a b c d e f g

h i j k m n

166 A Tour through Graph Theory

Solution: Recording the vertices considered throughout the last step of the
Augmenting Path Algorithm, the marked vertices from X are a, b, c, d, and e,
and the marked vertices from Y are h, i, and j. This produces the vertex cover
Q = {f, g, h, i, j} of size 5, shown below. Recall that the maximum matching
contained 5 edges.

a b c d e f g

h i j k m n

Note that more than one minimum vertex cover may exist for the same
graph, just as more than one maximum matching may exist. In the example
above, we found one such vertex cover through the matching found using the
Augmenting Path Algorithm, though the set Q′ = {g, h, i, j, k} is also a valid
minimum vertex cover.

a b c d e f g

h i j k m n

By finding a minimum vertex cover, we are able to answer the optimization
question: how large of a matching can be formed. We conclude this section
with one more application of bipartite graph matchings, called distinct repre-
sentatives, before moving to matchings on other types of graphs.

Definition 5.12 Given a collection of finite nonempty sets S1, S2, . . . , Sn

(where n ≥ 1), a system of distinct representatives is a collection
r1, r2, . . . , rn so that ri is a member of set Si and ri 6= rj for all i 6= j (for all
i, j = 1, 2, . . . , n).

In less technical terms, the idea of distinct representatives is that a collec-
tion of groups each need their own representative and no two groups can have
the same representative.

Matching 167

Example 5.7 During faculty meetings at a small liberal arts college, multiple
committees provide a report to the faculty at large. These committees often
overlap in membership, so it is important that, for any given year, a person
is not providing the report for more than one committee. Find a collection of
distinct representatives for the groups listed below.

Committee Members

Admissions Council Ivan Leah Sarah

Curriculum Committee Kyle Leah

Development and Grants Ivan Kyle Norah

Honors Program Council Norah Sarah Victor

Personnel Committee Sarah Victor

Solution: Begin by forming a bipartite graph where X consists of the commit-
tees and Y the faculty members, and draw an edge between two vertices if a
person is a member of that committee.

Admissions Curriculum Development Honors Personnel

Ivan Kyle Leah Norah Sarah Victor

A collection of distinct representatives is modeled as a matching. Note that
we are interested in each committee having a representative, not every person
being a representative. Thus we want an X-matching. One such matching is
shown below.

Admissions Curriculum Development Honors Personnel

Ivan Kyle Leah Norah Sarah Victor

168 A Tour through Graph Theory

5.3 Stable Marriages

Up to this point, we have only been concerned with finding the largest
matching possible; but in many circumstances, one pairing may be preferable
over another. When taking preferences into account, we no longer focus on
whether two items can be paired but rather which pairing is best for the
system. Initially, we will only consider those situations that can be modeled
by a bipartite graph with an equal number of items in X and Y . In addition,
previous models demonstrated undesirable pairings by leaving off the edge in
the graph; but with preferences added, we include every edge possible in the
bipartite graph. This means the underlying graph will be a complete bipartite
graph.

The preference model for matchings is often referred to as the Stable Mar-
riage Problem to parallel Hall’s Marriage Theorem, and our terminology will
reflect the marriage model. We start with two distinct, yet equal sized, groups
of people, usually men and women, who have ranked the members of the other
group. The stability of a matching is based on if switching two matched edges
would result in happier couples.

Definition 5.13 A perfect matching is stable if no unmatched pair is un-
stable ; that is, if x and y are not matched but both rank the other higher
than their current partner, then x and y form an unstable pair.

In essence, when pairing couples into marriages we want to ensure no
one will leave their current partner for someone else. To better understand
stability, consider the following example.

Example 5.8 Four men and four women are being paired into marriages.
Each person has ranked the members of the opposite sex as shown below.
Draw a bipartite graph and highlight the matching Anne–Rob, Brenda–Ted,
Carol–Stan, and Diana–Will. Determine if this matching is stable. If not, find
a stable matching and explain why no unstable pair exists.

Anne: t > r > s > w Rob: a > b > c > d

Brenda: s > w > r > t Stan: a > c > b > d

Carol: w > r > s > t Ted: c > d > a > b

Diana: r > s > t > w Will: c > b > a > d

Solution: The complete bipartite graph is shown below with the matching in
blue. This matching is not stable since Will and Brenda form an unstable pair,
as they prefer each other to their current mate.

Matching 169

Anne Brenda Carol Diana

Rob Stan Ted Will

Switching the unstable pairs produces the matching below (Anne – Rob,
Brenda – Will, Carol – Stan and Diana – Ted).

Anne Brenda Carol Diana

Rob Stan Ted Will

Note that this matching is not stable either since Will and Carol prefer
each other to their current mate. Switching the pairs produces a new matching
(Anne – Rob, Brenda – Stan, Carol – Will, Diana – Ted) shown below.

Anne Brenda Carol Diana

Rob Stan Ted Will

This final matching is in fact stable due to the following: Will and Carol
are paired, and each other’s first choice; Anne only prefers Ted over Rob, but
Ted does not prefer Anne over Diana; Brenda does not prefer anyone over
Stan; Diana prefers either Rob or Stan over Ted, but neither of them prefers
Diana to their current mate.

170 A Tour through Graph Theory

While searching for an unstable pair and switching the matching may
eventually result in a stable matching (in fact, it will always eventually land
on a stable matching), a better procedure exists for finding a stable matching.
The algorithm below is named for David Gale and Lloyd Shapley, the two
American mathematicians and economists who published this algorithm in
1962 [17]. Though the original paper discussed the stable marriage problem,
it was mainly concerned with college admissions where the size of the applicant
pool differs from the number of colleges and a college accepts more than one
student. Their brilliant approach has been modified to work on problems that
cannot be modeled by a complete bipartite graph, a few of which appear in
the next section. In addition, their work led to further studies on economic
markets, one of which awarded Shapley (along with his collaborator Alvin
Roth) the 2012 Nobel Prize in Economics.

Gale-Shapley Algorithm

Input: Preference rankings of n women and n men.

Steps:

1. Each man proposes to the highest ranking woman on his list.

2. If every woman receives only one proposal, this matching is stable.
Otherwise move to Step (3).

3. If a woman receives more than one proposal, she

(a) accepts if it is from the man she prefers above all other currently
available men and rejects the rest; or,

(b) delays with a maybe to the highest ranked proposal and rejects the
rest.

4. Each man now proposes to the highest ranking unmatched woman on
his list who has not rejected him.

5. Repeat Steps (2) – (4) until all people have been paired.

Output: Stable Matching.

The Gale-Shapley Algorithm is written so that the men are always propos-
ing, giving the women the choice to accept, reject, or delay. This produces an
asymmetric algorithm, meaning a different outcome could occur if the women
were proposing, which is demonstrated in the next two examples.

Matching 171

Example 5.9 Apply the Gale-Shapley Algorithm to the rankings from
Example 5.8, which are reproduced below.

Anne: t > r > s > w Rob: a > b > c > d

Brenda: s > w > r > t Stan: a > c > b > d

Carol: w > r > s > t Ted: c > d > a > b

Diana: r > s > t > w Will: c > b > a > d

Solution: For record keeping, in each round of proposals we indicate if a pro-
posal is accepted by a check (X), a rejection by an X and a delay as ?.

Step 1: The initial proposals are Rob – Anne, Stan – Anne, Ted – Carol, and
Will – Carol. Note that we think of these proposals as simultaneous and a
woman does not make her decision until all proposals are made for a given
round.

Step 2: Since not all the proposals are different, Anne and Carol need to make
some decisions. First, neither Rob nor Stan are Anne’s top choice so she re-
jects the lower ranked one (Stan) and says maybe to the other (Rob). Next,
Will is Carol’s top choice so she accepts his proposal and rejects Ted.

Rob Anne ?

Stan Anne X

Ted Carol X

Will Carol X

Step 3: The remaining men (Rob, Stan and Ted) propose to the next available
woman on their preference list. Rob proposes again to Anne since she delayed
in the last round. Stan proposes to Brenda; he cannot propose to Anne since
she rejected him previously and cannot propose to Carol since she is already
paired. Ted proposes to Diana.

Step 4: Since all the proposals are different (no woman received more than
one proposal), the women must all accept.

Rob Anne X

Stan Brenda X

Ted Diana X

Will Carol X

Output: The matching shown above is stable.

172 A Tour through Graph Theory

As noted above, the Gale-Shapley Algorithm is asymmetric and in fact
favors the group making the proposals. In the example above, two men are
paired with their top choice, one with his second, and one with his third.
Even though the same holds for the women (two first choices, one second,
and one third), if the women were the ones proposing we would likely see an
improvement in their overall happiness. This is outlined in the example below.

Example 5.10 Apply the Gale-Shapley Algorithm to the rankings from
Example 5.8 with the women proposing.

Solution:

Step 1: The women all propose to their top choice. The initial proposals are
Anne – Ted, Brenda – Stan, Carol – Will, and Diana – Rob.

Step 2: Since all the proposals are different (no man received more than one
proposal), the men must all accept.

Anne Ted X

Brenda Stan X

Carol Will X

Diana Rob X

Output: The matching shown above is stable.

The examples above demonstrate two important properties of stable
matching. First, the group proposing in the Gale-Shapley Algorithm is more
likely to be happy. This is especially true if the top choices are all different for
the proposers, as happened above. In Example 5.10, the men were required to
accept the proposal they received since all the proposal were different. This en-
sured the women were all paired with their first choice, whereas only one man
was paired with his first choice, two with their third choice, and one with his
fourth choice. Though this may seem more imbalanced than the matching in
Example 5.9, it is still a stable matching, which demonstrates the second item
about stable matchings. There is no guarantee that a unique stable matching
exists. In fact, many examples have more than one stable matching possible.
The important concept to remember is that for a complete bipartite graph
with rankings, a stable matching will always exist. If we generalize this to
other types of graphs, the same may not hold.

One last note on the history of this procedure. Though the algorithm is
correctly attributed to Gale and Shapley, it had been implemented about
a decade earlier in the pairing of hospitals and residents. The residency se-
lection process was poorly managed prior to the foundation of the National

Matching 173

Resident Matching Program in 1952 by medical students. In 1984 Alvin Roth
proved that the algorithm used by the NRMP was a modification of the Gale-
Shapley Algorithm. Its implementation had the hospitals “proposing” to the
medical students, which meant that the residency programs were favored over
the applicants. The algorithm was readjusted in 1995 to have the applicants
proposing to the residency programs, ensuring the applicants’ preferences are
favored. The NRMP today encompasses more than 40,000 applicants and
30,000 positions.[37]

There has been extensive study into variations on the Stable Marriage
Problem described above. We will discuss two of these: Unacceptable Part-
ners and Stable Roommates. We will begin with the Unacceptable Partners
problem since it still has a bipartite graph as its underlying structure. The
Stable Roommates problem will be studied in the next section dealing with
matchings on graphs that are not bipartite. Further generalizations to the
Stable Marriage Problem can be found in Exercise 16, [20] and [21].

Unacceptable Partners

Look back at the preferences in Example 5.8. By having each person rank
all others of the opposite sex, we assume that all of these potential matches
are acceptable. This is very clearly not accurate to a real world scenario —
some people should never be married if even they are the only pair left. To
adjust for this, we introduce the notion of an unacceptable partner. Consider
the rankings below, where if a person is missing from the ranking, then they
are deemed unacceptable (so Will is unacceptable to Diana and only Anne
and Brenda are acceptable to Stan).

Anne: t > r > s > w Rob: a > b > c > d

Brenda: w > r > t Stan: a > b

Carol: w > r > s > t Ted: c > d > a > b

Diana: s > r > t Will: c > b > a

We are still looking for a matching in a bipartite graph, only now the graph
is not complete. We must adjust our notion of a stable matching, since it is
possible that not all people could be matched (think of a confirmed bachelor;
he would label all women as unacceptable). Under these new conditions, a
matching (with unacceptable partners) is stable so long as no unmatched pair
x and y exist such that x and y are both acceptable to each other, and each
is either single or prefers the other to their current partner. To account for
this new definition of stable, we must make two minor adjustments to the
Gale-Shapley Algorithm.

174 A Tour through Graph Theory

Gale-Shapley Algorithm (with Unacceptable Partners)

Input: Preference rankings of n women and n men.

Steps:

1. Each man proposes to the highest ranking woman on his list.

2. If every woman receives only one proposal from someone they deem
acceptable, they all accept and this matching is stable. Otherwise move
to Step (3).

3. If the proposals are not all different, then each woman:

(a) rejects a proposal if it is from an unacceptable man;

(b) accepts if the proposal is from the man she prefers above all other
currently available men and rejects the rest; or

(c) delays with a maybe to the highest ranked proposal and rejects the
rest.

4. Each man now proposes to the highest ranking unmatched woman on
their list who has not rejected him.

5. Repeat Steps (2) – (4) until all people have been paired or until no
unmatched man has any acceptable partners remaining.

Output: Stable Matching.

The major change here is in dealing with unacceptable partners. As with
the original form of the Gale-Shapley Algorithm, this new version always
produces a stable matching. In addition, the algorithm is written so that the
men are proposing, but as before, this can be modified so that the women are
proposing.

Example 5.11 Apply the Gale-Shapley Algorithm to the rankings on page
173 to find a stable matching.

Solution:

Step 1: The initial proposals are Rob – Anne, Stan – Anne, Ted – Carol, and
Will – Carol.

Step 2: Since not all the proposals are different, Anne and Carol need to make
some decisions. First, since Stan is unacceptable to Anne she rejects him and
since Rob is not her top choice she says maybe. Next, Will is Carol’s top choice
so she accepts his proposal and rejects Ted.

Matching 175

Rob Anne ?
Stan Anne X
Ted Carol X
Will Carol X

Step 3: The remaining men propose to the next available woman on their pref-
erence list. Rob proposes again to Anne since she delayed in the last round.
Stan proposes to Brenda; he cannot propose to Anne since she rejected him
previously. Ted proposes to Diana.

Step 4: Even though all proposals are different, Brenda rejects Stan since
he is an unacceptable partner. The other two women say maybe since their
proposals are not from their top choice.

Rob Anne ?
Stan Brenda X
Ted Diana ?
Will Carol X

Step 5: Rob proposes again to Anne and Ted proposes to Diana since the
women said maybe in the last round. Stan does not have any acceptable part-
ners left, and so must remain single.

Step 6: Anne and Diana accept their proposals since all proposals are different.

Rob Anne X
Stan
Ted Diana X
Will Carol X

Output: The matching shown above is stable. Note that Stan and Brenda
remain unmatched.

As the example above illustrates, in a scenario with unacceptable partners
a stable matching can exist with not all people paired. The version of this
example where the women propose appears in Exercise 5.14. A modification
of this procedure to allow for situations with an unequal number of men and
women appears in Exercise 5.16.

176 A Tour through Graph Theory

5.4 Matchings in Non-Bipartite Graphs

Up to this point we have only discussed matchings inside of bipartite
graphs. Although these model many problems that are solved using a match-
ing, there are some problems that are best modeled with a graph that is not
bipartite. Consider the following scenario:

Bruce, Evan, Garry, Hank, Manny, Nick, Peter, and Raj decide to go on
a week-long canoe trip in Guatemala. They must divide themselves into
pairs, one pair for each of four canoes, where everyone is only willing to
share a canoe with a few of the other travelers.

Modeling this as a graph cannot result in a bipartite graph since there are not
two distinct groups that need to be paired, but rather one large group that
must be split into pairs.

Example 5.12 The group of eight men from above have listed who they are
willing to share a canoe with. This information is shown below in the table,
where a Y indicates a possible pair. Note that these relationships are sym-
metric, so if Bruce will share a canoe with Manny, then Manny is also willing
to share a canoe with Bruce.

Bruce Evan Garry Hank Manny Nick Peter Raj

Bruce · · · · Y Y · Y

Evan · · · Y Y Y · ·
Garry · · · Y · · Y Y

Hank · Y Y · · · Y ·
Manny Y Y · · · · · Y

Nick Y Y · · · · · Y

Peter · · Y Y · · · ·
Raj Y · Y · Y Y · ·

Model this information as a graph. Find a perfect matching or explain why
no such matching exists.

Solution: The graph is shown below where an edge represents a potential pair-
ing into a canoe.

Matching 177

EvanBruce

Raj

Peter

Nick Manny

Hank

Garry

Note that Peter can only be paired with either Garry or Hank. If we
choose to pair Peter and Garry, then Hank must be paired with Evan, leaving
Nick and Manny to each be paired with one of Raj and Bruce. One possible
matching is shown below. Since all people have been paired, we have a perfect
matching.

EvanBruce

Raj

Peter

Nick Manny

Hank

Garry

Finding matchings in general graphs is often more complex than in bipar-
tite graphs, in part due to the fact that only some of the results from Section
5.2 still apply. In particular, Berge’s Theorem holds (M is maximum if and
only if G has no M -augmenting paths) yet the Augmenting Path Algorithm
only applies to bipartite graphs. The main sticking point is that in finding
alternating paths from an unsaturated vertex, there could be more than one
path to x and only investigating one would miss an augmenting path. For
example, if we are searching for alternating paths from u to x in the graph
below, we might choose u a b x. If instead we chose u a b c x, we could continue
the alternating path to find an augmenting path to y (namely, u a b c x y).

178 A Tour through Graph Theory

u a b

c

x y

Jack Edmonds devised a modification to the Augmenting Path Algorithm
that works on general graphs, making use of these possible odd cycles. This
algorithm is more powerful than we need for small examples, as these can
usually be determined through inspection and some reasoning. For further
information on Edmonds’ Blossom Algorithm, see [40].

Example 5.13 Halfway through the canoe trip from Example 5.12, Raj will
no longer share a canoe with Garry, and Hank angered Evan so they cannot
share a canoe. Update the graph model and determine if it is now possible to
pair the eight men into four canoes.

Solution: The updated graph only removes two edges, but in doing so the
graph is now disconnected. A disconnected graph could have a perfect match-
ing so long as each component itself has a perfect matching. In this case, a
perfect matching is impossible since Peter, Garry, and Hank form one compo-
nent and so at most two of them can be paired. Likewise, the other component
contains five people and so at most four can be paired. Thus there is no way
to pair the eight men into four canoes.

EvanBruce

Raj

Peter

Nick Manny

Hank

Garry

EvanBruce

Raj

Peter

Nick Manny

Hank

Garry

Stable Roommates

The Stable Roommate Problem is a modification of the Stable Marriage
problem, only now the underlying graph is not bipartite. Each person ranks the
others and we want a stable matching; that is, a matching so that two unpaired
people do not both prefer each other to their current partner. Similar to the
Augmenting Path Algorithm being unavailable for use on general graphs, the

Matching 179

Gale-Shapley Algorithm does not work on the Stable Roommate Problem
since it is based on two distinct groups ranking members of the other group.
This first example finds all possible pairings and examines if they are stable.

Example 5.14 Four women are to be paired as roommates. Each woman
has ranked the other three as shown below. Find all possible pairings and
determine if any are stable.

Emma: l > m > z

Leena: m > e > z

Maggie: e > z > l

Zara: e > l > m

Solution: There are three possible pairings, only one of which is stable.

• Emma – Leena and Maggie – Zara
This is stable since Emma is with her first choice and the only person
Leena prefers over Emma is Maggie, but Maggie prefers Zara over Leena.

• Emma – Maggie and Leena – Zara
This is not stable since Emma prefers Leena over Maggie and Leena
prefers Emma over Zara.

• Emma – Zara and Leena – Maggie
This is not stable since Emma prefers Maggie over Zara and Maggie
prefers Emma over Leena.

Recall the Gale-Shapley Algorithm showed that a stable matching on a
bipartite graph (where the partition sets have equal size) will always exist,
yet it is possible in the Stable Roommate Problem that a stable matching will
fail to exist.

Example 5.15 Before the four women from Example 5.14 are paired as
roommates, Maggie and Zara get into an argument, causing them to adjust
their preference lists. Determine if a stable matching exists.

Emma: l > m > z

Leena: m > e > z

Maggie: e > l > z

Zara: e > l > m

Solution: There are three possible pairings, none of which are stable.

180 A Tour through Graph Theory

• Emma – Leena and Maggie – Zara
This is not stable since Leena prefers Maggie over Emma and Maggie
prefers Leena over Zara.

• Emma – Maggie and Leena – Zara
This is not stable since Emma prefers Leena over Maggie and Leena
prefers Emma over Zara.

• Emma – Zara and Leena – Maggie
This is not stable since Emma prefers Maggie over Zara and Maggie
prefers Emma over Leena.

The previous two examples used an exhaustive method to find a stable
matching or to determine if no such matching exists. While this is not too dif-
ficult with a small number of vertices, it becomes computationally impractical
as the number of vertices grows. Recall from Section 3.1 that the number of
ways to pair n items, when n is even, is (n−1)!!. Thus for a Stable Roommate
Problem, we would need to check 15 pairings when there are 6 people and
check 105 for 8 people (such as the canoe example). An efficient algorithm for
the Stable Roommate Problem was first published in 1985 by the computer
scientist Robert Irving; for further information, see Exercise 5.17, or [20].

5.5 Exercises

5.1 Draw the complete bipartite graphs K2,3, K1,4, and K3,5.

5.2 Find a maximum matching for the graph from Example 1.4 on page 6.

5.3 Below is a graph with a matching M shown in blue.

a

c

e

f

gh
i

j

k

b

d

(a) Find an alternating path starting at a. Is this path augmenting?

Matching 181

(b) Find an augmenting path in the graph or explain why none exists.
(c) Is M a maximum matching? maximal matching? perfect matching? Ex-
plain your answer. If M is not maximum, find a matching that is maximum.

5.4 Each of the graphs below has a matching shown in blue. Complete the fol-
lowing steps for both:

(i) Find an alternating path starting at vertex a.

(ii) Is this path augmenting? Explain your answer.

(iii) Use the Augmenting Path Algorithm to find a maximum matching.

(iv) Use the Vertex Cover Method to find a minimum vertex cover.

(a)

a b c d e f

g h i j k m

(b)

a b c d e f g

h i j k l m n

5.5 Find a maximum matching for each of the graphs below. Include an expla-
nation as to why the matching is maximum.

(a)

a b c d

e f g h i

182 A Tour through Graph Theory

(b)

a b c d e

f g h i j

(c)

a b c d e

f g h i j

(d) (e)

a b

c

de

f

h

j

g i

a b c

d
e

f

g h

i

(f)
a

e

d c

b

f

j

i h

g

Matching 183

5.6 Using the graphs from Exercise 5.5,
(a) Determine which graphs are bipartite.
(b) For each of the graphs that are bipartite, find a minimum vertex cover.
Verify that the size of the matching found in Exercise 5.5 equals the size of
your vertex cover.

5.7 The Roanoke Ultimate Frisbee League is organizing a Contra Dance. The
fifteen members must be split into male-female pairs, though not all people are
willing to dance with each other. The graph below models those who can be
paired (as both people find the other acceptable). Find a maximum matching
and explain why a larger matching does not exist.

Art Ben Carl Dan Eli Fred Gus Hank

Lisa Mona Nell Opal Pam Rose Sara

5.8 Seven committees must elect a chairperson to represent them at the end-of-
year board meeting; however, some people serve on more than one committee
and so cannot be elected chairperson for more than one committee. Based on
the membership lists below, determine a system of distinct representatives for
the board meeting.

Committee Members

Benefits Agatha Dinah Evan Vlad

Computing Evan Nancy Leah Omar

Purchasing George Vlad Leah

Recruitment Dinah Omar Agatha

Refreshments Nancy George

Social Media Evan Leah Vlad Omar

Travel Expenses Agatha Vlad George

5.9 Each year, the chair of the mathematics department must determine course
assignments for the faculty. Each professor has submitted a list of the courses he
or she wants to teach. Find a system of assignments where each professor will
teach exactly one of the remaining courses or explain why none exists.

184 A Tour through Graph Theory

Professor Preferred Courses

Dave Abstract Algebra Real Analysis Statistics Calculus

Roland Statistics Geometry Calculus

Chris Calculus Geometry

Adam Statistics Calculus

Hannah Abstract Algebra Real Analysis Topology

Maggie Abstract Algebra Real Analysis Geometry Topology

5.10 Instead of pairing a professor with only one course of their preference from
Exercise 9, now the mathematics department chair must pair each professor with
two of the courses from their (expanded) list.
(a) Describe how to turn this into a matching problem where a solution is
given in terms of a perfect matching.

(b) Find a perfect matching for the professors and their preferred course list
shown below or explain why none exists.

Professor Preferred Courses

Dave Abstract Algebra Real Analysis Number Theory

Calculus II Calculus I Statistics

Roland Vector Calculus Discrete Math Statistics

Calculus II Geometry Calculus I

Chris Vector Calculus Real Analysis Discrete Math

Statistics Geometry Calculus I

Adam Statistics Calculus I Number Theory

Geometry Differential Equations

Hannah Abstract Algebra Real Analysis Number Theory

Linear Algebra Topology

Maggie Abstract Algebra Real Analysis Linear Algebra

Geometry Topology Calculus II

5.11 The students in a geometry course are paired each week to present homework
solutions to the class. In the table below, a possible pair is indicated by a Y.
Find a way to pair the students or explain why none exists.

Matching 185

Al Brie Cam Fred Hans Megan Nina Rami Sal Tina

Al · Y · · Y · · Y · Y

Brie Y · Y Y Y Y · Y Y ·
Cam · Y · · Y · Y Y · ·
Fred · Y · · · Y Y · · Y

Hans Y Y Y · · · · Y Y Y

Megan · Y · Y · · Y Y Y ·
Nina · · Y Y · Y · · Y ·
Rami Y Y Y · Y Y · · Y ·
Sal · Y · · Y Y Y Y · ·
Tina Y · · Y Y · · · · ·

5.12 Apply the Gale-Shapley Algorithm to the set of preferences below
with
(a) the men proposing
(b) the women proposing

Alice: r > s > t > v Rich: a > d > b > c

Beth: s > r > v > t Stefan: a > c > d > b

Cindy: v > t > r > s Tom: c > b > d > a

Dahlia: t > v > s > r Victor: c > d > b > a

5.13 Apply the Gale-Shapley Algorithm to the set of preferences below
with
(a) the men proposing
(b) the women proposing

Edith: l > n > o > m > p Liam: f > e > h > g > i

Faye: n > l > m > o > p Malik: e > i > g > f > h

Grace: p > m > o > n > l Nate: f > g > i > h > e

Hanna: p > n > o > l > m Olaf: i > e > f > g > h

Iris: p > o > m > n > l Pablo: f > h > g > e > i

5.14 Apply the Gale-Shapley Algorithm (with Unacceptable Partners) to the
preferences from Example 5.11 with the women proposing.

5.15 Apply the Gale-Shapley Algorithm (with Unacceptable Partners) to the
preferences below with
(a) the men proposing
(b) the women proposing

Edith: l > n > m Liam: f > e > h > g

Faye: n > l > m > o > p Malik: e > h > i > f

Grace: m > o > n > l Nate: g > f > i

Hanna: p > o > l > m Olaf: i > e > f

Iris: p > m > n > l Pablo: f > h > g > i

186 A Tour through Graph Theory

5.16 In each of the examples where the Gale-Shapley Algorithm is utilized, we
have required that the number of men equals the number of women. Just as we
were able to modify the algorithm for instances where some people are deemed
unacceptable, we can modify the algorithm to account for unequal numbers. To
do this, we introduce ghost participants in order to equalize the gender groups.
These ghosts are deemed unacceptable by those of the opposite sex, and in turn
find no person of the opposite sex acceptable. Using this modification, find a
stable set of marriages for the preferences listed below.

Alice: p > r > s > t Peter: b > a > c > d > e

Beth: r > p > s > t Rich: c > b > e > d > a

Carol: t > p > s > r Saul: a > b > c > d > e

Diana: t > s > r > p Teddy: e > c > d > a > b

Edith: r > s > t > p

Projects

5.17 Section 5.4 described the challenges that arise in the Stable Roommate
Problem that do not occur in the Stable Marriage Problem. Although one was
not introduced, algorithms do exist for the Stable Roommate Problem that either
find a stable matching or explain why none exists. Research one of these meth-
ods and apply it to the preferences shown below. (See [20] for more information.)

Bruce: m > n > r > g > e > p > h

Evan: h > n > m > p > b > r > g

Garry: p > r > h > m > b > e > n

Hank: g > e > p > n > r > m > b

Manny: r > e > b > g > h > p > n

Nick: r > b > e > m > p > h > g

Peter: h > g > r > n > e > b > m

Raj: b > m > g > n > e > h > p

5.18 In Section 4.4, we discussed an approximation algorithm for the metric Trav-
eling Salesman Problem that made use of a minimum spanning tree. Christofides’
Algorithm, outlined below, uses the same basic backbone of using a minimum
spanning tree, but also makes use of a matching within the graph. Christofides’
Algorithm, first introduced in 1976, had the best performance ratio of any ap-
proximation algorithm until a modified version was published in 2015.

Apply Christofides’ Algorithm to the graph from Example 4.12 and Exercise
4.12.

Christofides’ Algorithm

Input: Weighted complete graph Kn, where the weight function w satisfies the
triangle inequality.

Matching 187

Steps:

1. Find a minimum spanning tree T for Kn.

2. Let X be the set of all vertices of odd degree in T .

3. Create a weighted complete graph H whose vertex set is X and where the
weight of the edges is taken from the weights given in Kn.

4. Find a perfect matching M on H of minimum weight.

5. Create a graph G by adding the matched edges from M to the tree T
obtained in Step (1).

6. Find an Euler circuit for G.

7. Convert the Eulerian circuit into a Hamiltonian cycle by skipping any pre-
viously visited vertex (except for the starting and ending vertex).

8. Calculate the total weight.

Output: Hamiltonian cycle for Kn.

http://taylorandfrancis.com

Chapter 6

Graph Coloring

In the previous chapter we discussed the application of graph matching to a
problem where items from two distinct groups must be paired. An important
aspect of this pairing is that no item could be paired more than once. Compare
that with the following scenario:

Five student groups are meeting on Saturday, with varying time require-
ments. The staff at the Campus Center need to determine how to place
the groups into rooms while using the fewest rooms possible.

Although we can think of this problem as pairing groups with rooms, there
is no restriction that a room can only be used once. In fact, to minimize the
number of rooms used, we would hope to use a room as often as possible.
This chapter explores graph coloring, a strategy often used to model resource
restrictions. But before we get into the heart of this graph model, we begin
with a historically significant problem, known as the Four Color Theorem.

6.1 Four Color Theorem

In 1852 Augustus De Morgan sent a letter to his colleague Sir William
Hamilton (the same mathematician who introduced what we now call Hamil-
tonian cycles) regarding a puzzle presented by one of his students, Frederick
Gutherie (though Gutherie later clarified that the question originated from
his brother, Francis). This question was known for over a century as the Four
Color Conjecture, and can be stated as

Any map split into contiguous regions can be colored using at most four
colors so that no two bordering regions are given the same color.

An important aspect of this conjecture is that a region, such as a country or
state, cannot be split into two disconnected pieces. For example, the state of
Michigan is split into the Lower Peninsula and the Upper Peninsula and so
is not a contiguous region; thus the contiguous United States does not satisfy
the hypothesis of the Four Color Conjecture. However, it is still possible to
color the lower 48 states using 4 colors (try it!).

189

190 A Tour through Graph Theory

The Four Color Conjecture started as a map coloring problem, yet mi-
grated into a graph coloring problem. In the late 19th century, Alfred Kempe
studied the dual problem where each region on a map was represented by a
vertex and an edge exists between two vertices if their corresponding regions
share a border. This approach was extensively used in the mid-20th century
as the study of graph theory exploded with the advent of the computer. The
search for a proper map coloring is now reduced to a proper vertex coloring
(more commonly referred to as just a coloring) for a planar graph. A graph
is planar if it can be drawn so that no edges cross. For more information on
planar graphs see Section 7.6.

Definition 6.1 A proper k-coloring of a graph G is an assignment of colors
to the vertices of G so that no two adjacent vertices are given the same color
and exactly k colors are used.

Most problems on graph coloring are optimization problems since we want
to minimize the number of colors used; that is, find the lowest value of k
so that G has a proper k-coloring. The example below demonstrates how to
convert a map into a graph and how to convert a graph coloring back into
a coloring of a map. Note that beyond small examples, we rarely use color
names (red, blue, green, etc.) but rather refer to color numbers (color 1, 2,
3, etc.) since names of colors get more complicated as we move beyond the
standard 6 to 10 colors.

Example 6.1 Find a coloring of the map of the counties of Vermont and
explain why three colors will not suffice.

Grand Isle

Franklin Orleans

Essex
Lamoille

Chittenden Caledonia

Addison Orange

Rutland Windsor

Bennington Windham

Washington

Graph Coloring 191

Solution: First note that each county is given a vertex and two vertices are
adjacent in the graph when their respective counties share a border. One pos-
sible coloring is shown below. Note that Lamoille County is surrounded by
five other counties. If we try to alternate colors amongst these five counties,
for example Orleans – 1, Franklin – 2, Chittenden – 1, Washington – 2, we
still need a third color for the fifth county (Caledonia – 3). Since Lamoille
touches each of these counties, we know it needs a fourth color.

Chittenden

Washington

Franklin Orleans
Essex

Lamoille

Caledonia

Addison
Orange

Rutland
Windsor

Bennington

Windham

Grand
Isle

3

2 1

2
4

1 3

2

3 1

4 2

3 1

Grand Isle

Franklin Orleans

Essex
Lamoille

Chittenden Caledonia

Addison Orange

Rutland Windsor

Bennington Windham

Washington

The Four Color Conjecture intrigued mathematicians in part due to its
simplicity but also because of the numerous false proofs. Some of the most
brilliant mathematicians of the 19th and 20th centuries incorrectly believed
they had proven the conjecture and it was not until 1976 that a correct proof
was published by Kenneth Appel and Wolfgang Haken. Their proof was not
widely accepted for some time both for its use of a computer program (the first
major theorem in mathematics to do so) and the difficulty in checking their
work. The proof filled over 900 pages, contained over 10,000 diagrams, took
thousands of hours of computational time, and when printed stood about four
feet in height. Mathematicians have since offered refinements to the Appel-
Haken argument; in particular, Niel Robertson, Daniel Sanders, Paul Seymour
and Robin Thomas published an updated version in 1994 that not only reduced
the number of pages in the proof, but also made it feasible for others to verify
their results on a standard home computer. For further history of the Four
Color Theorem, see [41].

192 A Tour through Graph Theory

6.2 Coloring Bounds

For the remainder of this chapter, we will explore graph colorings for graphs
that may or may not be planar, mainly since we already know that planar
graphs need at most 4 colors and so there is not much room for further explo-
ration. Any graph we consider can be simple or have multi-edges but cannot
have loops, since a vertex with a loop could never be assigned a color. In any
graph coloring problem, we often tackle the existence, construction, and opti-
mization question at once; that is, we want to determine the smallest value for
k for which a graph has a k-coloring. This value for k is called the chromatic
number of a graph.

Definition 6.2 The chromatic number χ(G) of a graph is the smallest
value k for which G has a proper k-coloring.

In order to determine the chromatic number of a graph, we often need to
complete the following two steps:

(1) Find a coloring of G using k colors.

(2) Show why fewer colors will not suffice.

At times it can be quite complex to show a graph cannot be colored with
fewer colors. There are a few properties of graphs and the existence of certain
subgraphs that can immediately provide a basis for these arguments.

Look back at Example 6.1 about coloring the counties in Vermont and the
discussion of alternating colors around a central vertex. In doing so, we were
using one of the most basic properties in graph coloring: the number of colors
needed to color a cycle. Recall that a cycle on n vertices is denoted Cn. The
examples below show optimal colorings of C3, C4, C5, and C6.

1

2 3

1

2 1

2
1

2 1

2

3
12

1

2 1

2

C3 C4 C5 C6

Notice that in all the graphs we try to alternate colors around the cycle.
When n is even, we can color Cn in two colors since this alternating pattern
can be completed around the cycle. When n is odd, we need three colors for Cn

since the final vertex visited when traveling around the cycle will be adjacent
to a vertex of color 1 and of color 2. This was demonstrated in the coloring of
the five counties surrounding Lamoille County in Example 6.1.

Graph Coloring 193

The next structure that provides additional reasoning for the lower bound
of the chromatic number is based upon an odd cycle. Again, referencing the
coloring of the counties in Vermont, we used the odd cycle around Lamoille
County to explain why at least 3 colors were needed. However, we showed that
in fact 4 colors were required since the Lamoille vertex is adjacent to each of
vertices in the surrounding odd cycle. This structure is often referred to as a
wheel.

Definition 6.3 A wheel Wn is a graph in which n vertices form a cycle
around a central vertex that is adjacent to each of the vertices in the cycle.

The first few wheels are shown below. Note that when n is odd, we get
a scenario similar to that of Lamoille county from Example 6.1, and thus
requiring 4 colors. In general, we can use odd wheels to explain why 3 colors
will not suffice.

1

2 3

4

1

2 1

2

3

1

2 1

2

3

4

W3 W4 W5

The final structure we search for within a graph is based on the notion
of a complete graph. Recall that in complete graphs each vertex is adjacent
to every other vertex in the graph. Thus if we assign colors to the vertices,
we cannot use a color more than once. Possible colorings of a few complete
graphs are shown below.

1 2

1

2 3

1

2 3

4

K2 K3 K4

When a complete graph appears as a subgraph within a larger graph, we call
it a clique.

Definition 6.4 A clique in a graph is a subgraph that is itself a complete
graph. The clique size of a graph G, denoted ω(G), is the largest value of n
for which G contains Kn as a subgraph.

194 A Tour through Graph Theory

Knowing the clique size of a graph automatically provides a nice lower
bound for the chromatic number. For example, if G contains K5 as a subgraph,
then we know this portion of the graph needs at least 5 colors. Thus χ(G) ≥ 5.
Thus when trying to argue that fewer colors will not suffice, we look for odd
cycles (which require 3 colors), odd wheels (which require 4 colors), and cliques
(which require as many colors as the number of vertices in the clique). Below
is a summary of our discussion so far regarding lower bounds for the chromatic
number of a graph.

Special Classes of Graphs with known χ(G)

• χ(Cn) = 2 if n is even (n ≥ 2)

• χ(Cn) = 3 if n is odd (n ≥ 3)

• χ(Kn) = n

• χ(Wn) = 4 if n is odd (n ≥ 3)

One note of caution: a graph can have a chromatic number that is much
larger than its clique size. In fact, Jan Mycielski showed that there exist graphs
with an arbitrarily large chromatic number yet have a clique size of 2. We often
refer to graphs with ω(G) = 2 as triangle-free. Mycielski’s proof provided a
method for finding a triangle-free graph that requires the desired number of
colors.

Example 6.2 Mycielski’s Construction is a well-known procedure in graph
theory that produces triangle-free graphs with increasing chromatic num-
bers. The idea is to begin with a triangle-free graph G where V (G) =
{v1, v2, . . . , vn} and add new vertices U = {u1, u2, . . . , un} so that N(ui) =
N(vi) for every i; that is, add an edge from ui to vj whenever vi is adjacent to
vj . In addition, we add a new vertex w so that N(w) = U ; that is, add an edge
from w to every vertex in U . The resulting graph will remain triangle-free but
need one more color than G. If you perform enough iterations of this proce-
dure, you can obtain a graph with ω(G) = 2 and χ(G) = k for any desired
value of k.

Consider G to be the complete graph on two vertices, K2, which is clearly
triangle free and has chromatic number 2, as shown below.

1 2
v1 v2

After the first iteration of Mycielski’s Construction, we get the graph
shown below on the left. Notice that u1 has an edge to v2 since v1 is ad-
jacent to v2. Similarly, u2 has an edge to v1. In addition, w is adjacent to both
u1 and u2. The graph on the right below is an unraveling of the graph on the
left. Thus we have obtained C5, which we know needs 3 colors.

Graph Coloring 195

v1

v2

u1

u2

w 1

2 1

2

3

u2

v1 v2

u1

w

After the second iteration, we obtain the graph shown below. The outer
cycle on 5 vertices represents the graph obtained above in the first iteration.
The inner vertices are the new additions to the graph, with u1 adjacent to
v2 and v5 since v1 is adjacent to v2 and v5. Similar arguments hold for the
remaining u-vertices and the center vertex w is adjacent to all of the u-vertices.
A coloring of the graph is shown below on the right. Note that the outer cycle
needs 3 colors, as does the group of u-vertices. This forces w to use a fourth
color. In addition, no matter which three vertices you choose, you cannot find
a triangle among them, and so the graph remains triangle-free.

v1

v2

v3v4

v5
u5

u4 u3

u2

u1

w

1

2 1

2

3

1

2 1

2

3

4

v1

v2

v3v4

v5 u5

u4 u3

u2

u1

w

If we continue this procedure through one more step, we obtain a graph
needing 5 colors with a clique size of 2.

Although Mycielski’s Construction should warn you not to rely too heavily
on the clique size of a graph, most real world applications have a chromatic
number close to their clique size.

The discussion so far has focused on lower bounds for the chromatic num-
ber of a graph. However, when searching for an optimal coloring, it is often
useful to know upper bounds as well. Combined with the lower bounds we
found above, we get a nice range from which to narrow our search for an
optimal coloring. Perhaps the most useful of results for upper bounds is the
following theorem due to the English mathematician Rowland Leonard Brooks
and published in 1941.

196 A Tour through Graph Theory

Theorem 6.5 (Brooks’ Theorem) Let G be a connected graph and ∆ denote
the maximum degree among all vertices in G. Then χ(G) ≤ ∆ as long as G
is not a complete graph or an odd cycle. If G is a complete graph or an odd
cycle then χ(G) = ∆ + 1.

The reasoning behind Brooks’ Theorem is that if all the neighbors of x
have been given different colors, then one additional color is needed for x. If
x has the maximum degree over all vertices in G, then we have used ∆ + 1
colors for x and its neighbors. Perhaps more surprising is that unless a graph
equals Kn or Cm (for an odd m), the neighbors of the vertex of maximum
degree cannot all be given different colors and so the bound tightens to ∆. For
example, the third graph from Mycielski’s construction in Example 6.2 has a
maximum degree of 5. Since this graph is neither a complete graph nor an odd
cycle (although it does contain an odd cycle), we know the chromatic number
is at most 5. In addition, since the clique size is 2, we know the chromatic
number must be at least 2. As we showed above, the correct value was 4.

One final note of caution: although combining Brooks’ Theorem with the
known chromatic numbers of specific subgraph structures (such as complete
graphs and odd wheels) narrows the range of possible values of the chromatic
number of a graph, in practice the range between the maximum degree and
the clique size of a graph can be quite large. The results we have discussed so
far are simply tools to aid in further examination of a graph’s structure.

6.3 Coloring Strategies

The bounds above provide starting points for determining the range in
which to search for a proper k-coloring of a graph. The process for finding
a minimum coloring is not trivial, and in fact belongs to a class of problems
known as NP-Complete (see Section 7.1), though we will discuss some strate-
gies for determining the chromatic number of a graph. These strategies are
split into two categories: those for when the entire graph is available to you,
which we will call general strategies, and those for when only pieces of the
graph are visible at one time, called on-line coloring.

General Strategies

In our discussion of Brooks’ Theorem, we noted that if every neighbor of
a vertex has a different color, then one additional color would be needed for
that vertex. This implies that large degree vertices are more likely to increase
the value for the chromatic number of a graph and thus should be assigned a
color earlier rather than later in the process. In addition, it is better to look

Graph Coloring 197

for locations in which colors are forced rather than chosen; that is, once an
initial vertex is given color 1, look for cliques within the graph containing that
vertex as these have very clear restrictions on assigning future colors.

Example 6.3 Every year on Christmas Eve, the Petrie family compete in a
friendly game of Trivial Pursuit. Unfortunately, due to longstanding disagree-
ments and the outcome of previous years’ games, some family members are
not allowed on the same team. The table below lists the ten family members
competing in this year’s Trivial Pursuit game. An entry of N in the table in-
dicates people who are incompatible. Model the information as a graph and
find the minimum number of teams needed to keep the peace this Christmas.

Betty Carl Dan Edith Frank Henry Judy Marie Nell Pete

Betty · · N · · · · N N N

Carl · · N N · · · N · ·
Dan N N · N · · · N N N

Edith · N N · · · · N · ·
Frank · · · · · N N · · N

Henry · · · · N · · · · N

Judy · · · · · N · · N N

Marie N N N N · · · · N N

Nell N · N · · · N N · N

Pete N · N · N N N N N ·

Solution: Each person will be represented by a vertex and an edge indicates
two people who are incompatible, as shown below.

b
p

n

m

j
h

f

e

d

c

Colors will be assigned to the vertices, where each color represents a Trivial
Pursuit team. At our initial step, we want to find a vertex of highest degree (p)
and give it color 1. Once p has been assigned a color, we look at its neighbors
with high degree as well, namely d (degree 6), m and n (both of degree 5).

198 A Tour through Graph Theory

These four vertices are also all adjacent to each other (forming a K4 shown
in blue below) and so must use three additional colors.

1

3

4

2

b
p

n

m

j
h

f

e

d

c

Finally, b has the next highest degree (4) and is also adjacent to all the
previously colored vertices (forming a K5) and so a fifth color is needed. The
remaining vertices all have degree 3 and can be colored without introducing
any new colors. One possible solution is shown below.

5
1

3

4

2
2

3

4

2

3

b
p

n

m

j
h

f

e

d

c

This solution translates into the following teams:

Team Members

1 Pete

2 Dan Henry Judy

3 Carl Frank Nell

4 Edith Marie

5 Betty

Graph Coloring 199

The coloring obtained in Example 6.3 was not unique. There are many
ways to find a proper coloring for the graph; however, every proper coloring
would need at least five colors.

In terms of the graph model (forming teams) does the solution above seem
fair? Often we are not only looking for the minimal k-coloring, but also one
that adds in a notion of fairness.

Definition 6.6 An equitable coloring is a minimal proper coloring of G so
that the number of vertices of each color differs by at most one.

By this definition, the final coloring from Example 6.3 is not equitable.
Note that not all graphs have equitable coloring using exactly χ(G) colors.

Example 6.4 Find an equitable coloring for the graph from Example 6.3.

Solution: We begin with the 5-coloring obtained in Example 6.3. Note that
colors 2 and 3 are each used three times, color 4 twice, and colors 1 and 5
each once. This implies we should try to move one vertex each from color 2
and color 3 and assign either color 1 or color 5. One possible solution is shown
below.

5
1

3

4

2
5

3

4

2

1

b
p

n

m

j
h

f

e

d

c

A common strategy for coloring is to begin by finding all vertices that can
be given color 1, and once that is done find all the vertices that can be given
color 2, and so on. The problem with this strategy is that you may choose
to give vertex x color 1 which can necessitate the addition of a new color for
vertex y when if x was given color 2, then y could be colored using one of the
previously used colors. Instead we should always focus on locations that force
specific colors to be used rather than choose which color to use. Below is a
summary of the coloring strategies we have discussed so far.

200 A Tour through Graph Theory

General Coloring Strategies

• Begin with vertices of high degree.

• Look for locations where colors are forced (cliques, wheels, odd cycles)
rather than chosen.

• When these strategies have been exhausted, color the remaining vertices
while trying to avoid using any additional colors.

On-line Coloring

On-line coloring differs from a general coloring in that the vertices are
examined one at a time (hence they are seen in a linear manner, or “on a
line”). Often, we are restricted to situations where portions of the graph are
visible at different times and so a vertex must be assigned a color without all
the information available. The notion of an on-line coloring relies on a specific
type of subgraph, called an induced subgraph.

Definition 6.7 Given a graph G = (V,E), an induced subgraph is a sub-
graph H = (V ′, E′) where V ′ ⊆ V and every available edge from G between
the vertices in V ′ is included.

Another way of thinking of an induced subgraph is that we remove all
edges from the graph that do not have both endpoints in the vertex set V ′.

Example 6.5 Consider the graph G below. Find an induced subgraph H1

and a subgraph H2 that is not an induced subgraph both with the vertex set
V ′ = {a, b, c, f, g, i}.

a b

c

de

f

h

j

g i

Solution: The graph H1 on the left below is induced since every edge from G
amongst the vertices in V ′ is included. The graph H2 on the right below is
not induced since some of the available edges are missing (namely, ab, af, ci
and gi).

Graph Coloring 201

a b

cf
g i

a b

cf
g i

H1 H2

The main reason we need induced subgraphs for coloring problems is that
if we took any subgraph and colored it, we may be missing edges that would
indicate two vertices need different colors in the larger graph. On-line color-
ing algorithms require a vertex to be colored based only upon the induced
subgraph containing that vertex and the previously colored vertices.

Definition 6.8 Consider a graph G with the vertices ordered as
x1, x2, . . . , xn. An on-line algorithm colors the vertices one at a time where
the color for xi depends on the induced subgraph Hi which consists of the
vertices up to and including xi (so V (Hi) = {x1, x2, . . . , xi}). The maximum
number of colors a specific algorithm A uses on any possible ordering of the
vertices is denoted χA(G).

Many different on-line algorithms exist, some of which can be quite com-
plex. Mathematicians are often interested in finding an on-line algorithm that
works well on a specific type of graph, or in showing how the underlying
structure of specific types of graphs limits the performance of any on-line al-
gorithm. We will focus on a greedy algorithm called First-Fit that uses the
first available color for a new vertex.

First-Fit Coloring Algorithm

Input: Graph G with vertices ordered as x1, x2, . . . , xn.

Steps:

1. Assign x1 color 1.

2. Assign x2 color 1 if x1 and x2 are not adjacent; otherwise, assign x2
color 2.

3. For all future vertices, assign xi the least number color available to xi
in Hi; that is, give xi the first color not used by any neighbor of xi that
has already been colored.

Output: Coloring of G.

202 A Tour through Graph Theory

One of the benefits of First-Fit is the ease with which it is applied. When
a new vertex is encountered, we simply need to examine its neighbours that
have already been colored and give the new vertex the least color available.

Example 6.6 Apply the First-Fit Algorithm to the graph from Example 6.3
if the vertices are ordered alphabetically.

Solution: To emphasize that only some of the graph is available at each step of
the algorithm, only the edges to previously considered vertices will be drawn.

Step 1: Color b with 1.

1

b

Step 2: Color c with 1 since b and c are not adjacent.

1

1

b
c

Step 3: Color d with 2 since d is adjacent to a vertex of color 1.

1

2

1

b

d

c

Step 4: Color e with 3 since e is adjacent to a vertex of color 1 (c) and a vertex
of color 2 (d).

1

3

2

1

b

e

d

c

Graph Coloring 203

Step 5: Color f with 1 since f is not adjacent to any previous vertices.

1

1

3

2

1

b

f

e

d

c

Step 6: Color h with 2 since h is adjacent to a vertex of color 1 (f).

1

2

1

3

2

1

b

h
f

e

d

c

Step 7: Color j with 2 since j is adjacent to a vertex of color 1 (f).

1

2

2

1

3

2

1

b

j
h

f

e

d

c

204 A Tour through Graph Theory

Step 8: Color m with 3 since m is adjacent to vertices of color 1 (b, c) and a
vertex of color 2 (d).

1

3

2

2

1

3

2

1

b

m

j
h

f

e

d

c

Step 9: Color n with 4 since n is adjacent to vertices of color 1, 2, and 3.

1

4

3

2

2

1

3

2

1

b

n

m

j
h

f

e

d

c

Step 10: Color p with 5 since p is adjacent to vertices of color 1, 2, 3, and 4.

1

5

4

3

2

2

1

3

2

1

b
p

n

m

j
h

f

e

d

c

Graph Coloring 205

As the example above shows, First-Fit can perform quite well given the
proper ordering. Unfortunately, given the right graph and wrong order of the
vertices, First-Fit can perform remarkably poorly, as seen below.

Example 6.7 A vertex will be revealed one at a time, along with any edges
to previously seen vertices. The First-Fit Algorithm will be applied in the
order the vertices are seen.

Step 1: The first vertex is v1. It is given color 1.

1

v1

Step 2: The second vertex is v2. Since there is no edge to v1, it is also given
color 1.

1

1

v1

v2

Step 3: The third vertex, v3, has an edge to v2 and so must be assigned color
2.

1 2

1

v1

v2

v3

Step 4: The fourth vertex, v4, has an edge to v1 but not v3 and so is also given
color 2.

1 2

1 2

v1

v2

v3

v4

206 A Tour through Graph Theory

Step 5: The fifth vertex, v5, is adjacent to a vertex of color 1 (v2) and a vertex
of color 2 (v4). It must be assigned color 3.

1 2 3

1 2

v1

v2

v3

v4

v5

Step 6: The sixth vertex, v6, is also adjacent to a vertex of color 1 (v1) and a
vertex of color 2 (v3) but not a vertex of color 3 so it can also be given color
3.

1 2 3

1 2 3

v1

v2

v3

v4

v5

v6

If we continue in this fashion, after 2t steps we will have used t colors.

1 2 3

1 2 3

t

t

v1

v2

v3

v4

v5

v6

v2t−1

v2t

However, this graph is bipartite and every bipartite graph can be colored using
2 colors, as shown below,

1 1 1

2 2 2

1

2

v1

v2

v3

v4

v5

v6

v2t−1

v2t

Graph Coloring 207

First-Fit is in fact one of the worst performers for on-line algorithms since
it uses very little knowledge of how the previous vertices were treated. When
evaluating a coloring algorithm’s performance, we are asking what is the most
number of colors the algorithm could use on any ordering of the vertices,
denoted χFF (G). It is possible for an on-line algorithm (even First-Fit) to
provide an optimal coloring, but in most cases this does not occur. The next
section investigates a special class of graph where on-line algorithms perform
remarkably well.

6.4 Perfect Graphs

Mycielski’s construction demonstrated that the clique size and chromatic
number of a graph can be quite far apart. Graphs where these numbers are
equal, not only for the entire graph but for all induced subgraphs, comprise a
special class of graphs called perfect graphs.

Definition 6.9 A graphG is called perfect if χ(H) = ω(H) for every induced
subgraph H of G.

Notice that this description did not state all subgraphs satisfy χ(H) =
ω(H), but only those that are induced subgraphs. There are many types of
graphs that fall under the class of perfect graphs. We will investigate two of
these, interval graphs and tolerance graphs, as they appear when modeling
real world problems as a graph coloring problem.

Interval Graphs

Look back at the example proposed at the beginning of this chapter. Five
student groups need to schedule meetings while using the fewest rooms possi-
ble. The fact that we are wanting to minimize something (number of rooms)
and there are conflicts among different groups (overlapping times) should in-
dicate this problem can be modeled using graph coloring. In fact, the col-
ors represent the rooms (since this is what we are minimizing), the vertices
represent the groups (since the groups are assigned a room), and the edges
indicate when two groups have overlapping times (forcing the use of two dif-
ferent rooms). Graphs where the vertices represent intervals of time are called
interval graphs.

Definition 6.10 A graph G is an interval graph if every vertex can be
represented as a finite interval and two vertices are adjacent whenever the
corresponding intervals overlap; that is, for every vertex x there exists an
interval Ix and xy is an edge in G if Ix ∩ Iy 6= ∅.

208 A Tour through Graph Theory

Beyond their applicability to real world problems, interval graphs are nice
graphs for coloring problems as they fall under the class of perfect graphs.
Thus to demonstrate that you have found the chromatic number and a better
coloring does not exist, it is enough to find the clique size of the graph.

Example 6.8 Five student groups are meeting on Saturday, with varying
time requirements. The staff at the Campus Center need to determine how to
place the groups into rooms while using the fewest rooms possible. The times
required for these groups is shown in the table below. Model this as a graph
and determine the minimum number of rooms needed.

Student Group Meeting Time

Agora 13:00 – 15:30

Counterpoint 14:00 – 16:30

Spectrum 9:30 – 14:30

Tupelos 11:00 – 12:00

Upstage 11:15 – 15:00

Solution: First we display the information in terms of the intervals. Although
this step is not necessary, sometimes the visual aids in determining which
vertices are adjacent.

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

s

t c

u

a

Below is the graph where each vertex represents a student group and two
vertices are adjacent if their corresponding intervals overlap.

u

t s

c

a

A proper coloring of this graph is shown below. Note that four colors are
required since there is a K4 subgraph with a, c, s and u.

Graph Coloring 209

3

2 1

4

2

u

t s

c

a

It should be noted that in most applications of interval graphs, you are
given the intervals and must form the graph. A much harder problem is de-
termining if an interval representation of a graph exists and then finding one.

On-line coloring algorithms perform nicely on interval graphs. In partic-
ular, if the interval representation is known and the vertices are ordered by
starting time of their intervals, then First-Fit will produce a coloring using
exactly χ(G). However, if the intervals are not ordered by their starting time
or a different on-line algorithm is used, the optimal coloring may not be found.

Example 6.9 Ten customers are buying tickets for various trips along the
Pacific Northwest train route shown on
the right. Each person must be assigned
a seat when a ticket is purchased and you
only know which seats have been previ-
ously assigned. Using a random assign-
ment of seat numbers as the information
becomes available, find a way to mini-
mize the number of seats required.

Solution: Each step indicates when a new
person buys a ticket. Their representative
vertex must be assigned a color before
moving to the next step.

Step 1: Cathy buys her ticket for Belling-
ham to Edmonds. She is assigned seat 1,
as shown in the graph below.

1 c

Step 2: Fiona buys her ticket next for
Bellingham to Renton. Since she and
Cathy will be on the train at the same
time, she must have a different seat. She
is assigned seat 2.

210 A Tour through Graph Theory

2

1

f

c

Step 3: Next, Greg buys a ticket for Vancouver to Mount Vernon. His trip
overlaps with those of both Cathy and Fiona, necessitating the use of another
seat. He is assigned seat 3.

3

2

1

g

f

c

Step 4: Ben buys the next ticket for Portland to Oregon City. Since his trip
does not overlap with any of the earlier purchased tickets, he can be assigned
any seat. We choose seat 1.

3

2

1

1

g

f

c

b

Step 5: Next Ingrid buys a ticket for Oregon City to Albany. Similar to Ben,
she can also be assigned any seat. We choose seat 3.

Graph Coloring 211

3

3

2

1

1

i

g

f

c

b

Step 6: Jessica buys the next ticket for Albany to Eugene. As in the previous
two steps, she can be assigned any seat. We choose seat 2.

2

3

3

2

1

1

j

i

g

f

c

b

Step 7: Howard buys a ticket for Centralia to Eugene. Since his route overlaps
with those of Ben, Jessica and Ingrid, he must be assigned to a new seat,
number 4.

2

3

4

3

2

1

1

j

i

h

g

f

c

b

Step 8: Dana buys the next ticket for Renton to Tacoma. He can be assigned
any seat, so we choose seat 3.

212 A Tour through Graph Theory

2

3

4

3

2

3

1

1

j

i

h

g

f

d

c

b

Step 9: Aiden buys a ticket for Seattle to Oregon City. Since his trip overlaps
with someone in seats 1 through 4, we need a new seat for him, number 5.

5

2

3

4

3

2

3

1

1

a
j

i

h

g

f

d

c

b

Step 10: Emily is the last person to buy a ticket for a trip from Everett to
Kelso. Since her trip overlaps with someone in each of the previously assigned
seats, we need a sixth seat for Emily.

5

2

3

4

3

2

6

3

1

1

a
j

i

h

g

f

e

d

c

b

Graph Coloring 213

In the example above, we did not use First-Fit but rather a more random
choice for an on-line algorithm. In Exercise 6.6 First-Fit is applied to this
graph using the same order of the vertices, resulting in an improvement on
the number of colors (or seats). However, neither of these algorithms produces
an optimal coloring as the chromatic number for this graph is 3 since the clique
size is 3 (for example, there is a K3 with vertices a, b and h), and since this
is an interval graph we know χ(G) = ω(G). One optimal coloring is shown
below.

3

1

1

2

2

1

2

1

3

1

a
j

i

h

g

f

e

d

c

b

In general, First-Fit can be shown to be no worse than roughly 5χ(G) on
interval graphs (which means First-Fit will never use more than five times the
optimal) and there exists an on-line algorithm that uses at most 3χ(G) colors
on interval graphs (see [28],[29]). Though this may seem quite large, recall
that in Example 6.7 we had a graph with 2t vertices using t colors when only
2 were needed, implying a performance of n

4χ(G) for bipartite graphs with n
vertices.

Tolerance Graphs

Consider the scenario from Example 6.8 where five student groups needed
to schedule meetings. Due to the overlapping times, we needed four rooms
to accommodate the groups’ time requirements. But what if there were not
four rooms available? Most groups would prefer to shorten their meeting by
a small amount of time if it meant they could still hold their meeting. This
idea of leeway can be modeled using a tolerance graph.

Definition 6.11 A graph G is a tolerance graph if every vertex can be
represented as a finite interval with a non-negative tolerance so that two ver-
tices are adjacent whenever the corresponding intervals overlap by at least
the smaller of their two tolerances; that is, for every vertex x there ex-
ists an interval Ix with tolerance tx and xy is an edge if Ix ∩ Iy 6= ∅ and
|Ix ∩ Iy| ≥ min{tx, ty}.

214 A Tour through Graph Theory

Tolerance graphs fall under the class of perfect graphs, and as such de-
termining the chromatic number boils down to finding the clique size of the
graph. As with interval graphs, determining if a graph is a tolerance graph
can be quite complex but most applications have a tolerance representation
already provided.

Example 6.10 Each of the groups from Example 6.8 has been asked to sub-
mit some leeway (in minutes) for their meeting so that the staff at the Student
Center can schedule more activities. These are listed below along with the de-
sired meeting times. Determine the minimum number of rooms needed for all
five groups to hold their meetings when tolerances are taken into account.

Student Group Meeting Time Leeway

Agora 13:00 – 15:30 30

Counterpoint 14:00 – 16:30 40

Spectrum 9:30 – 14:30 45

Tupelos 11:00 – 12:00 5

Upstage 11:15 – 15:00 15

Solution: As in Example 6.8, we begin by drawing the intervals representing
each group. Note that the gray bars indicate the tolerance (or leeway) for the
meeting time of each group.

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

s

t c

u

a

To form the graph, we only draw an edge if the two intervals overlap
by more than the smallest of the two tolerances. From the graphic above,
this means that the intervals overlap beyond the gray bars that indicate the
tolerances, and we can produce the graph below. Note that the graph is almost
identical to the graph from Example 6.8, only now s and c are not adjacent
since the size of the intersection of their intervals is 30 minutes, whereas the
tolerances are 45 and 40 minutes, respectively.

Graph Coloring 215

u

t s

c

a

The graph now only needs 3 colors, as shown below. We know fewer colors
will not suffice since there is a K3 subgraph (for example between a, c, u). This
implies the five groups can be placed into 3 rooms.

3

2 1

1

2

u

t s

c

a

Like interval graphs, on-line algorithms can be shown to perform rather
well on tolerance graphs, though the results require more information as to
how the tolerances relate to the length of the interval. For further information,
see [18] or [26].

Example 6.11 Draw a graph representing the intervals below with the tol-
erances shown in gray. Determine the chromatic number.

0 1 2 3 4 5 6 7 8 9 10 11

a e h j

c f i

d

b g

Solution: Below is the graph where every vertex represents an interval. Notice
that even though intervals b and d overlap, the size of their intersection is less
than the minimum tolerance and so there is no edge between these vertices

216 A Tour through Graph Theory

in the graph. Also, the lack of gray bars on f indicates that the tolerance for
f is 0, and so vertex f will be adjacent to any vertex whose interval overlaps
that of f .

a
j

i

h

g

f

e

d

c

b

A minimum coloring is given below. We know the chromatic number is 4
since there is a K4 subgraph (among vertices d, g, h and i).

2
1

4

2

3
2

3

1

2

1

a
j

i

h

g

f

e

d

c

b

6.5 Weighted Coloring

Consider the following scenario:

Ten families need to buy train tickets for an upcoming trip. The fam-
ilies vary in size but each of them needs to sit together on the train.

Graph Coloring 217

Determine the minimum number of seats needed to accommodate the
ten family trips.

This problem should sound very similar to Example 6.9 where colors were
representing seats and the vertices were intervals of time indicative of when
a person was on the train. Here, we are still interested in a graph coloring,
but now each vertex represents a family and so has a size associated with
it. In previous chapters, we used weights on the edges of a graph to indicate
distance, time, or cost. For graph coloring models, weighted edges would have
very little meaning. Instead, we will assigning a weight to each vertex, and
finding a proper coloring will be referred to as a weighted coloring.

Definition 6.12 Given a weighted graph G = (V,E,w), where w assigns
each vertex a positive integer, a proper weighted coloring of G assigns each
vertex a set of colors so that

(i) the set consists of consecutive colors (or numbers);

(ii) the number of colors assigned to a vertex equals its weight; and

(iii) if two vertices are adjacent, then their set of colors must be disjoint.

Note that in some publications, weighted colorings are referred to as in-
terval colorings (since an interval of colors is being assigned to each vertex).
To avoid the confusion between interval colorings and interval graphs, we use
the term weighted coloring.

Before we tackle the train example, we will look at a smaller graph with
a weighted coloring. We will, for the most part, use the same strategies for
finding a minimum weighted coloring as we did above for unweighted coloring.
The biggest change will be to focus on locations that have large weighted
cliques, which is found by adding the weights of the vertices within a complete
subgraph. Thus if we have two different cliques on three vertices, one with total
weight 8 and the other with total weight 10, we should initially focus on the
one with the higher total weight.

Example 6.12 Find an optimal weighted coloring for the graph below where
the vertices have weights as shown below.

c

ba

f

e d

w(a) = 2
w(b) = 1
w(c) = 4
w(d) = 2
w(e) = 2
w(f) = 4

Solution: Note that a, d and e form a K3 with total weight 8, and c, e and f

218 A Tour through Graph Theory

form a K3 with total weight 10. We begin by assigning weights to the vertices
from the second K3, and since e appears twice we assign it the first set of colors
{1, 2}. From there we are forced to use another 4 colors on f ({3, 4, 5, 6}) and
another 4 colors on c ({7, 8, 9, 10}).

c

ba

f

e d

{7, 8, 9, 10}{3, 4, 5, 6}

{1, 2}

We can now fill in the remaining three vertices using the colors 1 through 10.

c

ba

f

e d

{7, 8, 9, 10}{3, 4, 5, 6}

{1, 2}

{3, 4} {1}

{5, 6}

As the example above demonstrates, we focus less on a vertex degree and
more on the vertex weight when we are searching for a minimal weighted
coloring. This is in part due to the need for the set of colors to be consecutive.
If a vertex has high weight, then it needs a larger range from which to pick
the set of colors, whereas a vertex with large degree but a small weight may
be able to squeeze in between the sets of colors of its neighbors.

Example 6.13 Suppose the ten families needing train tickets have the same
underlying graph as that from Example 6.9 and the size of each family is noted
below. Determine the minimum number of seats needed to accommodate ev-
eryone’s travels.

Graph Coloring 219

w(a) = 2 a
j

i

h

g
f

e

d

c

bw(b) = 5
w(c) = 2
w(d) = 1
w(e) = 4
w(f) = 3
w(g) = 1
w(h) = 3
w(i) = 4
w(j) = 5

Solution: As with the example above, we begin by looking for the largest total
weight for a clique. Since the clique size is three, we want to find K3 subgraphs
with high total weight. The largest of these is with a, b, and h with total 10.
Since b has the largest weight among these, we give it colors 1 through 5,
assign a colors 6 and 7, and colors 8, 9, and 10 to h.

a
j

i

h

g
f

e

d

c

b {1, 2, 3, 4, 5}

{6, 7}

{8, 9, 10}

The next two cliques with a high total weight (of 9) are formed by a, e, f and
c, e, f . Since a has already been assigned colors, we begin with the first clique.
We can fill in the colors for e and f without introducing new colors, as shown
below. Note that since e is adjacent to both a and h it could only use four
consecutive colors chosen from those used on b.

220 A Tour through Graph Theory

a
j

i

h

g
f

e

d

c

b {1, 2, 3, 4, 5}

{6, 7}

{8, 9, 10}

{1, 2, 3, 4}

{8, 9, 10}

At this point we can fill in the colors for c by choosing two consecutive colors
from those available (5, 6, and 7). We also fill in the colors for i and j by
choosing the correct number of consecutive colors from any of 1 to 7.

a
j

i

h

g
f

e

d

c

b {1, 2, 3, 4, 5}

{6, 7}

{8, 9, 10}

{1, 2, 3, 4}

{8, 9, 10}

{5, 6}{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Finally, we need one color each for d and g. These can be any color not
already used by one of their neighbors.

Graph Coloring 221

a
j

i

h

g
f

e

d

c

b {1, 2, 3, 4, 5}

{6, 7}

{8, 9, 10}

{1, 2, 3, 4}

{8, 9, 10}

{5, 6}{1, 2, 3, 4}

{1, 2, 3, 4, 5}

{7}

{5}

On-line algorithms, and specifically First-Fit, can also be used for weighted
colorings. It should not come to much surprise that on-line algorithms gener-
ally use more colors than when the entire graph can be seen. In Exercise 6.10
you are asked to use First-Fit on the example above.

The combination of interval graphs, on-line algorithms, and weighted col-
orings have been extensively studied due to a very specific application, called
Dynamic Storage Allocation, or DSA. The storage allocation refers to assign-
ing variables to locations within a computer’s memory, where each variable
has a size associated to it. This can be thought of as the weight of a ver-
tex. The location a variable is assigned is the set of colors a vertex is given.
The dynamic part of DSA refers to variables being in use for specific inter-
vals of time and only the previously used (or in-use) variables locations are
know. Thus each vertex is represented by an interval and the coloring must
use an on-line algorithm. In total, DSA can be modeled as an on-line col-
oring of a weighted interval graph. Modifications to the known performance
of algorithms for interval graphs can be used to provide limitations on DSA
performance. In addition, DSA has been generalized to account for leeway of
storage, making use of tolerance graphs in place of interval graphs. For further
information, see [25], [26], and [27].

6.6 Exercises

6.1 Find a coloring of the map of the United States. Explain why four colors are
necessary.

222 A Tour through Graph Theory

6.2 Find the chromatic number for each of the graphs below. Include an argu-
ment why fewer colors will not suffice.

(a) (b)
a

b

c

d

e

f

g

h

a

b

c

d

efg

h

i

j

(c) (d)
a

bc

d e

f

g

a

e

d c

b

f

j

i h

g

(e) (f)

a b c

d

efg

h

i j

km

a b

c

de

f

h

j

g i

Graph Coloring 223

6.3 (From [39]) A set of solar experiments is to be made at various observatories
and each experiment is to be repeated for several years, as shown in the table
below. Each experiment begins on a given day of the year and ends on a differ-
ent given day and an observatory can perform only one experiment at a time.
Determine the minimum number of observatories required to perform a given
set of experiments annually.

Experiment Start Date End Date

A Sept 2 Jan 3

B Oct 15 Mar 10

C Nov 20 Feb 17

D Jan 23 May 30

E Apr 4 July 28

F Apr 30 July 28

G June 24 Sept 30

6.4 Ten students in the coming semester will be taking the courses shown in the
table below.

Course Students

Physics Arnold Ingrid Fred Bill Jack

Mathematics Eleanor Arnold Herb

English Arnold

Geology Carol Bill Fred Herb

Business George Eleanor Carol

Statistics David Ingrid George

Economics Ingrid Jack

(a) Draw a graph modeling these conflicts.
(b) How many time periods must be allowed for these students to take the
courses they want without conflicts? Include an argument why fewer time
periods will not suffice.

(c) The following semester, all the students except David plan to take second
courses in the same subject. David decides not to take further courses in
Statistics. How many time periods will then be required?

224 A Tour through Graph Theory

6.5 The seven committees from Exercise 5.8 need to schedule their weekly meet-
ing. Based on the membership lists (shown below), determine the number of time
slots needed so each person can make his or her committee meeting.

Committee Members

Benefits Agatha Dinah Evan Vlad

Computing Evan Nancy Leah Omar

Purchasing George Vlad Leah

Recruitment Dinah Omar Agatha

Refreshments Nancy George

Social Media Evan Leah Vlad Omar

Travel Expenses Agatha Vlad George

6.6 Using the same order of the vertices, apply First-Fit to the graph from Ex-
ample 6.9.

6.7 Draw a graph representing the same intervals from Example 6.11 where all
the tolerances are 0 (and so we are back to an interval graph). Find the chro-
matic number of this graph.

6.8 Below is a collection of meetings that need to be assigned to conference rooms.
Each group has identified when it would like to meet and how long it needs. In
addition, each group has given the organizers a little leeway in the amount of
time it is willing to cut short its meeting if the room is needed for another group.
Model this information as a graph and determine how many conference rooms
are needed.

Organization Time Leeway

Adam’s Apples 8:30 – 9:30 10 minutes

Brain Teasers 9:00 – 11:00 45 minutes

Cookie Club 9:45 – 12:00 30 minutes

Disaster Readiness 10:00 – 1:00 45 minutes

Edison Enthusiasts 11:15 – 12:45 5 minutes

Fire Chiefs 12:30 – 3:30 30 minutes

Gary’s Golfers 2:00 – 3:15 5 minutes

Helix Doubles 2:15 – 4:00 1 hour

Graph Coloring 225

6.9 Find an optimal weighted coloring for each of the graphs from Exercise 6.2
with the weights as shown below.

Weight in graph 6.2

Vertex (a) (b) (c) (d) (e) (f)

a 2 4 1 3 3 3

b 3 2 4 3 3 5

c 2 5 3 2 4 3

d 2 3 2 2 3 2

e 4 2 3 4 5 4

f 2 3 4 3 3 2

g 3 1 2 2 4 2

h 1 3 · 3 4 3

i · 2 · 1 1 3

j · 1 · 1 4 3

k · · · · 3 ·
m · · · · 5 ·

6.10 Using the same order of vertices as from Example 6.9, apply First-Fit to
find a weighted coloring of the graph from Example 6.13.

Projects

6.11 This chapter focused on vertex coloring, with a brief discussion of weighted
colorings. Another modification exists where instead of weights assigned to ver-
tices, each vertex is given a specific list of colors from which to choose (see
Section 7.7 for coloring the edges of a graph). More formally, each vertex x is
given a list L(x) of colors and a proper list coloring assigns to x a color from
its list L(x) so that no two adjacent vertices are given the same color. Given any
possible collection of lists, each of size k, to the vertices of a graph G, if a proper
list coloring exists then G is k-choosable. The minimum value for k for which G
is k-choosable is called the choosability of G and denoted ch(G).
(a) Find a list coloring for select graphs from Exercise 6.2 with the lists as
shown on the next page.

(b) Can the graph 6.2(a) be list colored if each vertex is given the same list of
size 4? size 3? Explain your answer.

(c) Compare your answer from (b) with your coloring in (a). Explain why the
answers for lists of size 3 differ.

(d) Explain why ch(G) ≥ χ(G) for all graphs G.
(e) Explain why ch(G) ≤ ∆(G) + 1 for all graphs G.

226 A Tour through Graph Theory

Lists for graph 6.2

Vertex (a) (c) (e)

a {1,2,3} {1,2,3} {1,2}
b {4,5,6} {2,3,4} {2,3}
c {1,2} {3,4} {3,4}
d {2,4} {1,4} {1,2}
e {4,7,8} {1,3,4} {1,3,4}
f {5,8} {2,3,4} {1,2,4}
g {3} {1,4} {1,2}
h {2,4,6} · {2,3}
i · · {4,5}
j · · {1,2,3}
k · · {3,4}
m · · {2,4}

Chapter 7

Additional Topics

Graph Theory is a rich field of mathematics. Although it dates back to Euler’s
paper in 1736, much of the work has been done in the last century. The first
six chapters of this book focus on the more algorithmic and applied areas of
Graph Theory. The purpose of this chapter is to expand on some concepts
that appeared in previous chapters and explore additional topics that do not
warrant an entire chapter.

The sections to follow are independent of each other, though they rely on
terms and topics defined earlier in the book. References to previous sections
or topics appear as needed. Each section concludes with limited exercises for
further practice and deepening your understanding.

7.1 Algorithm Complexity

In Chapter 2 we spent time discussing efficiency of algorithms, in particular
the challenges of using Brute Force to solve a Traveling Salesman problem.
At other times throughout this book, algorithm efficiency and performance
were mentioned to explain why a specific problem was difficult to solve (see
3.1, 4.2, 4.3, and 6.3). This section will elaborate on what algorithm efficiency
means and how mathematicians determine what makes one algorithm more
efficient than another.

The algorithms we have studied throughout this book have been written
so that you, the reader, could perform the necessary computations to find a
solution. However, all of these algorithms can be written in such a way as
to have a computer perform the calculations and provide the answer. When
doing so, the information from a graph needs to be encoded in such a way
as to allow the algorithm to pull the requisite information needed for the
computations. For example, the Traveling Salesman Problem would need as

an input the name of the n cities and the weights of the n(n−1)
2 edges in the

complete graph Kn. It is possible for a given problem to have more than one
way to encode the required information, so when evaluating the performance
of an algorithm we will assume a standard method of encoding the input has
been set and that this is done as efficiently as possible.

227

228 A Tour through Graph Theory

In addition, algorithm performance is generally evaluated based on a worst
case scenario. Although an algorithm may quickly solve one instance of a
problem, it is still possible to be quite slow for solving another instance. We
will be concerned with how poorly an algorithm can perform over all possible
instances and this evaluation is often given in terms of the running time.
While the running time is dependent on the encoding scheme and computing
power, changing either of these parameters does not change the complexity
of the algorithm; that is, as we will see later in this section, improvements
in computing power will not drastically affect the overall running time for an
inefficient algorithm with large inputs.

When discussing the Brute Force Algorithm for the Traveling Salesman
Problem in Chapter 2, a rough estimate for the number of required calculations

was determined to be (n+1)!
2n . The estimate is given in terms of n, which is the

number of cities represented in the complete graph Kn. Essentially, algorithm
performance is a function f(n) whose input is the size of the graph and whose
output is the number of required calculations.

Definition 7.1.1 The performance function f(n) for a graph theory al-
gorithm is a function whose input is n, the number of vertices in the graph,
and whose output is the number of required calculations to complete the al-
gorithm.

Using this language, the performance function for Brute Force is

f(n) = (n+1)!
2n .

Consider for a moment two algorithms, one whose performance function
is n2 + 3n + 1 and another whose performance function is n2. When n is
small, these would give slightly different outputs for running time, but as n
gets larger the addition of 3n + 1 matters much less than the common n2

component. In essence, we consider these two algorithms to have the same
complexity due to the common highest power of their performance functions.
More formally, these functions would be of the same order.

Definition 7.1.2 Given a function f , it has order at most g, denoted f(n)
is O(g(n)), if there exists a constant c and a nonnegative integer a so that
|f(n)| ≤ c|g(n)| for all x ≥ a.

Using this notation f(n) = n2 + 3n + 1 is O(n2) since for n ≥ 1 we have
n2 + 3n+ 1 ≤ n2 + 3n2 +n2 = 5n2 (so our constants from the definition above
are c = 5 and a = 1).

Algorithms with performance functions of order at most nm, for some in-
teger m, are called polynomial-time algorithms. These are, in some sense,
considered “good” algorithms as they run fairly fast even as the size of the
input grows. The table below gives an analysis of how various values of m
impact the running time as the size of the input grows (values are rounded
slightly). Note that these were calculated in the same manner as those for

Additional Topics 229

the Brute Force Algorithm on page 46, where we are using the best known
supercomputer at the time of publication.

n n2 n5 n10

10 3× 10−15 seconds 3× 10−12 seconds 3× 10−8 seconds

50 7.5× 10−14 seconds 9.5× 10−9 seconds 0.3 seconds

100 3× 10−13 seconds 3× 10−7 seconds 50.5 minutes

500 7.5× 10−12 seconds 9.5× 10−4 seconds 938 years

1000 3× 10−11 seconds 0.03 seconds 960, 903 years

Notice that when the polynomial has degree 5, an algorithm with input
size 1000 can still be completed in less than a second! Also, even when the
polynomial has degree 10, run-time only becomes infeasible after 100 inputs.
In fact, only after the input size is 250 does the run-time take longer than a
year and at 200 the run-time is around 1 month.

If polynomial-time algorithms are considered “good” algorithms, what con-
stitutes a “bad” algorithm? One such type is called an exponential-time
algorithm, where the performance functions are of order at most kn for some
constant k. For example f(n) = 2n + 5n + 1 is of order at most 2n since for
all n ≥ 0 we have 2n + 5n + 1 ≤ 2n + 5 · 2n + 2n = 7 · 2n (so our constants
from the definition above are c = 7 and a = 0). An algorithm with this per-
formance function is considered an inefficient algorithm since small increases
in the input size result in large increases in the running time, as shown in the
table below.

The calculations we computed for Brute Force, gave a performance func-
tion in terms of a factorial, which is another type of inefficient algorithm called
a factorial-time algorithm since it is of order at most n!. Factorial-time
algorithms are in fact one of the worst in terms of their performance func-
tion. Note that there exists a more complex algorithm for solving a Traveling
Salesman Problem (the Held-Karp algorithm) that has complexity n22n, but
this still puts it in the category of inefficient algorithms since it is within the
class of exponential-time algorithms.

n 2n 3n n!

10 3× 10−14 seconds 1.8× 10−12 seconds 1× 10−10 seconds

50 0.3 seconds 252 days 2.9× 1040 years

100 1.2 million years 4.9× 1023 years 8.9× 10133 years

500 3× 10126 years 3.4× 10214 years 1.1× 101110 years

1000 1× 10277 years 1.2× 10453 years 3.8× 102543 years

230 A Tour through Graph Theory

Notice how smaller inputs for these types of algorithms quickly produce in-
feasible run-times. For example, even with input size 50 all of the polynomial-
time algorithms in the table above had run times under a second; however,
only the 2n algorithm is reasonable. To understand the scale of the entries
above, scientists believe the age of the earth to be 4.54 billion years, which is
4.54× 109 years. Examining these algorithms with an input size of 100 shows
the widening gap between polynomial-time and exponential-time or factorial-
time algorithms.

All of the calculations above are based on a fixed computing power. One
might ask if major improvements in computers would drastically change the
feasibility of these algorithms. For example, if we are able to increase the num-
ber of calculations per second by a factor of 1000, how much faster would a n2

algorithm run versus a 2n algorithm? A few categories of algorithms are shown
below with various factors of increase. These are all evaluated at n = 100.

factor increase n10 2n n!

1 50.5 minutes 1.2 million years 8.9× 10133 years

100 30.3 seconds 12, 180 years 8.9× 10131 years

1000 3.03 seconds 1, 218 years 8.9× 10130 years

1000000 0.003 seconds 1.2 years 8.9× 10127 years

As you can see, polynomial-time algorithms gain more of a savings from
these increase factors. Is it surprising that the exponential-time and factorial-
time algorithms do not gain as much of a savings? In fact, even with a com-
puter that is a million times faster than the current best supercomputer, a
factorial-time algorithm remains infeasible with only an input size of 100.

The algorithm complexities described above were chosen due to their
prevalence in graph theory problems (for example, Dijkstra’s Algorithm,
from Section 3.1 is of order n2). However, other time complexities exist and
can be similarly analyzed. A linear-time algorithm has order n and a
logarithmic-time algorithm has order log n. Algorithms of these orders are
even more efficient than polynomial-time algorithms and fall into the class of
“good” algorithms. Additionally, some graph algorithm complexities are given
in terms of both the number of vertices and the number of edges. For example,
Kruskal’s Algorithm is of order m log n, where m is the number of edges and
n is the number of vertices. However, since the number of edges in a simple

graph is no more than the number of edges in a complete graph (n(n−1)
2) any

performance function using m, the number of edges, as an input can replace
m with n2 to give a rough estimate only in terms of the number of vertices.

When mathematicians and computer scientists describe algorithm com-
plexity, they are often concerned with the overall class to which the algorithm
belongs. Complexity classes are used to describe which algorithms are “good”

Additional Topics 231

and which are “bad.” The two most commonly referenced classes are P and
NP .

Definition 7.1.3 Problems that can be solved by a deterministic sequential
machine using at worst a polynomial-time algorithm belong to class P.
Problems for which there is no known polynomial-time solution algorithm
but for which a proposed solution can be verified in polynomial-time belong
to class NP.

The definition above uses the term deterministic sequential machine which,
roughly speaking, is the equivalent of the modern computer; given a set of
steps, such as those in an algorithm, a deterministic sequential machine can
solve a problem and produce an output. Polynomial-time, linear-time, and
logarithmic-time algorithms fall into class P , whereas exponential-time and
factorial-time algorithms fall into class NP . For a more technical discussion
of complexity theory, see [33].

Many of the problems discussed in this book are from class P , for example
finding an Eulerian circuit (Fleury’s Algorithm), a minimum spanning tree
(Kruskal’s or Prim’s Algorithm), a shortest path (Dijkstra’s Algorithm), or a
maximum matching (Augmenting Path Algorithm). However, other problems
are known to be in NP , such as the Traveling Salesman Problem and find-
ing an optimal coloring. In fact, the Traveling Salesman Problem is a classic
example of an NP problem that belongs to a subclass of NP , called NP-
Complete. NP -Complete problems are considered to have equivalent com-
plexities since if any one of the problems can be solved in polynomial-time,
then all others can be solved in polynomial-time. In addition, the Steiner Tree
Problem from Section 4.3 is classified as NP -Hard, a subclass of NP problems
that are considered at least as hard as any NP problem.

A major question in complexity theory is whether P = NP or P 6= NP .
Another way of phrasing this is if any problem that can be verified in
polynomial-time can also be solved in polynomial-time. In fact, this problem
is of such importance to the fields of mathematics and computer science that
it was named one of the Millennium Problems by the Clay Mathematics In-
stitute in 2000. CMI chose seven problems believed to be of great importance
to mathematics in the new millennium, and where a prize of one million dol-
lars would be awarded for a published and verifiable solution to any of these
problems. The details behind P vs. NP get quite technical, especially the
deeper into the research you dive, but a final note is warranted. If P = NP ,
then our current method of Internet encryption (which is based on integer
factorization, a known NP problem) would be essentially useless.

232 A Tour through Graph Theory

Exercises

7.1.1 Find the constants a and c, as in Definition 7.1.2, to show each of the
functions below are of the order indicated.
(a) f(n) = n3 + 4n+ 5 is O(n3)
(b) f(n) = 3n5 + n is O(n5)
(c) f(n) = 2n + n is O(2n)
(d) f(n) = n! + n+ 1 is O(n!)
(e) f(n) = n! + 2n is O(n!)
(f) f(n) = n22n is O(22n)

7.1.2 In reference to Chapter 2, explain why Brute Force is in class NP and
Nearest-Neighbor is in class P .

7.1.3 Explain algorithm complexity and the P vs. NP question in your own
words.

7.2 Graph Isomorphism

Various times throughout the book, we have discussed multiple ways for
drawing the same graph. In Example 1.2 we showed two different modes for
drawing the graph in Example 1.1. At the time, we focused on the fact that
we were dealing with the same set of vertices and verified the edge set was
maintained in the new drawings. However, two graphs with distinct vertex sets
can still produce the same edge relationships; more technically these graphs
are called isomorphic.

Definition 7.2.1 Two graphs G1 and G2 are isomorphic if every vertex
from G1 can be paired with a unique vertex from G2 so that corresponding
edges from G1 are maintained in G2.

Throughout this section we will only consider simple graphs (those without
multi-edges or loops). Similar definitions and results exist for multi-graphs and
digraphs. A more robust definition of isomorphic uses a special function, called
a bijection, between the vertices of G1 and G2; further discussion of bijections
and isomorphisms can be found in [40].

Later we will list some of the common properties that must be maintained
with isomorphic graphs. But to begin, it should be easy to name a few things
that are easy to check:

• number of vertices

• number of edges

• vertex degrees

Additional Topics 233

By no means is this list comprehensive, but it allows for a quick check before
working on more complex ideas.

Example 7.2.1 Determine if the following pair of graphs are isomorphic. If
so, give the vertex pairings; if not, explain what property is different among
the graphs.

c

ba

f

e d

y

x

w

v

u

z

G1 G2

Solution: First note that both graphs have six vertices and nine edges, with
two vertices each of degrees 4, 3, and 2. Since corresponding vertices must
have the same degree, we know b must map to either u or v. We start by
trying to map b to v. By looking at vertex adjacencies and degree, we must
have e map to u, c map to w and a map to x. This leaves f and d, which must
be mapped to y and z, respectively. The two charts below show the vertex
pairings and checks for corresponding edges.

V (G1)←→ V (G2) Edges

a←→ x ab←→ xv X

b←→ v ae←→ xu X

c←→ w af ←→ xy X

d←→ z bc←→ vw X

e←→ u bd←→ vz X

f ←→ y be←→ vu X

cd←→ wz X

de←→ zu X

ef ←→ uy X

Since all edge relationships are maintained, we know G1 and G2 are iso-
morphic.

234 A Tour through Graph Theory

Example 7.2.2 Determine if the following pair of graphs are isomorphic. If
so, give the vertex pairings; if not, explain what property is different among
the graphs.

a

g

f

e d

c

b

t

z

y

x w

v

u

G3 G4

Solution: First note that both graphs have seven vertices and ten edges, with
two vertices each of degrees 4 and 3, and three vertices of degree 2. As in the
previous example, we know corresponding vertices must have the same degree,
and so the vertices of degree 4 in G3, a and b, must map to the vertices of
degree 4 in G4, namely t and u. However, in G3 the degree 4 vertices (a and
b) are adjacent, whereas in G4 there is no edge between the degree 4 vertices
(t and u). Thus G3 and G4 are not isomorphic.

The previous example illustrates that no one property guarantees two
graphs are isomorphic. In fact, simply having the same number of vertices
of each degree is not enough. The theorem below lists the more useful prop-
erties of graph isomorphism.

Theorem 7.2.2 Assume G1 and G2 are isomorphic graphs. Then G1 and G2

must satisfy any of the properties listed below; that is, if G1

• is connected

• has n vertices

• has m edges

• has m vertices of degree k

• has a cycle of length k

• has an Eulerian circuit

• has a Hamiltonian cycle

then so too must G2 (where n,m, and k are non-negative integers).

Additional Topics 235

Throughout the majority of this text, we have glossed over graph isomor-
phism. This is in part because when modeling a problem, we only care about
whether the graph in question adequately models the given information. We
have not made much, if any distinction between multiple ways to draw the
same set of information. In general, graph isomorphism is less applicable to
real world scenarios. However, isomorphism will be briefly mentioned in Sec-
tions 7.3 and 7.6. Additionally, with respect to Section 7.1, graph isomorphism
belongs in the complexity class NP , although specific graph types are known
to be in class P , such as trees, interval graphs, or planar graphs (see Section
7.6).

Exercises

For each of the problems below, determine if the given pair of graphs are iso-
morphic. For those that are isomorphic, explicitly give the vertex correspon-
dence and check that edge relationships are maintained. Otherwise, provide
reasoning for why the pair of graphs are not isomorphic.

7.2.1

a b c d

e f g h

ts

z

y

x w

v

u

G1 G2

7.2.2

a b c d

e f g h

ts

z

y

x w

v

u

G3 G4

236 A Tour through Graph Theory

7.2.3
a

g

f

e d

c

b

t

z

y

x w

v

u

G5 G6

7.2.4
ba

h

g

f e

d

c

ts

z

y

x w

v

u

G7 G8

7.3 Tournaments

In Section 2.3, the concept of a digraph was introduced, where edges were
replaced with directed edges, called arcs. Throughout the book, we saw how
digraphs can be used to model asymmetric relationships, such as those from
differing costs for travel from A to B versus B to A (Section 2.3), modeling
one way streets or directional travel (Section 3.1), and precedence relation-
ships between tasks to be scheduled (Section 3.2). This section will explore a
different use of digraphs that have a very specific underlying structure, one in
which a direction is added to each of the edges from a complete graph. These
digraphs are called tournaments.

Definition 7.3.1 A digraph Tn = (V,A) is a tournament with n vertices
if the underlying graph is the complete graph Kn.

Additional Topics 237

These specific digraphs are called tournaments because they model round-
robin-style tournaments in which every team plays every other team exactly
once. The direction of an arc can be used to indicate which team won; for
example, a→ b if and only if Team A beats Team B.

Example 7.3.1 Five soccer teams have played in a round-robin tournament,
with the results as shown below. Model this information as a digraph and
determine if a clear winner can be declared.

Team Teams they Beat

Aardvarks Bears, Cougars, Eagles

Bears Cougars, Ducks

Cougars Ducks, Eagles

Ducks Aardvarks

Eagles Bears, Ducks

Solution: The digraph below represents the results from the round-robin tour-
nament. Note that if the directions were removed from the digraph, we would
have K5. If a winner is declared based on the number of teams beaten, then
the Aardvarks would be declared the winners of the tournament.

a

e

d c

b

Before we move onto further study of tournaments, one note of caution. In
Section 2.3, we used digraphs to model asymmetric relationships for traveling
between cities. The digraphs we used were not tournaments since two arcs
existed between any pair of vertices (both a → b and b → a existed in the
digraph). In a tournament, only one of these edges can be present. If a tour-
nament were used to model an instance of the Traveling Salesman Problem,
it would represent a scenario in which there is only one direction available
for travel between two cities. Although we will still discuss the existence of
Hamiltonian cycles and paths within tournaments, it should be noted that
these are mainly from an academic perspective and not as a useful model of
the Traveling Salesman Problem.

Let us return to Example 7.3.1. Although we gave the complete list of
which teams won their games, we could have left out any one of the rows and
still obtain the same graph due to the fact that each team must play every

238 A Tour through Graph Theory

other team and exactly one team in a pair can win. Moreover, the number
of wins for a team can be seen in the digraph by simply computing the out-
degree of a vertex. Recall that the out-degree of a vertex, denoted deg+(x), is
the number of arcs pointing out of x. Thus in the example above, deg+(a) = 3
and deg+(d) = 1.

Suppose we are less concerned with the specific outcomes of a round-robin
tournament but rather with the relationships from all possible outcomes. In
this case, we do not care if a specific team won three games but how many
ways there are for any team to win three games. For example, if all of the
results of Example 7.3.1 stayed the same except the Bears beat the Aardvarks
and the Ducks beat the Eagles, then a simple relabeling of the graph (shown
below) gives the same structure as above.

b

d

e c

a

These two graphs are in fact isomorphic (see Section 7.2 for more informa-
tion regarding isomorphisms). When comparing the wins for all teams, we see
that both graphs had one team that won once, three teams that won twice,
and one team that won three times; in short we had wins of 1, 2, 2, 2, 3. This
listing of the wins for a tournament is called a score sequence.

Definition 7.3.2 The score sequence of a tournament is a listing of the
out-degrees of the vertices. It is customary to write these in increasing order.

The score sequence can provide a lot of information about a tournament,
but does not give all possible information. For example, consider again the
teams from Example 7.3.1. If the Ducks beat the Eagles as opposed to the
original outcome of the Eagles beating the Ducks, then we would still have the
same score sequence even though the graph itself has changed by one flip of an
arc (see below). However, these are quite different outcomes in terms of how
you might view a ranking of the teams. In the original scenario (shown below
on the left) the three 2-win teams each beat one of the other 2-win teams and
the 1-win team. These three teams are in essence interchangeable. However, in
the new scenario (shown below on the right), the three 2-win teams have very
different win structures and the strength of an opposing team might play into
final rankings. For example, the Ducks beat the Aardvarks (3-wins) and the
Eagles (1-win), whereas the Cougars beat the Ducks (2-wins) and the Eagles

Additional Topics 239

(1-win). Does this mean the Ducks are a better team than the Cougars since
they beat a 3-win team over a 2-win team? As you can see, ranking teams in
a round-robin style tournament is non-trivial!

a

e

d c

b

a

e

d c

b

Returning to the notion of a score sequence, it is quite easy to produce such
a sequence when the tournament is given to you (simply calculate the out-
degrees of the vertices). What is more challenging is producing a tournament
given a score sequence. Moreover, how do you know a given sequence could
even represent the out-degrees of a tournament?

We begin with some simple necessary conditions for the score sequence of
Tn. First note that the maximum out-degree of any vertex is n − 1 since it
can have at most one arc to each of the other vertices in Kn. Moreover, at
most one vertex can have out-degree n − 1 since each pair of vertices has an
arc between them. Similarly, the minimum out-degree of any vertex is 0 and
at most one vertex can have out-degree 0. Finally, recall that the number of

edges in a complete graph Kn is n(n−1)
2 . In a graph (not digraph) the total

degree is always twice the number of edges since each edge adds 2 to the
degree count, one for each endpoint. However, as discussed in Theorem 2.10,
in a digraph the sum of the out-degrees equals the number of arcs since each
arc is only counted once by its direction. Thus in a tournament Tn the sum of

the out-degrees equals the number of arcs, which is n(n−1)
2 . These properties

are summarized below.

Properties of Score Sequences
The score sequence of any tournament Tn must satisfy the following:

• s1, s2, . . . , sn is a sequence of integers satisfying 0 ≤ sk ≤ n − 1 for all
k = 1, 2, . . . , n.

• at most one sk equals 0

• at most one sk equals n− 1

• s1 + s2 + · · ·+ sn = n(n−1)
2

Though these properties are necessary, they are not sufficient; that is, a
sequence can satisfy all of the properties listed above yet still not represent the

240 A Tour through Graph Theory

score sequence of a tournament. Below we will discuss two conditions that are
both necessary and sufficient and use them to determine if a given sequence is
a score sequence of a tournament. The first is closely related to the properties
listed above and is easier in its application to a given sequence; the second is
more complicated but also provides a method for drawing a tournament with
the given score sequence.

Theorem 7.3.3 An increasing sequence S : s1, s2, . . . , sn (for n ≥ 2) of
nonnegative integers is a score sequence if and only if

s1 + s2 + · · ·+ sk ≥
k(k − 1)

2

for each k between 1 and n with equality holding at k = n.

One additional benefit of this result is that if at any point the inequalities
fail to hold, then we do not need to check the remaining inequalities and
simply state the sequence is not a score sequence of a tournament.

Example 7.3.2 Determine if the sequence 1, 2, 2, 3, 3, 4 is the score sequence
of a tournament.

Solution: This sequence has length 6, so we will check the inequality above
for k = 1, 2, . . . 5, with equality for k = 6.

k s1 + · · ·+ sk
k(k−1)

2

1 1 0

2 1 + 2 = 3 1

3 1 + 2 + 2 = 5 3

4 1 + 2 + 2 + 3 = 8 6

5 1 + 2 + 2 + 3 + 3 = 11 10

6 1 + 2 + 2 + 3 + 3 + 4 = 15 15

Since the inequality s1 + · · ·+ sk ≥ k(k−1)
2 holds for each row in the table

above, we know that 1, 2, 2, 3, 3, 4 is a score sequence for T6.

The next result works by modifying a sequence by removing the last item,
which corresponds to deleting one vertex of a tournament and examining the
resulting smaller tournament. In theory, this process would continue until
either a sequence violates the properties listed above or until a single value
remains.

Additional Topics 241

Theorem 7.3.4 An increasing sequence S : s1, s2, . . . , sn (for n ≥ 2) of
nonnegative integers is a score sequence of a tournament if and only if the
sequence S1 : s1, s2, . . . , ssn , ssn+1 − 1, . . . , sn−1 − 1 is a score sequence.

The new sequence S1 is created by deleting sn, rewriting the first sn terms
of S, and then subtracting 1 from any remaining terms. We repeat the process
thereby creating shorter sequences. In practice, so long as none of the Score
Sequence Properties (see page 239) have been violated, we stop when the
sequence reaches length three. There are only two possible tournaments on
three vertices, as shown below, and so it is quick to verify if a sequence is a
possible score sequence of T3.

1, 1, 1 0, 1, 2

Example 7.3.3 Determine if the sequence 1, 2, 3, 3, 3, 3 is the score sequence
of a tournament.

Solution: Let S be the sequence 1, 2, 3, 3, 3, 3. Then n = 6 and sn = s6 = 3.
Thus we form a new sequence S1 by removing the last term, rewriting the
first sn = 3 terms and then subtracting 1 from each of the remaining terms
(s4 and s5). This produces the sequence S1 below. Note that we need this
sequence in increasing order to continue, so we rewrite this as S′1 below:

S1 : 1, 2, 3, 2, 2 S′1 : 1, 2, 2, 2, 3

We perform this procedure again on S′1, where now n = 5 and s5 = 3. So we
get a new sequence S2 by removing the last term, rewriting the first sn = 3
terms and then subtracting 1 from each of the remaining terms (s4). This
produces the sequence S2 and its increasing form S′2 below:

S2 : 1, 2, 2, 1 S′2 : 1, 1, 2, 2

Finally, we perform this procedure one last time on S′2, where n = 4 and
s4 = 2. We get the sequence

S3 : 1, 1, 1

which is one of the two score sequences for T3. Thus by the theorem above we
know that S is the score sequence of a tournament on 6 vertices.

Although this second method is more complex, it has the added benefit
of providing a blueprint for how to draw the tournament in question. We will

242 A Tour through Graph Theory

work backwards, beginning by creating the T3 tournament found, and using
the previous score sequences to determine how new vertices and their arcs are
added.

Example 7.3.4 Using the results from Example 7.3.3, draw the tournament
with score sequence 1, 2, 3, 3, 3, 3.

Solution: We begin by forming the T3 tournament with score sequence 1, 1, 1.
To aid in understanding how new vertices are added, we will identify vertices
in the digraph with their value in the score sequence at each step.

Score Sequence Graph
1, 1, 1

c

ba

f

e d

a, b, c

Next we consider the sequence 1, 1, 2, 2 identified above as S′2. The addition
of d and its arcs is shown below. Note that since the out-degrees of a and b
did not change, we know there must be arcs d → a and d → b. Since the
out-degree of c increased by 1, we know to add the arc c→ d.

Score Sequence Graph
1, 1, 2, 2

c

ba

f

e d

a, b, c, d

Next we consider the sequence 1, 2, 2, 2, 3 identified above as S′1. The ad-
dition of e and its arcs is shown below. Note that since the out-degrees of a, c

Additional Topics 243

and d did not change, we know there must be arcs e → a, e → c and e → d.
Since the out-degree of b increased by 1, we know to add the arc b→ e.

Score Sequence Graph
1, 2, 2, 2, 3

c

ba

f

e d

a, b, c, d, e

Finally we consider the original sequence S : 1, 2, 3, 3, 3, 3. The addition of
f and its arcs is shown below. Note that since the out-degrees of a, b and e
did not change, we know there must be arcs f → a, f → b and f → e. Since
the out-degree of c and d increased by 1, we know to add the arcs c→ f and
d→ f .

Score Sequence Graph
1, 2, 3, 3, 3, 3

c

ba

f

e d

a, b, c, d, e, f

There is one special type of tournament in which no directed cycles exist,
referred to as a transitive tournament. These tournaments have a very unique
score sequence, namely the one consisting of distinct entries.

Definition 7.3.5 A tournament Tn is transitive if it does not contain any
directed cycles. It has score sequence 0, 1, 2, . . . , n− 1.

Transitive tournaments are unique, up to vertex relabeling, and provide an
example of a digraph that does not contain a Hamiltonian cycle (see Chapter
2). In fact, if a digraph contains any vertex with out-degree 0, then it cannot
possibly contain a Hamiltonian cycle since once that vertex is reached there
is no way to exit the vertex. However, transitive tournaments do contain a
Hamiltonian path, which can be found by simply following the vertices by de-
creasing order of out-degree. Surprisingly, the added structure of tournaments

244 A Tour through Graph Theory

over general digraphs is enough to guarantee the existence of a Hamiltonian
path in every tournament.

Based on our discussions from Chapter 2, it should come as no surprise
that it is hardly trivial to determine if a digraph has a Hamiltonian cycle.
As with graphs, there are conditions that can guarantee the existence of a
Hamiltonian cycle in a digraph but these are not required properties. One
such condition looks at directed paths between vertices in the digraph.

Definition 7.3.6 A digraph D is strong if for every pair of vertices x and
y in D there is both a directed path from x to y and a directed path from y
to x.

It has been shown that if a digraph is strong then a Hamiltonian cycle
exists. However, determining if a general digraph is strong can be quite tricky.
One way to do this is to check every pair of vertices and search for the ap-
propriate directed paths. Unfortunately, this process is unwieldy since the
number of calculations grows very quickly as the number of vertices increases
in a graph. Luckily, for tournaments we need only modify one of our previous
procedures on score sequences to determine if the tournament is strong, thus
allowing us to know if the tournament has a Hamiltonian cycle.

Theorem 7.3.7 An increasing sequence S : s1, s2, . . . , sn (for n ≥ 2) of
nonnegative integers is a score sequence of a strong tournament if and only if

s1 + s2 + · · ·+ sk >
k(k − 1)

2

for each k between 1 and n− 1 with equality holding at k = n.

Note that the tournament from Example 7.3.2 satisfied the condition
above. Thus it is a strong tournament and therefore contains a Hamiltonian
cycle. One possible cycle is shown below in blue.

c

ba

f

e d

The theorem below summarizes our results for Hamiltonian paths and
cycles in tournaments.

Additional Topics 245

Theorem 7.3.8 Let Tn be a tournament on n vertices. Then

• Tn has a Hamiltonian path if n ≥ 2; and

• Tn has a Hamiltonian cycle if n ≥ 3 and Tn is strong.

Exercises

7.3.1 There are four possible tournaments on 4 vertices. Draw them and give
their score sequences.

7.3.2 Determine if each of the following is a score sequence of a tournament.
(a) 1, 1, 2, 3, 3
(b) 1, 1, 2, 2, 4
(c) 0, 2, 2, 2, 3
(d) 1, 2, 2, 2, 3
(e) 0, 2, 2, 3, 3, 5
(f) 1, 1, 2, 3, 4, 4
(g) 1, 2, 2, 2, 2, 5
(h) 1, 1, 1, 3, 4, 5

7.3.3 For each of those from Exercise 2 that is a score sequence, draw the tour-
nament that it represents.

7.3.4 For each of those from Exercise 2 that is a score sequence, determine if the
tournament is strong.

7.3.5 For each of those from Exercise 2 that is a score sequence, find a Hamilto-
nian cycle if it is strong and otherwise find a Hamiltonian path.

7.4 Flow and Capacity

Digraphs have appeared throughout this text to model asymmetric rela-
tionships. For example, in Section 2.3 we used digraphs to model changes in
cost based on the direction of travel, in Section 3.1 to model one-way streets,
and in Section 7.3 to model round-robin tournaments. This section will fo-
cus on a new application for digraphs, one in which items are sent through a
network. These networks often model physical systems, such as sending water
through pipelines or information through a computer network. The digraphs
we investigate will most closely resemble those from Section 3.2, as any net-
work will need a starting and ending location, though there is no requirement
for the network to be acyclic. In this section, we will need some specialized

246 A Tour through Graph Theory

terminology; in particular, we will use a different notion of a network than the
one used in Chapter 4.

Definition 7.4.1 A network is a digraph where each arc e has an associated
nonnegative integer c(e), called a capacity . In addition, the network has a
designated starting vertex s called the source and a designated ending vertex
t called the sink . A flow f is a function that assigns a value f(e) to each arc
of the network.

Below is an example of a network. Each arc is given a two-part label. The
first component is the flow along the arc and the second component is the
capacity.

s

a

b

c

d

e

g

h
t

(0
, 3
)

(2, 2)

(1, 4)

(0, 5)

(2, 4)

(1, 2)

(1
, 4
)

(1, 1)

(1
, 3
)

(1, 3)

(2, 5)

The names of the starting and ending vertices are reminiscent of a system of
pipes with water coming from the source, traveling through some configuration
of the piping to arrive at the sink (ending vertex). Using this analogy further,
we can see that some restraints need to be placed on the flow along an arc.
For example, flow should travel in the indicated direction of the arcs, no arc
can carry more than its capacity, and the amount entering a junction point (a
vertex) should equal the amount leaving. These rules are more formally stated
below.

Definition 7.4.2 For a vertex v, let f−(v) represent the total flow entering
v and f+(v) represent the total flow exiting v. A flow is feasible if it satisfies
the following conditions:

(1) f(e) ≥ 0 for all edges e

(2) c(e) ≥ f(e) for all edges e

(3) f+(v) = f−(v) for all vertices other than s and t

(4) f−(s) = f+(t) = 0

The notation for in-flow and out-flow mirrors that for in-degree and out-
degree of a vertex, though here we are adding the flow value for the arcs
entering or exiting a vertex. The requirement that a flow is non-negative indi-
cates the flow must travel in the direction of the arc, as a negative flow would

Additional Topics 247

indicate items going in the reverse direction. The final condition listed above
requires no in-flow to the source and no out-flow from the sink. This is not
necessary in theory, but more logical in practice and simplifies our analysis of
flow problems.

The network shown above satisfies the conditions for a feasible flow (check
them!). In general, it is fairly easy to verify if a flow is feasible. Our main goal
will be to find the best flow possible, called the maximum flow.

Definition 7.4.3 The value of a flow is defined as |f | = f+(s) = f−(t),
that is the amount exiting the source which must also equal the flow entering
the sink. A maximum flow is a feasible flow of largest value.

In practice, we use integer values for the capacity and flow, though this is
not required. In fact, given integer capacities there is no need for fractional
flows.

Look back at the flow shown in the network above, which has value 3. If we
compare the flow and capacity along the arcs, we should see many locations
where the flow is below capacity. However, finding a maximum flow is not as
simple as putting every arc at capacity — this would likely violate one of the
feasibility criteria. For example, if we had a flow of 5 along the arc ad, we
would need the flow along dt to also equal 5 to satisfy criteria (3). But in
doing so we would violate criteria (2) since the capacity of dt is 3.

The main question in regard to network flow is the optimization question
— what is the value of a maximum flow? We could start with a simple feasible
flow, as shown above, and use trial and error to keep improving it, though this
is not an efficient procedure and does not guarantee the flow we find is indeed
maximum. We will discuss an algorithm that not only finds a maximum flow
but also provides proof that a larger flow cannot be found. Before we fully
discuss the algorithm, we need two additional definitions relating to the flow
along a network.

Definition 7.4.4 Let f be a flow along a network. The slack k of an arc is
the difference between its capacity and flow; that is, k(e) = c(e)− f(e).

Slack will be useful in identifying locations where the flow can be increased.
For example, in the network above k(sa) = 3, k(sc) = 3 and k(sb) = 0 indi-
cates that we may want to increase flow along the arcs sa and sc but no
additional flow can be added to sb. The difficult part is determining where
to make these additions. To do this we will build special paths, called chains,
that indicate where flow can be added.

Definition 7.4.5 A chain K is a path in a digraph where the direction of
the arcs are ignored.

In the network shown above, both s a d t and s a d e h t are chains, though
only s a d e h t is not a directed path since it uses the arc ed in reverse direction.

248 A Tour through Graph Theory

We now have all the needed elements for finding the maximum flow. The
algorithm below is similar to Dijkstra’s Algorithm from Chapter 3 which found
the shortest path in a graph (or digraph). Vertices will be assigned two-part la-
bels that aid in the creation of a chain on which the flow can be increased. The
format of the Augmenting Flow Algorithm, described below, is an adaption
from [39].

Augmenting Flow Algorithm

Input: Network G = (V,E, c), where each arc is given a capacity c, and a
designated source s and sink t.

Steps:

1. Label s with (−,∞)

2. Choose a labeled vertex x.

(a) For any arc yx, if f(yx) > 0 and y is unlabeled, then label y with
(x−, σ(y)) where σ(y) = min{σ(x), f(yx)}.

(b) For any arc xy, if k(xy) > 0 and y is unlabeled, then label y with
(x+, σ(y)) where σ(y) = min{σ(x), k(xy)}.

3. If t has been labeled, go to Step 4. Otherwise, choose a different labeled
vertex that has not been scanned and go to Step 2. If all labeled vertices
have been scanned, then f is a maximum flow.

4. Find an s− t chain K of slack edges by backtracking from t to s. Along
the edges of K, increase the flow by σ(t) units if they are in the forward
direction and decrease by σ(t) units if they are in the backward direction.
Remove all vertex labels except that of s and return to Step 2.

Output: Maximum flow f .

In Step 2 we are labeling the neighbors of a vertex x. We first consider
arcs into x from unlabeled vertices that have positive flow (part a) then the
arcs out of x to unlabeled vertices with positive slack. These are used to find
a chain from s to t onto which flow can be added.

Example 7.4.1 Apply the Augmenting Flow Algorithm to the network on
page 245.

Solution:

Step 1: Label s as (−,∞).

Additional Topics 249

s(−,∞)

a

b

c

d

e

g

h
t

(0
, 3
)

(2, 2)

(1, 4)

(0, 5)

(2, 4)

(1, 2)

(1
, 4
)

(1, 1)

(1
, 3
)

(1, 3)

(2, 5)

Step 2: Let x = s. As there are no arcs to s we will only consider the arcs out
of s, of which there are three: sa, sb and sc, which have slack of 3, 0, and 3,
respectively. We label a with (s+, 3), b is left unlabeled since there is no slack
on sb, and c is labeled (s+, 3).

s(−,∞)

a(s+,3)

b

c(s+,3)

d

e

g

h
t

(0
, 3
)

(2, 2)

(1, 4)

(0, 5)

(2, 4)

(1, 2)

(1
, 4
)

(1, 1)

(1
, 3
)

(1, 3)

(2, 5)

Step 3: As t is not labeled, we will scan either a or c; we choose to start with c.
Since the only arc going into c is from a labeled vertex, we need only consider
the edges out of c, of which there is only one, cg, with slack of 1. Label g as
(c+, 1) since σ(g) = min{σ(c), k(cg)} = min{3, 1} = 1.

s(−,∞)

a(s+,3)

b

c(s+,3)

d

e

g(c+,1)

h
t

(0
, 3
)

(2, 2)

(1, 4)

(0, 5)

(2, 4)

(1, 2)

(1
, 4
)

(1, 1)

(1
, 3
)

(1, 3)

(2, 5)

Step 4: As t is not labeled, we will scan either a or g; we choose g. Since the
only arc going into g is from a labeled vertex, we need only consider the edges
out of g, of which there is only one, gh, with slack of 2. Label h as (g+, 1)
since σ(h) = min{σ(g), k(gh)} = min{1, 2} = 1.

250 A Tour through Graph Theory

s(−,∞)

a(s+,3)

b

c(s+,3)

d

e

g(c+,1)

h(g+,1)

t

(0
, 3
)

(2, 2)

(1, 4)

(0, 5)

(2, 4)

(1, 2)

(1
, 4
)

(1, 1)

(1
, 3
)

(1, 3)

(2, 5)

Step 5: As t is not labeled, we will scan either a or h; we choose h. There is
one unlabeled vertex with an arc going into h, namely e, which gets a label
of (h−, 1) since σ(e) = min{σ(h), f(he)} = min{1, 1} = 1. The only arc out
of h is ht, with slack of 3. Label t as (h+, 1) since σ(t) = min{σ(h), k(ht)} =
min{1, 3} = 1.

s(−,∞)

a(s+,3)

b

c(s+,3)

d

e(h−,1)

g(c+,1)

h(g+,1)

t(h+,1)

(0
, 3
)

(2, 2)

(1, 4)

(0, 5)

(2, 4)

(1, 2)

(1
, 4
)

(1, 1)

(1
, 3
)

(1, 3)

(2, 5)

Step 6: Since t is now labeled, we find an s− t chain K of slack edges. Back-
tracking from t to s gives the chain s c g h t, and we increase the flow by
σ(t) = 1 units along each of these edges since all are in the forward direction.
We update the network flow and remove all labels except that for s.

s(−,∞)

a

b

c

d

e

g

h
t

(0
, 3
)

(2, 2)

(2, 4)

(0, 5)

(2, 4)

(2, 2)

(1
, 4
)

(1, 1)

(2
, 3
)

(1, 3)

(3, 5)

Step 7: As before we will only label the vertices whose arcs from s have slack.
We label a with (s+, 3) and c with (s+, 2).

Additional Topics 251

s(−,∞)

a(s+,3)

b

c(s+,2)

d

e

g

h
t

(0
, 3
)

(2, 2)

(2, 4)

(0, 5)

(2, 4)

(2, 2)

(1
, 4
)

(1, 1)

(2
, 3
)

(1, 3)

(3, 5)

Step 8: We scan either a or c; we begin with c. The only arc from c is to g, but
since there is no slack we do not label g. Scanning a we only consider the arc
ad, which has slack 3. Label d with (a+, 3) since σ(d) = min{σ(a), k(ad)} =
min{3, 3} = 3.

s(−,∞)

a(s+,3)

b

c(s+,2)

d(s+,3)

e

g

h
t

(0
, 3
)

(2, 2)

(2, 4)

(0, 5)

(2, 4)

(2, 2)

(1
, 4
)

(1, 1)

(2
, 3
)

(1, 3)

(3, 5)

Step 9: Our only unscanned labeled vertex is d . Since e has an arc to d with
positive flow, label e as (d−, 1) since σ(e) = min{σ(d), f(ed)} = min{3, 1} = 1.
Also label t with (d+, 2) since σ(t) = min{σ(g), k(dt)} = min{3, 2} = 2.

s(−,∞)

a(s+,3)

b

c(s+,2)

d(s+,3)

e(d−,1)

g

h
t(d+,2)

(0
, 3
)

(2, 2)

(2, 4)

(0, 5)

(2, 4)

(2, 2)

(1
, 4
)

(1, 1)

(2
, 3
)

(1, 3)

(3, 5)

Step 10: Since t is again labeled, we find an s − t chain K ′ of slack edges.
Backtracking from t to s gives the chain s a d t, and we increase the flow by
σ(t) = 2 units along each of these edges since all are in the forward direction.
We update the network flow and remove all labels except that for s.

252 A Tour through Graph Theory

s(−,∞)

a

b

c

d

e

g

h
t

(2
, 3
)

(2, 2)

(2, 4)

(2, 5)

(2, 4)

(2, 2)

(1
, 4
)

(1, 1)

(2
, 3
)

(3, 3)

(3, 5)

Step 11: The beginning process of again assigning labels is quite similar to
the steps above. Some σ values now change along the last chain from which
we adjusted the flow. Instead of working through the individual steps, we will
pick up after the label for d has been assigned, which is shown below.

s(−,∞)

a(s+,1)

b

c(s+,2)

d(a+,1)

e

g

h
t

(2
, 3
)

(2, 2)

(2, 4)

(2, 5)

(2, 4)

(2, 2)

(1
, 4
)

(1, 1)

(2
, 3
)

(3, 3)

(3, 5)

Label e as (d−, 1) as before since there is flow along the arc ed, but t is not
given a label due to no slack along the arc dt. Once this is complete, b will
be given a label of (e−, 1) since σ(b) = min{σ(e), f(be)} = min{1, 2} = 1. No
label will be assigned to h since there is no slack along the arc eh. Recall that
g also remains unlabeled since cg has no slack.

s(−,∞)

a(s+,1)

b(e−,1)

c(s+,2)

d(a+,1)

e(d−,1)

g

h
t

(2
, 3
)

(2, 2)

(2, 4)

(2, 5)

(2, 4)

(2, 2)

(1
, 4
)

(1, 1)

(2
, 3
)

(3, 3)

(3, 5)

At this point there are no further vertices to label and so f must be a maximum
flow, with a value of 6.

When the Augmenting Flow Algorithm halts, a maximum flow has been
achieved, though understanding why this flow is indeed maximum requires

Additional Topics 253

additional terminology and results. The main idea will be to determine a
barrier through which all flow must travel and as a consequence the maximum
flow cannot exceed the barrier with minimum size. The source and sink will
be on opposite sides of this barrier, which is more commonly called a cut.

Definition 7.4.6 Let P be a set of vertices and P denote those vertices not
in P (called the complement of P). A cut (P, P) is the set of all arcs xy where
x is a vertex from P and y is a vertex from P . An s− t cut is a cut in which
the source s is in P and the sink t is in P .

In the network above, if we let P = {s, a, e, g} then P = {b, c, d, h, t} and
(P, P) = {sb, sc, ad, ed, eh, gh}. Note that be is not part of the cut even though
b and e are in opposite parts of the vertex set (namely b is in P and e is in
P) since the arc travels in the wrong direction with regards to the definitions
of P and P .

As this cut acts as a barrier to increasing values of a flow, when we discuss
the value of a cut we are in fact concerned with the capacities along these arcs
rather than their flow. Thus the value of a cut is referred to as its capacity.

Definition 7.4.7 The capacity of a cut, c(P, P), is defined as the sum of
the capacities of the arcs that comprise the cut.

The cut given above has capacity 18 (try it!) and therefore indicates that
all feasible flows must have value at most 18. Obviously, this is not the best
bound for the maximum flow since our work above seems to indicate that
the maximum flow has value 6. In fact, two easy cuts often provide more
useful initial bounds on the value of a flow; the first is where P only consists
of the source and the second is where P consists of every vertex except the
sink. In the example above, if we let P = {s} then the capacity of this cut is
c(P, P) = 9 and if P = {s, a, b, c, d, e, g, h} then it has capacity c(P, P) = 8,
which are much closer to our conjecture that the maximum flow is 6.

The König-Egerváry Theorem from Chapter 5 stated the size of a maxi-
mum matching in a bipartite graph equals the size of a minimum vertex cover
and allowed us to prove we had a maximum matching by finding a vertex
cover of the same size. A similar result holds for flows and cuts in a network.

Theorem 7.4.8 (Max Flow–Min Cut) In any directed network, the value of
a maximum s− t flow equals the capacity of a minimum s− t cut.

The difficulty in using this result to prove a flow is maximum is in find-
ing the minimum cut. Luckily, as with the Augmenting Path Algorithm for
matching, we can use the vertex labeling procedure to obtain our minimum
cut.

254 A Tour through Graph Theory

Min-Cut Method

1. Let G = (V,A, c) be a network with a designated source s and sink t
and each arc is given a capacity c.

2. Apply the Augmenting Flow Algorithm.

3. Define an s− t cut (P, P) where P is the set of labeled vertices from the
final implementation of the algorithm.

4. (P, P) is a minimum s− t cut for G.

By finding a flow and cut with the same value, we now have proof that
the flow is indeed maximum.

Example 7.4.2 Use the Min-Cut Method to find a minimum s − t cut for
the network on page 245.

Solution: The final labeling from the implementation of the Augmenting Flow
Algorithm produced the network below.

s(−,∞)

a(s+,1)

b(e−,1)

c(s+,2)

d(a+,1)

e(d−,1)

g

h
t

(2
, 3
)

(2, 2)

(2, 4)

(2, 5)

(2, 4)

(2, 2)

(1
, 4
)

(1, 1)

(2
, 3
)

(3, 3)

(3, 5)

The Min-Cut Method sets P = {s, a, b, c, d, e} and P = {g, h, t}. The arcs in
the cut are {dt, eh, cg}, making the capacity of this cut c(P, P) = 3+1+2 = 6.
Since we have found a flow and cut with the same value, we know the flow is
maximum and the cut is minimum.

In practice, we can perform the Augmenting Flow Algorithm and the Min-
Cut Method simultaneously, thus finding a maximum flow and providing a
proof that it is maximum (through the use of a minimum cut) in one complete
procedure.

Additional Topics 255

Exercises

For each of the problems below, use the Augmenting Flow Algorithm to
maximize the flow and the Min-Cut Method to find a minimum cut.

7.4.1

s

a

b

c

d

e

f

g

h

t

(5
, 5
)

(3, 5)

(6, 6)

(5, 5)

(2
, 6
)

(1, 2)

(6, 7)

(1, 6)

(6, 8)

(0
, 3
)

(7, 8)

(1
,
5
)

(6, 10)

(8
, 8
)

7.4.2

s

a

b

c

d

e

f

g

h

i

t

(1
1,
15
)

(6, 10)

(9, 10)

(2, 7)

(3,
4)

(3, 3)

(2, 4)

(9, 9)

(5, 6)

(2, 2)

(3, 7)

(7, 10)(2
, 5
)

(5, 10)

(5
, 1
0)

7.4.3

s

a b c

e

f g h

d

t

(8
, 1
0)

(4, 4)

(0, 4)

(8, 8) (1
, 3
)

(1, 1)

(7, 7)(8
, 8
)

(1, 9)

(0
, 2
)

(0, 6)

(0
, 2
)

(1, 4)(0
, 1
0)

(4, 11)

(0
, 2
)

(4, 8)

(5
, 7
)

256 A Tour through Graph Theory

7.4.4

s

a

b

c

d

e

f

g

h

t

(5
, 1
0)

(5, 5)

(5, 5)

(5, 10)

(3
, 3
)

(2, 4)

(10, 12)

(5
, 7
)

(3, 5)

(2, 2)

(0, 3)

(10, 11)

(5, 8)

(1
0,
10
)

7.4.5

s

a

b

c

d

e

f

g

h

t

(8
, 8
)

(0, 3)

(0, 2)

(4, 5)

(4, 5)

(0, 4)

(3, 4)

(4, 4)

(1
, 4
)

(3
, 3
)

(3, 3)

(0
,
2
)

(5, 5)

(3
, 6
)

7.5 Rooted Trees

Rooted trees were introduced in Example 4.3 as a method for storing
information. This section will further the discussion of, as well as provide
additional applications of, rooted trees.

Definition 7.5.1 A rooted tree is a tree T with a special designated vertex
r, called the root . The level of any vertex in T is defined as the length of
its shortest path to r. The height of a rooted tree is the largest level for any
vertex in T .

Example 7.5.1 Find the level of each vertex and the height of the rooted
tree shown below.

Additional Topics 257

r

a b

c d e f

g h

Solution: Vertices a and b are of level 1, c, d, e and f of level 2, and g and h
of level 3. The root r has level 0. The height of the tree is 3.

Most people have encountered a specific type of rooted tree: a family tree.
The root of a family tree would be the person for whom the descendants are
being mapped and the level of a vertex would represent a generation; see the
tree below. With this application in mind, the terminology below is used to
describe how various vertices are related within a rooted tree.

Bdour

Samer
Suzanne Leena

Nour

Layla Rami Jana

Definition 7.5.2 Let T be a tree with root r. Then for any vertices x and y

• x is a descendant of y if y is on the unique path from x to r;

• x is a child of y if x is a descendant of y and exactly one level below y;

• x is an ancestor of y if x is on the unique path from y to r;

• x is a parent of y if x is an ancestor of y and exactly one level above y;

• x is a sibling of y if x and y have the same parent.

Using tree from Example 7.5.1 above, we see that the parent of a is the
root r and c is the only child for a. Also, b is the parent of e, but e has no
children. The ancestors of g are f, b and r since the unique path from g to r
is g f b r. The descendants of b are d, e, f, g and h, and the siblings of d are e
and f since they all have b as their parent.

258 A Tour through Graph Theory

Example 4.3 produced a specific type of rooted tree, reproduced below,
called a binary search tree . The binary portion of the name comes from the
fact that each parent in the tree has at most two children. As previously men-
tioned, binary search trees allow for quick access of information using fewer
comparisons than if the information was given in list form. The remainder of
this section will focus on two other types of rooted trees that have a strong con-
nection to computer science: breadth-first search trees and depth-first search
trees.

4

2 7

1 3 5 10

In Chapter 4 we were concerned with finding a minimum spanning tree, of-
ten for the use of a specific application needing to connect items at a minimum
cost. Here we use search trees to find paths within a graph from a specified
root. The applications of these are mainly still within the realm of graph the-
ory, such as finding connected components or bridges within a graph or testing
if a graph is planar (see Section 7.6). However, both search trees we will discuss
arose, in part, as a way to solve a maze, and have applications into the study
of artificial life. Depth-first search trees are credited to the nineteenth century
French author and mathematician Charles Pierre Trémaux, and breadth-first
search trees were introduced in the 1950s by the American mathematician
E.F. Moore.

Depth-First Search Tree

The main idea behind a depth-first tree is to travel along a path as far
as possible from the root of a given graph. If this path does not encompass
the entire graph, then branches are built off this central path to create a tree.
The formal description of this algorithm relies on an ordered listing of the
neighbors of each vertex and uses this order when adding new vertices to the
tree. For simplicity, we will always use an alphabetical order when considering
neighbor lists.

Depth-First Search Tree

Input: Simple graph G = (V,E) and a designated root vertex r.

Steps:

1. Choose the first neighbor x of r in G and add it to T = (V,E′).

Additional Topics 259

2. Choose the first neighbor of x and add it to T . Continue in this fashion
— picking the first neighbor of the previous vertex to create a path P .
If P contains all the vertices of G, then P is the depth-first search tree.
Otherwise continue to step (3).

3. Backtrack along P until the first vertex is found that has neighbors not
in T . Use this as the root and return to step (1).

Output: Depth-first search tree T .

In creating a depth-first search tree, we begin by building a central spine
from which all branches originate. These branches are as far down on this
path as possible. In doing so, the resulting rooted tree is often of large height
and is more likely to have more vertices at the lower levels.

Example 7.5.2 Find the depth-first search tree for the graph below with the
root a.

a

b
c

d

e f

g

h

i

j k

Solution:

Step 1: Since a is the root, we add b as it is the first neighbor of a. Continuing
in this manner produces the path shown below. Note this path stops with f
since f has no further neighbors in G.

a

b

c

d

e

f

260 A Tour through Graph Theory

Step 2: Backtracking along the path above, the first vertex with an unchosen
neighbor is e. This adds the edge eg to T .

a

b

c

d

e

f g

Step 3: Backtracking again along the path from step 1, the next vertex with
an unchosen neighbor is c. This adds the path c h i j to T .

a

b

c

d

e

f g

h

i

j

Step 4: Backtracking again along the path from step 3, the next vertex with
an unchosen neighbor is i. This adds the edge ik to T and completes the
depth-first search tree as all the vertices of G are now included in T .

Additional Topics 261

a

b

c

d

e

f g

h

i

j k

Output: The tree above is the depth-first search tree.

Note that the tree created above has height 5 and with one vertex each at
level 1 and 2, two vertices each at level 3 and 4, and four vertices at level 5.

Breadth-First Search Tree

The main objective for a breadth-first search tree is to add as many neigh-
bors of the root as possible in the first step. At each additional step, we are
adding all available neighbors of the most recently added vertices.

Breadth-First Search Tree

Input: Simple graph G = (V,E) and a designated root vertex r.

Steps:

1. Add all the neighbors of r in G to T = (V,E′).

2. If T contains all the vertices of G, then we are done. Otherwise continue
to step (3).

3. Beginning with the first vertex x of r that has neighbors not in T , add
all the neighbors of x to T . Repeat this for all the neighbors of r.

4. If T contains all the vertices of G, then we are done. Otherwise repeat
step (3) with the vertices just previously added to T .

Output: Breadth-first tree T .

As with depth-first, we will use an alphabetical order when considering
neighbor lists. At each stage we are adding a new level to the tree and visually

262 A Tour through Graph Theory

we will place the vertices from left to right, thus aiding in the next stage of
vertex additions.

Example 7.5.3 Find the breadth-first search tree for the graph below with
the root a.

a

b
c

d

e f

g

h

i

j k

Solution:

Step 1: Since a is the root, we add all of the neighbors of a to T .

a

b i j k

Step 2: We next add all the unchosen neighbors of b, i, j and k, beginning with
b as it is the first neighbor of a that was added in Step 1. This adds the edge
bc. Moving to i we add the edge ih. No other edges are added since j and k
do not have any unchosen neighbors.

a

b i j k

c h

Step 3: We next add all the unchosen neighbors of c, namely d, e and g. No
other vertices are added since all the neighbors of h are already part of the
tree T .

Additional Topics 263

a

b i j k

c

d e g

h

Step 4: Since d has no unchosen neighbors, we move ahead to adding the
unchosen neighbors of e. This completes the breadth-first search tree as all
the vertices of G are now included in T .

a

b i j k

c h

d e g

f

Output: The tree above is the breadth-first search tree.

It should come as no surprise that breadth-first search trees are likely to
be of shorter height than their depth-first tree counterpart. The breadth-first
search tree created above has height 4 with four vertices on level 1, two vertices
on level 2, three vertices on level 3, and one on level 4.

The main difference between these two algorithms is that depth-first fo-
cuses on traveling as far into the graph in the beginning, whereas the breadth-
first focuses on building outward using neighborhoods. For those who have
read Section 7.1, both depth-first and breadth-first algorithms belong in the
complexity class P .

264 A Tour through Graph Theory

Exercises

7.5.1 For the rooted tree T below, with root r, identify the following:
(a) Level of r, f, h, and k.
(b) The height of T .
(c) Parents of r, b, c, f, i.
(d) Children of r, b, c, f, i.
(e) Ancestors of r, a, d, h, k.
(f) Descendants of r, a, d, h, k.
(g) Siblings of a, f, h, i.

r

a b

c d e f

g h i

j k

7.5.2 Complete each of the following on the two graphs shown below.
(a) Find the breadth-first search tree with root a.
(b) Find the breadth-first search tree with root i.
(c) Find the depth-first search tree with root a.
(d) Find the depth-first search tree with root i.

a b

c
d

e f

g

h
i

jk

m n

G1

Additional Topics 265

a

b

c

d

efg

h

i

j

G2

7.5.3 Explain how to convert a maze into a graph and how breadth-first and
depth-first search trees can be used to find a solution.

7.5.4 If the graph is connected, what will the output of depth-first search and
breadth-first search be? If the graph is disconnected?

7.6 Planarity

In Section 6.1, we discussed the famous Four Color Theorem and how it
relates to graph coloring. One of the important aspects of the result was that
the graphs in question are planar graphs.

Definition 7.6.1 A graph G is planar if and only if the vertices can be
arranged on the page so that edges do not cross (or touch) at any point other
than at a vertex.

Note that for a graph to be planar, it is only required that at least one draw-
ing exists without edge crossings; it is not required that all possible drawings
of the graph be without edge crossings. For example, below are two drawings
of the graph K4 (in the language of Section 7.2, these graphs are isomorphic).
The drawing on the left is the more standard way of drawing K4, and con-
tains one edge crossing (ac and bd cross at a location that is not a vertex);
the drawing on the right is a planar drawing of K4 so that no edge crossings
exist.

266 A Tour through Graph Theory

a

d c

b

a

b

c

d

Often it is useful to think of taking a graph and moving around the vertices
and pulling or stretching the edges so that they can be repositioned without
edge crossings. We could think of obtaining the graph on the right above by
rotating the entire graph on the left clockwise by 45◦, moving vertex c above
a, and then repositioning the edges from c to the other vertices.

Finding a planar drawing of a graph can be very tricky. In fact, simply
determining if a graph is planar or not is hardly trivial. This section will just
touch on some of the important aspects of planarity. To begin, we will see an
application of planarity (other than our previous interest in graph coloring)
and follow with a short discussion on techniques for determining planarity.
For a more in-depth study of planarity, see [39] or [40].

Example 7.6.1 Three houses are set to be built along a new city block; across
the street lie access points to the three main utilities each house needs (water,
electricity, and gas). Is it possible to run the lines and pipes underground
without any of them crossing?

W G E

Solution: This scenario can be modeled with three vertices representing the
houses (h1, h2 and h3) and three vertices representing the utilities (u1, u2 and
u3). First note that if we are not concerned with edge crossings, the proper
graph model is K3,3, the complete bipartite graph with three vertices in each
side of the vertex partition. The standard drawing of K3,3, given below, clearly
is not a planar drawing as there are many edge crossings; for example, h1u2
crosses h2u1.

Additional Topics 267

h1 h2 h3

u1 u2 u3

Attempting to find a drawing without edge crossings, we could stretch
and move some of the edges as shown below. However, this drawing is still not
planar since edges h3u1 and h2u2 still cross. In fact, no matter how you try
to draw K3,3 (try it!), there will always be at least one edge crossing. Thus
the utility lines and pipes cannot be placed without any of them crossing.

h1 h2 h3

u1 u2 u3

Given a specific drawing of a graph, it is easy to see if that drawing is
planar or not. However, just because you cannot find a planar drawing of a
graph does not mean a planar drawing does not exist. This is perhaps the
most challenging part of planarity. Luckily, we have already seen one of the
most important structures in showing a graph is nonplanar (namely K3,3).
The other structure we studied thoroughly in Chapter 2, namely K5.

Example 7.6.2 Determine if K5 is planar. If so, give a planar drawing; if
not, explain why not.

a

e

d c

b

268 A Tour through Graph Theory

Solution: If we attempt the same procedure as we did for K4 above, then we
run into a problem. We start with the planar drawing of K4 and add another
vertex e below the edge bd (shown on the left below). We can easily add the
edges from e to b, c, and d without creating crossings, but to reach a from e we
would need to cross one of the edges bd, bc, or cd. Placing vertex e anywhere
in the interior of any of the triangular sections of K4 will still create the need
for an edge crossing (one of which is shown on the right below).

a

b

c

d

e

a

b

c

d

e

We now have two graphs that we know to be nonplanar. Moreover, having
either K5 or K3,3 as a subgraph will guarantee that a graph is nonplanar
since if a portion of a graph is nonplanar there is no way for the entire graph
to be planar. What may be surprising is that these two graphs provide the
basis for determining the planarity of any graph. However, it is not as simple
as containing a K5 or K3,3 subgraph, but rather a modified version of these
graphs called subdivisions.

Definition 7.6.2 A subdivision of an edge xy consists of inserting vertices
so that the edge xy is replaced by a path from x to y. The subdivision of a
graph G is obtained by subdividing edges in G.

Note that a subdivision of a graph can be obtained by subdividing one,
two, or even all of its edges. However, the new vertices placed on the edges from
G cannot appear in more than one subdivided edge. Below are two examples
of subdivided graphs. The graph on the left shows a subdivision of K3,3, the
graph in the middle shows a subdivision of K4, the graph on the right shows
a subdivision of K5.

Additional Topics 269

From the discussion above, we should understand why K3,3 and K5 sub-
graphs pose a problem for planarity. Adding a vertex along any of the edges
(thus creating paths between the original vertices) of one of these graphs will
not suddenly allow the graph to become planar. Thus containing a subdivision
of K3,3 or K5 proves a graph is nonplanar. The Polish mathematician Kaz-
imierz Kuratowski proved in 1930 that containing a K3,3 or K5 subdivision
was not only enough to prove a graph was nonplanar, but more surprisingly
that any nonplanar graph must contain a K3,3 or K5 subdivision.

Theorem 7.6.3 (Kuratowski’s Theorem) A graph G is planar if and only if
it does not contain a subdivision of K3,3 or K5.

In practice, it is often useful to think of moving vertices and stretching
edges at the same time as looking for a K3,3 or K5 subdivision. Note that
in order to contain a K3,3 subdivision, a graph must have at least 6 vertices
of degree 3 or greater, and in order to contain a K5 subdivision the graph
must have at least 5 vertices of degree 4 or greater. These conditions are often
helpful when searching for a subdivision.

One final result regarding planarity is quite useful in gaining some intuition
as to the planarity of a graph. The following result was proven in 1752 by a
mathematician we spent an entire chapter discussing: Leonhard Euler.

Theorem 7.6.4 (Euler’s Theorem) If G = (V,E) is a simple planar graph
with at least three vertices, then |E| ≤ 3|V | − 6.

The usefulness of this theorem is not in verifying the relationship between
edges and vertices when a graph is known to be planar, but rather in checking
if a graph satisfies this inequality. If it does not, then the graph must be
nonplanar; however, if the graph satisfies the inequality, then it may or may
not be planar.

Example 7.6.3 Determine which of the following graphs are planar. If pla-
nar, give a drawing with no edge crossings. If nonplanar, find a K3,3 or K5

subdivision.

a

g

f

e d

c

b

a

b

c

d

e

f

a b c

def

h
g

G1 G2 G3

270 A Tour through Graph Theory

Solution: First note that all of the graphs above are drawn with edge crossings,
but this does not indicate their planarity. Also, we can begin by using Euler’s
Theorem above to give us an indication of how likely the graph is to be planar.

For G1, we have |E| = 15 and |V | = 7, giving us the inequality from
Euler’s Theorem of 15 ≤ 3 · 7 − 6 = 15. Thus the number of edges is as high
as possible for a graph with 7 vertices. Although this does not guarantee the
graph is nonplanar, it provides good evidence that we should search for a K5

or K3,3 subdivision. Also notice that every vertex has degree at least 4, so we
will begin by looking for a K5 subdivision.

To do this, we start by picking a vertex and looking at its neighbors, hoping
to find as many as possible that form a complete subgraph. Beginning with
a as a main vertex in K5, we see the other main vertices would have to be
either its neighbors or vertices reachable by a short path. We will start by
choosing the other main vertices of the K5 to be the neighbors of a, namely
d, e, f, and g. A starting graph is shown below on the left. Next we fill in the
edges between these four vertices, as shown on the right below.

a

d

ef

g

a

d

ef

g

At this point, we are only missing two edges in forming K5, namely dg and
ef . We have two vertices available to use for paths between these unadjacent
vertices, and using them we find a K5 subdivision. Thus G1 is nonplanar.

a

d

ef

g
c

b

For G2, we have |E| = 11 and |V | = 6, giving us the inequality from Euler’s
Theorem of 11 ≤ 3 · 6 − 6 = 12. We cannot deduce from this result that the
graph is nonplanar. However, notice that two vertices have degree 2 and the
remaining 4 vertices have degree 4. There cannot be a K5 subdivision since
there are not enough vertices of degree at least 4 and there cannot be a K3,3

subdivision since there are not enough vertices of degree at least 3. Thus we
can conclude that G2 is in fact planar. A planar drawing is shown below.

Additional Topics 271

a
b

c

d e

f

For G3, we have |E| = 16 and |V | = 8, giving us the inequality from
Euler’s Theorem of 16 ≤ 3 · 8 − 6 = 18. As in the previous examples, we
cannot deduce that the graph is nonplanar from Euler’s Theorem but the
high number of edges relative to the number of vertices should give us some
suspicion that the graph may not be planar.

When inspecting the vertex degrees, we see only four vertices of degree
at least 4 (namely a, e, g, h), indicating the graph cannot contain a K5 sub-
division. However, there are another three vertices of degree 3, allowing for a
possibility of a K3,3 subdivision.

Again, we start by selecting vertex a to be one of the main vertices of a
possible K3,3 subdivision. At the same time, we will look for another vertex
that is adjacent to three of the neighbors of a. We see that a and g are both
adjacent to b, h, e and f . Let us begin with b, h, and e for the vertices on the
other side of the K3,3, as shown below on the left.

We now search among the remaining vertices (f, d, c) for one that is adja-
cent to as many of b, h, and e as possible and find c is adjacent to both b and
h, as shown below on the right.

a g

b h e

a g c

b h e

At this point we are only missing one edge to form a K3,3 subdivision,
namely ce. Luckily we can form a path from c to e using the available vertex
d. Thus we have found a K3,3 subdivision and proven that G3 is nonplanar.

272 A Tour through Graph Theory

a g c

b h e

d

One final note of caution: subdivisions are not necessarily unique. In fact
G1 and G3 from the example above both contain more than one subdivision,
as seen in Exercises 7.6.3 and 7.6.4.

Exercises

7.6.1 Draw a subdivision of K3 where one edge has two vertices inserted, another
edge has one vertex inserted, and the last edge is not subdivided. What is another
name for this graph? What can you conclude about Cn, the cycle on n vertices?

7.6.2 Determine if the following graphs are subdivisions of K3,3 and explain your
answer.

(a) (b)

a b c

d e f

a b c

d e f

g

(c) (d)

a b c

d e f

a b c

d e f

g i

j

h k

7.6.3 Using the vertices b, c, e, f, g as the main vertices, find a K5 subdivision for
G1 from Example 7.6.3.

Additional Topics 273

7.6.4 Find a different K3,3 subdivision for G3 from Example 7.6.3.

7.6.5 For each of the graphs below, determine if it is planar or nonplanar. If
planar, give a drawing with no edge crossings. If nonplanar, find a K3,3 or K5

subdivision.

(a) (b)

ba

h

g

f e

d

c m

a

i

c
j

e

k

g

h b

df

(c) (d)

ba

h

g

f e

d

c

a

b

c

d

e

f

g

h

(e)
a

j

i

h

g

f

e

d

c

b

274 A Tour through Graph Theory

7.7 Edge-Coloring

In Chapter 6 we discussed the applications of graph coloring and investi-
gated the various coloring methods. This section focuses on a different aspect
of graph coloring where instead of assigning colors to the vertices of a graph,
we will instead assign colors to the edges of a graph. Such colorings are called
edge-colorings and have their own set of definitions and notations, many of
which are analogous to those from Chapter 6. Similar to our previous study of
vertex colorings, we will only consider simple graphs, that is graphs without
multi-edges. (Note that a graph with a loop cannot be edge-colored).

Definition 7.7.1 Given a graph G = (V,E) an edge-coloring is an assign-
ment of colors to the edges of G so that if two edges share an endpoint, then
they are given different colors. The minimum number of colors needed over all
possible edge-colorings is called the chromatic index and denoted χ′(G).

Edge colors will be shown throughout this section as various shades of gray
and line styles.

Example 7.7.1 Recall that the chromatic number for any complete graph is
equal to the number of vertices. Find the chromatic index for Kn for all n up
to 6.

Solution: Since K1 is a single vertex with no edges and K2 consists of a single
edge, we have χ′(K1) = 0 and χ′(K2) = 1. Due to their simplicity, a drawing
is omitted for these two graphs.

For K3 since any two edges share an endpoint, we know each edge needs
its own color and so χ′(K3) = 3. For K4 we can color opposite edges with the
same color, thus requiring only 3 colors. Optimal edge-colorings for K3 and
K4 are shown below.

Edge-coloring K5 and K6 is not quite so obvious as those from above.
Since no two adjacent edges can be given the same color, we know every edge
out of a vertex must be given different colors. Since every vertex in K5 has
degree 4, we know at least 4 colors will be required. Start by using 4 colors
out of one of the vertices of the K5, say a as shown below on the left. Moving
to the edges incident to b, we attempt to use our pool of 4 previously used
colors; however, one of these is unavailable since it has already been used on

Additional Topics 275

the ab edge. A possible coloring of the edges incident to b is given below on
the right.

a

b

cd

e

a

b

cd

e

At this point c is left with two incident edges to color but only one color
available, namely the one used on edge ab, thus requiring a fifth color to be
used. A proper edge-coloring of K5 is shown below on the left. A similar
procedure can be used to find a coloring of K6 using only 5 colors, as shown
below on the right.

In general, χ′(Kn) = n− 1 when n is even and χ′(Kn) = n when n is odd.

From the example above we conclude that if a vertex x has degree k, then
the entire graph will need at least k colors since each of the edges incident
to x will need a different color. Thus the chromatic index must be at least
the maximum degree, ∆(G), of the graph. But notice that for odd values of
n, that Kn required one more color than the maximum degree (for example,
χ′(K5) = 5 and ∆(K5) = 4). In fact, any graph will either require ∆(G) or
∆(G) + 1 colors to color its edges. This is a much tighter bound than we were
able to find for the chromatic number of a graph and was proven in 1964 by
the Ukrainian mathematician, Vadim Vizing.

Theorem 7.7.2 (Vizing’s Theorem) ∆(G) ≤ χ′(G) ≤ ∆(G)+1 for all simple
graphs G.

Graphs are referred to as Class 1 if χ′(G) = ∆(G) and Class 2 if
χ′(G) = ∆(G) + 1. Some graph types are known to be in each class (for
example, bipartite graphs are Class 1 and regular graphs with an odd number
of vertices are Class 2). However, with respect to the discussion from Section
7.1, determining which class a graph belongs to is an NP-Complete problem.

276 A Tour through Graph Theory

For graphs of small size, it is not difficult to find an optimal or nearly
optimal edge-coloring. In fact, even using a greedy algorithm (where the first
color available is used) will produce an edge-coloring with at most 2∆(G)− 1
colors on any simple graph. More complex algorithms exist that improve on
this bound, and if color shifting is allowed then an algorithm exists that will
produce an edge-coloring with at most ∆(G) + 1 colors. The example below
investigates a suboptimal edge-coloring using a greedy algorithm and explains
a better procedure for finding an optimal (or nearly optimal) edge-coloring.

Example 7.7.2 Consider the graph below and color the edges in the order
ac, fg, de, ef, bc, cd, dg, af, bd, bg, bf, ab using a greedy algorithm.

a
b

c

d

e

f
g

Step 1: Since the first three edges ac, fg, and de are not adjacent, we give each
of them the first color.

a
b

c

d

e

f
g

Step 2: Now since ef is adjacent to a previously colored edge, we need a second
color for it. Moreover, bc must also use a second color and since these are not
adjacent they can have the same color.

Additional Topics 277

a
b

c

d

e

f
g

Step 3: Edge cd is adjacent to edges using the first two colors, so a third color
is needed. Edge dg can use the second color and edge af must use the third
color.

a
b

c

d

e

f
g

Step 4: Edge bd needs a fourth color since it is adjacent to edges using each
of the previous three colors. However, bg can be given the third color.

a
b

c

d

e

f
g

278 A Tour through Graph Theory

Step 5: Edge bf needs a fifth color since it is adjacent to the first three colors
through f and adjacent to the fourth color through b. Moreover, ab needs a
sixth color since it is adjacent to the first and third colors through a and the
second through fifth colors from b.

a
b

c

d

e

f
g

The example above satisfies ∆(G) = 5, and the edge-coloring above uses
6 colors; however χ′(G) = 5. In general, starting with the vertex of high-
est degree and coloring its edges has a better chance of success in avoiding
unnecessary colors, as shown below.

a
b

c

d

e

f
g

Once we have the minimum number of colors established, we attempt to
fill in the remaining edges without introducing an extra color. One possible
solution is shown below.

Additional Topics 279

a
b

c

d

e

f
g

Beyond the analogous definitions and procedures between edge-coloring
and vertex-coloring, there is a very direct relationship between the two through
the use of a line graph.

Definition 7.7.3 Given a graph G = (V,E), the line graph L(G) = (V ′, E′)
is the graph formed from G where each vertex x′ in L(G) represents the edge
x′ from G and x′y′ is an edge of L(G) if the edges x′ and y′ share an endpoint
in G.

Below is the graph from Example 7.7.2 and its line graph. Notice that the
vertex e1 in L(G) is adjacent to e2 and e4 through the vertex a in G and e1
is adjacent to e3 and e8 through the vertex c in G.

a
b

c

d

e

f
g

e2

e1

e4

e3

e7e5 e6 e8

e12

e10

e11

e9

e1
e12

e11

e10

e9

e8
e7

e6

e5

e4

e3

e2

G L(G)

From this definition, it should be clear how edge-coloring and vertex-
coloring are related. In particular, if edge e1 is given the color blue in G,
this would correspond to coloring vertex e1 in L(G) with blue. This corre-
spondence provides the following result.

280 A Tour through Graph Theory

Theorem 7.7.4 Given a graph G with line graph L(G), we have χ′(G) =
χ(L(G)).

The result above shows we can find an edge-coloring of any graph by simply
vertex-coloring its line graph. However, as we saw in Chapter 6, vertex-coloring
is in itself not an easy problem (and in reference to Section 7.1 is in class NP).
However, other results on line graphs provide some interest, namely if G is
Eulerian then L(G) is Hamiltonian!

Applications of edge-coloring abound, in particular scheduling independent
tasks onto machines (different from the scheduling seen in Section 3.2) and
communicating data through a fiber-optic network. The example below relates
edge-coloring to Section 7.3 and how to schedule games between teams in a
round-robin tournament.

Example 7.7.3 The five teams from Example 7.3.1 (Aardvarks, Bears,
Cougars, Ducks, and Eagles) need to determine the game schedule for the
next year. If each team plays each of the other teams exactly once, determine
a schedule where no team plays more than one game on a given weekend.

Solution: Represent each team by a vertex and a game to be played as an
edge between the two teams. Then exactly one edge exists between every
pair of vertices and so K5 models the system of games that must be played.
Assigning a color to an edge corresponds to assigning a time to a game. By
the discussion from Example 7.7.1, we know χ′(K5) = 5 and so 5 weeks are
needed to schedule the games. One such solution is shown below.

Aardvarks

Bears

CougarsDucks

Eagles

Week Games

1 Aardvarks vs. Bears Cougars vs. Eagles

2 Aardvarks vs. Cougars Ducks vs. Eagles

3 Aardvarks vs. Ducks Bears vs. Cougars

4 Aardvarks vs. Eagles Bears vs. Ducks

5 Bears vs. Eagles Cougars vs. Ducks

Additional Topics 281

Although the example above is fairly easy to solve as the graph model is
a complete graph, the same procedure can be extended to a larger number
of teams where each team only plays a subset of all teams in the league.
In particular, edge-coloring can be used to determine team schedules in the
National Football League!

Ramsey Numbers

As with vertex-coloring, when investigating edge-colorings we are often
concerned with finding an optimal coloring (using the least number of colors
possible). Other problems exist, where optimality is no longer the goal. One
such edge-coloring problem relaxes some of the restrictions on coloring the
edges, and is named for the British mathematician and economist, Frank P.
Ramsey. Ramsey’s legacy is less so due to his own publications, mainly due to
his death at the age of 26, but rather for the many theories and results that
arose from his limited publications. In particular a minor lemma in his 1928
paper “On a problem of formal logic” stated that within any system there
exists some underlying order [32]. Although a simple concept, it birthed an
area of mathematics now known as Ramsey Theory.

Ramsey Theory can be described in different forms, so we will naturally
use the graph theoretic version. In particular, we will discuss Ramsey numbers
as they relate to coloring the edges of a graph. Unlike our edge-colorings above
in which no two edges can be given the same color if they have a common
endpoint, here we will be concerned with specific monochromatic structures
within the larger graph.

Definition 7.7.5 Given positive integers m and n, the Ramsey number
R(m,n) is the minimum number of vertices r so that all simple graphs on r
vertices contain either a clique of size m or an independent set of size n.

Recall that a clique of size m refers to a subgraph with m vertices in which
there exists an edge between every pair of vertices. An independent set of
size n is a group of n vertices in which no edge exists between any two of these
n vertices.

To get a better handle on this technical definition, Ramsey numbers are
often described in terms of guests at a party. For example, if you wanted to
find R(3, 2), then you would be asking how many guests must be invited so
that at least 3 people all know each other or at least 2 people do not know
each other. Try it!

Ramsey numbers can be viewed as coloring the edges of a complete graph
using two colors, say blue and black, so that either a blue clique of size m
exists or a black clique of size n exists. You can view the black clique as
the edges that would not exist in the graph, thus making their endpoints an
independent set of vertices. Proving R(m,n) = r requires two steps: first, we
find an edge-coloring of Kr−1 without a blue m-clique and without a black

282 A Tour through Graph Theory

n-clique; second, we must show that any edge-coloring of Kr will have either
a blue m-clique or a black n-clique. These steps should feel familiar, as they
mirror our discussion of the chromatic number in Chapter 6.

Example 7.7.4 Determine R(3, 3).

Solution: First note that we are searching for a 3-clique of either color, also
known as a monochromatic triangle. However, R(3, 3) > 5 as the edge-coloring
of K5 below does not contain a monochromatic triangle.

Next, consider K6. Since each vertex has degree 5 and we are coloring
the edges using only two colors, we know every vertex must have at least 3
adjacent edges of the same color. Suppose a has three adjacent blue edges, as
shown below. All other edges are shown in gray to indicate we do not care
(yet) which color they have.

c

de

f

a b

If any one of the edges between b, c and d is blue, then a blue triangle
exists using the edges back to a. One possibility is shown below.

c

de

f

a b

Additional Topics 283

Otherwise, none of the edges between b, c and d are blue, creating a black
triangle among these vertices.

c

de

f

a b

Although the argument above used vertex a with three adjacent blue edges,
a similar argument would hold for any vertex of K6 and for a vertex with three
black adjacent edges. Thus R(3, 3) = 6.

Using the discussion at the end of the previous example for inspiration, we
note two Ramsey number relationships:

• R(m,n) = R(n,m)

• R(2, n) = n

The first shows that we can interchange m and n without impacting the
Ramsey number, as can be seen by simply switching the color on every edge
from blue to black and vice versa. The explanation for the second relationship
is left as an exercise.

Although the solution for R(3, 3) was not too difficult to determine, in-
creasing m and n both by one value greatly increases the complexity of a
solution. In fact, R(4, 4) = 18 was proven in 1955 and yet R(5, 5) is still un-
known. The table below lists some known values and bounds for small values
of m and n at the time of publication. A single value in a column indicates
the exact value is known; otherwise, the two values given are the upper and
lower bounds as stated. Further discussion and results can be found at [34].

m 3 4 5 6 7

n lower upper lower upper lower upper

3 6 9 14 18 23

4 18 25 36 41 49 61

5 43 48 58 87 80 143

6 102 165 115 298

7 205 540

284 A Tour through Graph Theory

Exercises

7.7.1 Find an optimal edge-coloring for each of the graphs below.

(a) (b)

a

b

c

d

efg

h

i

j

a b

c

de

f

h

j

g i

(c) (d)

a b c

d

efg

h

i j

km

a

e

d c

b

f

j

i h

g

(e)

a b

c
d

e f

g

h
i

jk

m n

7.7.2 Draw the line graph for each of the graphs above.

7.7.3 Explain why R(2, n) = n.

Appendix

In Chapter 4, the software package GeoGebra was mentioned as a tool for
finding Fermat points and Steiner trees. This section provides additional in-
struction on using the program and activities for gaining better understanding
of the program. It is broken into three parts that are useful for finding a Fer-
mat point.

When you open GeoGebra, a blank file is started. The ribbon at the top
contains tools that either create items (such as points, lines, and polygons) or
calculates properties (such as angle measure or length) of previously created
items. The Undo button (top right-hand corner of your screen) will be helpful
if you select items in the wrong order.

Creating a Triangle

1. Click on the tool that looks like a shaded in triangle. This is the Polygon
tool.

2. A drop down menu will appear. Choose Polygon.

3. Click anywhere on the screen. This plots point A.

4. Click another location for point B.

5. Click a third location for point C.

6. Click on A again to create triangle 4ABC.

Finding Angle Measure

1. Click on the tool that looked like an angle. This is the Measure tool.

2. A drop down menu will appear. Choose Angle.
Note: You can either choose two line segments or three points. It is
usually easier to work with the line segments.

3. Click on two edges that share a vertex.
If you think of the edges as hands on a clock, you must select them in
counter-clockwise order to obtain the smaller angle. If you pick them in
clockwise order, you can either subtract the answer from 360 or use the
undo button and reselect the edges.

285

286 A Tour through Graph Theory

4. The angle will appear in green.

Finding the Fermat Point

1. Select the Polygon tool.

2. In the drop down menu, select Regular Polygon.

3. Select two of the vertices from triangle 4ABC.
Unlike with angle measure, you must select the vertices in clockwise order
for the new point of the equilateral triangle to be outside 4ABC. Hit
undo and retry if the equilateral triangle is on the wrong side of your
chosen edge.

4. A box will pop up asking for number of vertices. Type 3 and hit Enter.
A third point and the equilateral point will appear.

5. Repeat the above steps until all three triangles are formed.

6. Select the tool that looks like a line through two points. This is the Line
tool.

7. In the drop down menu, select Segment.

8. Select the new vertex (say X) of an equilateral triangle and the opposite
vertex from the original triangle (say C).

9. Repeat Step 8 until all three line segments formed.

10. Select the tool that is a dot with the letter A above it. This is the Point
tool.

11. In the drop down menu, select Intersect.

12. Click on two of the lines or hover over the intersection point until the
three segments appear darker and click. This is the Fermat Point.

Other Items

• When the Move tool (looks like an arrow) is selected, the box in the far
right upper corner (has three lines with a circle and triangle over top)
opens up a bar with options for the background. I find having grid lines
and axes helpful.

• Right clicking on an object opens up options for how it is viewed.

• Distance of line segments can be useful. Click on Object Properties.
A panel will open to the right and the drop down box by Show Label
allows you to choose Value. This will label a line segment with its length.
Names of vertices can be useful. Click on Show Label.

Appendix 287

Exercises

A.1 Create a triangle ABC where A = (2, 2), B = (8, 4) and C = (6, 6).

1. Find the Fermat point P and list its coordinates.

2. Find the distance of each segment from P to the vertices of the triangle
and give the total distance.

3. Find the minimum spanning tree and compare it the shortest network for
the triangle.

A.2 Plot the following points A = (1, 1), B = (3, 5), C = (7, 5), D = (8, 6), E =
(12, 6), F = (12, 4), G = (14, 8).

1. The MST for these points consists of the edges AB, BC, CD, DE, EF ,
and EG. Add these line segments. Calculate the total weight of the MST.

2. Use the Angle Measure tool to determine locations for improving the MST.
Use the procedure above to find the shortcut points. List their coordinates.

3. Calculate the total weight of the new network. Compare it to the total
weight of the MST.

http://taylorandfrancis.com

Selected Answers and Solutions

Chapter 1: Eulerian Tours

1.2 Euler circuits: (a), (b), (d).

1.3 A graph is Eulerian if and only if it is connected and all vertices are
even. A graph is semi-Eulerian if and only if it is connected and exactly two
vertices are odd. A graph cannot have all even vertices while still having two
odd vertices. Thus a graph cannot be both Eulerian and semi-Eulerian.

1.4 (a) (i) deg(a) = 4, deg(b) = 4, deg(c) = 4, deg(d) = 2, deg(e) =
6, deg(f) = 3, deg(g) = 4, deg(h) = 3; (ii) semi-Eulerian

(b) (i) deg(a) = 4, deg(b) = 4, deg(c) = 3, deg(d) = 4, deg(e) =
4, deg(f) = 3, deg(g) = 6, deg(h) = 4, deg(i) = 6, deg(j) = 4; (ii) semi-
Eulerian

(c) (i) deg(a) = 2, deg(b) = 2, deg(c) = 4, deg(d) = 2, deg(e) =
2, deg(f) = 3, deg(g) = 2, deg(h) = 3; (ii) neither

(d) (i) deg(a) = 3, deg(b) = 5, deg(c) = 3, deg(d) = 5, deg(e) =
3, deg(f) = 5, deg(g) = 3, deg(h) = 5; (ii) neither

(e) (i) deg(a) = 4, deg(b) = 4, deg(c) = 2, deg(d) = 2, deg(e) =
4, deg(f) = 2; (ii) Eulerian

(f) (i) deg(a) = 2, deg(b) = 4, deg(c) = 2, deg(d) = 4, deg(e) = 4, deg(f) =
2, deg(g) = 2, deg(h) = 4, deg(i) = 2, deg(j) = 4; (ii) Eulerian

1.16 In Step 1, find a path from one odd vertex to the other. Continue finding
circuits as described in Step 2, combining them with the initial path to create
a trail. Repeat the process until all edges are included in the trail.

1.17 Since the number of edges is 15, the total degree must be 30. The 6
vertices give a total degree of 24 and so the last two vertices have a degree
total of 6. Since there must be an odd number of odd vertices, either both or
neither of the remaining vertices must have odd degree. The possible degrees
are 1 and 5, 2 and 4, and 3 and 3. It cannot be 0 and 6 since the graph is
connected.

289

290 A Tour through Graph Theory

Chapter 2: Hamiltonian Cycles

2.1 (a) 40, 320
(b) 479, 001, 600
(c) 20, 922, 789, 888, 000

2.2 (a) 9! = 362, 880
(b) 11 ∗ 10 ∗ 9 = 990
(c) 7! ∗ 6 = 30, 240

2.3 K4 : (4− 1)! = 3! = 6
K8 : (8− 1)! = 7! = 5040;
K10 : 9! = 362, 880

2.5

2.6 (a) (iii) G has 6 vertices, all of which have degree at least 3. If G is
connected, then it satisfies Dirac’s Theorem and has a Hamiltonian cycle.
If G is not connected, then it does not have a Hamiltonian cycle.

(b) (i) Use Dirac’s Theorem.
(c) (ii) G cannot have a Hamiltonian cycle if it contains a vertex of degree
1.

(d) (iii) It is possible though not guaranteed.
(e) (ii) G is not connected.

2.7 abcdea - 1290; badceb→ adceba - 1250; cbadec→ adecba - 1190; dabced→
abceda - 1190; eabcde→ abcdea - 1290

2.8 (a) (i) adbcea - 21; bdaceb→ acebda - 19; cedabc→ abceda - 18; dabced→
abceda - 18; ecbade→ abceda - 18; (ii) adbcea - 21; (iii) abceda - 18
(b) (i)mqonpm - 1285; nmqopn - 1415; onmqpo - 1355; pmqonp - 1285; qmnopq
- 1355; (ii) mnopqm - 1355; (iii) mpnoqm - 1285
(c) (i) acbfdea - 23; bcdeafb - 27; cbfdeac - 23; debcafd - 27; edcbfae - 27;
fbcdeaf - 27 (answers may vary in the case of ties); (ii) aedcbfa - 27; (iii)
acbfdea - 23
(d) (i) fhgkif - 138.75; ghikfg - 152.75; hgkifh - 138.75; ihgkfi - 135.75;
kghifk - 135.75; (ii) fihgkf - 135.75; (iii) fhgkif - 138.75
(e) (i) jnkmopj - 1548; kmjnpok - 1442; mknjopm - 1483; njmkopn - 1442;
opnjmko - 1351; pomknjp - 1548 (ii) jmkopnj - 1442; (iii) jnkmpoj - 1483

Selected Answers and Solutions 291

Chapter 3: Paths

3.1 (a) path: xaby weight: 12
(b) path: xejy weight: 6
(c) path: xbey weight: 9
(d) path: xaegy weight: 15
(e) path: xcdy weight: 10
(f) path: xcjhy weight: 10
(g) path: xhgfemyy weight: 12

3.4 (a) path: xabdgey weight: 20
(b) path: xfjidy weight: 21
(c) path: xbcey weight: 14

3.5 The critical path priority list gave a schedule with a finishing time equal
to the critical time of Start. No additional processors can reduce the finishing
time.

Chapter 4: Trees and Networks

4.1 (d) and (e) are both trees; (a), (f), and (g) are all not trees; (b) and (c)
may or may not be trees.

4.3 Weights of minimum spanning trees: (a) 11 (b) 65 (c) 21 (d) 28 (e) 1018.

4.5 Kruskal’s Algorithm will produce a spanning forest of the disconnected
graph; Prim’s Algorithm would produce a spanning tree of the component
containing the root vertex.

4.6 Insert a step 0 that chooses the required edge. Continue with the algo-
rithms as before. The resulting tree might be minimum but cannot be guar-
anteed.

4.9 If a graph is very sparse (the number of edges is close to n − 1), then
Reverse Delete would only need a few steps to obtain a tree. However, if a
graph is very dense (so the number of edges is much greater than n− 1), then
using Reverse Delete would require many more steps than Kruskal’s to obtain
a minimum spanning tree.

4.12 Total weight is 1608.

292 A Tour through Graph Theory

Chapter 5: Matching

5.6 (a) (a), (b), (d), and (f) are bipartite.

5.8 One possible solution: Benefits–Agatha, Computing–Leah, Purchasing–
George, Recruitment–Dinah, Refreshments–Nancy, Social Media–Evan, Travel
Expenses–Vlad.

5.12 (a) Rich–Alice, Stefan–Dahlia, Tom–Beth, Victor–Cindy
(b) Alice–Rich, Beth–Stefan, Cindy–Victor, Dahlia–Tom

Chapter 6: Graph Coloring

6.2 (a) 4 (b) 4 (c) 4 (d) 3 (e) 3 (f) 3

6.9 Answers may vary. Optimal number of colors is listed.
(a) 8 colors. a = {5, 6} b = {1, 2, 3} c = {7, 8} d = {5, 6} e = {1, 2, 3, 4} f =
{7, 8} g = {1, 2, 3}h = {4}

(b) 10 colors. a = {3, 4, 5, 6} b = {8, 9} c = {3, 4, 5, 6, 7} d = {8, 9, 10} e =
{1, 2} f = {3, 4, 5} g = {1}h = {7, 8, 9} i = {1, 2} j = {10}

(c) 11 colors. a = {8} b = {1, 2, 3, 4} c = {9, 10, 11} d = {3, 4} e =
{5, 6, 7} f = {5, 6, 7, 8} g = {1, 2}

(d) 8 colors. a = {1, 2, 3} b = {4, 5, 6} c = {7, 8} d = {1, 2} e =
{4, 5, 6, 7} f = {4, 5, 6} g = {1, 2}h = {1, 2, 3} i = {3}, j = {8}

(e) 13 colors. a = {10, 11, 12} b = {1, 2, 3} c = {4, 5, 6, 7} d = {1, 2} e =
{4, 5, 6, 7, 8} f = {9, 10, 11} g = {1, 2, 3, 4}h = {6, 7, 8, 9} i = {13}, j =
{9, 10, 11, 12} k = {6, 7, 8}m = {1, 2, 3, 4, 5}

(f) 11 colors. a = {9, 10, 11} b = {1, 2, 3, 4, 5} c = {6, 7, 8} d = {9, 10} e =
{1, 2, 3, 4} f = {5, 6} g = {1, 2}h = {6, 7, 8} i = {1, 2, 3} j = {5, 6, 7}

Chapter 7: Additional Topics

7.1.1 Answers may vary
(a) a = 1, c = 10
(b) a = 1, c = 4
(c) a = 1, c = 2
(d) a = 1, c = 3
(e) a = 4, c = 2

Selected Answers and Solutions 293

(f) a = 7, c = 1

7.2.1 Isomorphic (a→ s, b→ y, c→ z, d→ w, e→ u, f → t, g → x, h→ v).

7.2.2 Not isomorphic (look at vertex degrees).

7.2.3 Isomorphic (a→ x, b→ v, c→ t, d→ w, e→ y, f → u, g → z).

7.2.4 Isomorphic (a→ s, b→ v, c→ t, d→ y, e→ u, f → x, g → w, h→ z).

7.3.1 0, 1, 2, 3; 0, 2, 2, 2; 1, 1, 2, 2; 1, 1, 1, 3.

7.3.2 (a), (b), (d), (e), (f) and (h) are tournaments.

7.3.4 (a), (d) and (f) are strong; (b), (e) and (h) are not strong.

7.4.1 Flow = 16, P = {s}, P = {a, b, c, d, e, f, g, h, t}.

7.4.2 Flow = 20, P = {s, a, b, c, d}, P = {e, f, g, h, i, t}.

7.4.3 Flow = 14, P = {s}, P = {a, b, c, d, e, f, g, h, t}.

7.4.4 Flow = 17, P = {s, a, b, c, d, e, f}, P = {g, t}.

7.4.5 Flow = 10, P = {s, a, b, c, d, e, f, g}, P = {h, t}.

7.5.1 (a) 0; 2; 3; 4
(b) 4
(c) none; r; a; b; f
(d) a, b; d, e, f ; g, h; i; j, k
(e) none; r; r, b; r, a, c; r, b, f, i
(f) a, b, c, d, e, f, g, h, i, j, k; c, g, h; none; none; none
(g) b; d, e; g; none

7.6.1 C6; Every Cn (for n ≥ 3) is a subdivision of K3.

7.6.2 (a) and (d) are subdivisions; (b) is not since vertex g is on more than
one path between vertices; (c) is not since extra edges were added to the K3,3

graph.

7.6.5 (a)nonplanar; (b)planar; (c)planar; (d)planar; (e)nonplanar.

7.7.1 (b) 4 (e) 6.

http://taylorandfrancis.com

Bibliography

[1] Alexandru T. Balaban. “Applications of Graph Theory in Chemistry.”
In: J. Chem. Inf. Comput. Sci. 25 (1985), pp. 334–343.

[2] Norman L. Biggs, E. Keith Lloyd, and Robin J. Wilson. Graph Theory
1736-1936. Oxford: Clarendon Press, 1976. isbn: 0-19-853901-0.

[3] Eric Bonabeau and Théraulaz. “Swarm Smarts.” In: Scientific American
(Mar. 2000).

[4] J.A. Bondy and U.S.R. Murty. Graph Theory. New York: Springer, 2008.
isbn: 978-1-84628-969-9.

[5] Gary Chartrand. Introductory Graph Theory. New York: Dover, 1984.
isbn: 978-0486247755.

[6] William Cook. The Traveling Salesman Problem. 2015. url: http://
www.math.uwaterloo.ca/tsp/index.html (visited on 06/08/2015).

[7] William J. Cook. In Pursuit of the Traveling Salesman. Princeton, NJ:
Princeton University Press, 2012. isbn: 978-0-691-15270-7.

[8] G. Dantzig, R. Fulkerson, and S. Johnson. “Solution of a large-scale
traveling-salesman problem.” In: J. Operations Res. Soc. Amer. 2
(1954), pp. 393–410. issn: 0160-5682.

[9] Reinhard Diestel. Graph Theory. 3rd ed. New York: Springer, 2005. isbn:
978-3-540-26182-7.

[10] Edsger W. Dijkstra. “A note on two problems in connexion with graphs.”
In: Numerishe Mathematik 1 (1959), pp. 269–271.

[11] Edsger. W. Dijkstra. “Reflections on [[10]].” Circulated privately. 1982.
url: http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD841a.PDF.

[12] G.A. Dirac. “Some theorems on abstract graphs.” In: Proc. Lond. Math.
Soc. 2 (1952), pp. 69–81.

[13] Jack Edmonds and Ellis L. Johnson. “Matching, Euler tours and the
Chinese postman.” In: Mathematical Programming 5 (1973), pp. 88–
124.

[14] Leonhard Euler. “Solutio problematis ad geometriam situs pertinentis.”
In: Commentarii Academiae Scientiarum Imperialis Petropolitanae 8
(1736), pp. 128–140.

295

http://www.math.uwaterloo.ca/tsp/index.html
http://www.math.uwaterloo.ca/tsp/index.html
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD841a.PDF

296 A Tour through Graph Theory

[15] Mark Fernandez. High Performance Computing. 2011. url: http://en.
community.dell.com/techcenter/high-performance-computing/w/

wiki/2329 (visited on 06/26/2015).

[16] Fleury. “Deux problèmes de géométrie de situation.” In: Journal de
mathématiques élémentaires 2 (1883), pp. 257–261.

[17] D. Gale and L.S. Shapley. “College Admissions and the Stability of
Marriage.” In: The American Mathematical Monthly 69 (1962), pp. 9–
15.

[18] Martin Charles Golumbic and Ann N. Trenk. Tolerance Graphs. New
Tork, NY: Cambridge University Press, 2004. isbn: 0-521-82758-2.

[19] R.L. Graham and Pavol Hell. “On the history of the minimum spanning
tree problem.” In: Annals of the History of Computing 7 (1985), pp. 43–
57.

[20] Dan Gusfield and Robert W. Irving. The Stable Marriage Problem. Cam-
bridge, MA: The MIT Press, 2012. isbn: 0-262-07118-5.

[21] John M. Harris, Jeffry L. Hirst, and Michael J. Mossinghoff. Combi-
natorics and Graph Theory. 2nd ed. New York: Springer, 2008. isbn:
978-0-387-797710-6.

[22] Carl Hierholzer. “Über die möglichekeit, einen linienzug ohne wiederhol-
ung und ohne unterbrechung zu umfahren.” In: Mathematische Annalen
6 (1873), pp. 30–32.

[23] Intel. Processors - Intel Microprocessor Export Compliance Marks. 2014.
url: http://www.intel.com/support/processors/sb/CS-032813.
htm (visited on 07/10/2015).

[24] Dieter Jungnickel. Graphs, Networks and Algorithms. 4th ed. New York:
Springer, 2013. isbn: 978-3-642-32277-8.

[25] H.A. Kierstead. “A polynomial time approximation algorithm for dy-
namic storage allocation.” In: Discrete Appl. Math. 88 (1991), pp. 231–
237.

[26] H.A. Kierstead and Karin R. Saoub. “First-Fit coloring of bounded tol-
erance graphs.” In: Discrete Appl. Math. 159 (2011), pp. 605–611.

[27] H.A. Kierstead and Karin R. Saoub. “Generalized Dynamic Storage
Allocation.” In: Discrete Mathematics & Theoretical Computer Science
16 (2014), pp. 253–262.

[28] H.A. Kierstead, D. Smith, and W. Trotter. “First-Fit coloring of interval
graphs has performance ratio at least 5.” In: European J. of Combin. 51
(2016), pp. 236–254.

[29] H.A. Kierstead and W. Trotter. “An extremal problem in recursive com-
binatorics.” In: Congr. Numer. 33 (1981), pp. 143–153.

[30] Harold Kuhn. “The Hungarian Method for the assignment problem.”
In: Naval Research Logistics Quarterly 2 (1955), pp. 83–97.

http://en
http://www.intel.com/support/processors/sb/CS-032813.htm
http://www.intel.com/support/processors/sb/CS-032813.htm

Bibliography 297

[31] Roger Mallion. “A contemporary Eulerian walk over the bridges of
Kaliningrad.” In: BSHM Bulletin 23 (2008), pp. 24–36.

[32] F.P. Ramsey. “On a problem in formal logic.” In: Proc. London Math.
Soc. 30 (1929), pp. 264–286.

[33] Michael Sipser. Introduction to the Theory of Computation. 3rd ed.
Boston, MA: Cengage Learning, 2013. isbn: 978-1-133-18779-0.

[34] Small Ramsey Numbers. 2017. url: http : / / www . combinatorics .

org / ojs / index . php / eljc / article / view / DS1 / pdf (visited on
03/11/2017).

[35] Peter Tannenbaum. Excursions in Modern Mathematics. 8th ed. Boston,
MA: Pearson, 2014. isbn: 978-0-3218-2573-5.

[36] The Merriam Webster Dictionary. Springfield, MA: Merriam Webster,
2005. isbn: 978-0-8777-9636-7.

[37] The Sveriges Riksbank Prize in Economic Science in Memory of Alfred
Nobel. 2013. url: http://www.nrmp.org/wp-content/uploads/2013/
08/The-Sveriges-Riksbank-Prize-in-Economic- Sciences-in-

Memory-of-Alfred-Nobel1.pdf (visited on 11/05/2015).

[38] Top500.org. High Performance Computing. 2014. url: http://top500.
org/ (visited on 06/26/2015).

[39] Alan Tucker. Applied Combinatorics. 6th ed. Hoboken, NJ: Wiley, 2012.
isbn: 978-0-470-45838-9.

[40] Douglas B. West. Introduction to Graph Theory. 2nd ed. Upper Saddle
River, NJ: Prentice Hall, 2001. isbn: 0-13-014400-2.

[41] Robin Wilson. Four Colors Suffice. Princeton, NJ: Princeton University
Press, 2002. isbn: 0-691-11533-8.

http://www.nrmp.org/wp-content/uploads/2013/08/The-Sveriges-Riksbank-Prize-in-Economic-Sciences-in-Memory-of-Alfred-Nobel1.pdf
http://top500.org/
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1/pdf
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1/pdf
http://www.nrmp.org/wp-content/uploads/2013/08/The-Sveriges-Riksbank-Prize-in-Economic-Sciences-in-Memory-of-Alfred-Nobel1.pdf
http://www.nrmp.org/wp-content/uploads/2013/08/The-Sveriges-Riksbank-Prize-in-Economic-Sciences-in-Memory-of-Alfred-Nobel1.pdf
http://top500.org/

http://taylorandfrancis.com

Image Credits

Most of the figures that appear in this book were created electronically by the
author. Special thanks are due to David Taylor for his assistance in creating
the graphs and tables throughout this book.

For the other images that were used, either with explicit permission or via
public domain use, credit is given here, organized by order of appearance.

• The map of Königsberg on page 1 is a public domain image, file Image-
Koenigsberg, Map by Merian-Erben 1652.jpg.

• The drawing of the bridges of Königsberg on page 4 appeared in [14]
and is a public domain image.

• The drawing of bridges within a city on page 32 appeared in [14] and is
a public domain image.

• The map on page 209 is a public domain image, courtesy of author
Jkan997 of Wikimedia Commons, file Amtrak Cascades.svg, released
under the Creative Commons Attribution-ShareAlike 3.0 Unreported
License.

299

http://taylorandfrancis.com

Index

Cn, 7
Kn, 40
Km,n, 154
L(G), 279
N(x), 3
Pn, 7
R(m,n), 281
Wn, 193
∆, 196
χ′(G), 274
χ(G), 192
χA(G), 201
deg(v), 4
deg+(v), 63
deg−(v), 63
ε, 57
ω(G), 193

acyclic, 110
adjacent, 3
algorithm, 12
ancestor, 257
Appel, Kenneth, 191
approximate algorithm, 46
arc, 63

-set, 63
Augmenting Flow Algorithm, 248
Augmenting Path Algorithm, 161

Berge’s Theorem, 160
Berge, Claude, 160
binary search tree, 258
bipartite graph, 6, 152
Bor̊uvka, Otakar, 130
breadth-first search tree, 261
Brooks’ Theorem, 196
Brooks, Rowland, 195

Brute Force Algorithm, 42–46

capacity, 246
chain, 247
Cheapest Link Algorithm, 51–54, 58
child, 257
Chinese Postman Problem, 24–27,

91–93
Christofides’ Algorithm, 186
chromatic index, 274
chromatic number, 192
circuit, 7

Eulerian circuit, 10
clique, 193
closed walk, 7
coloring

k-coloring, 190
equitable, 199
list, 225
weighted, 217

complete graph, 40
connected, 9
critical path, 97
Critical Path Algorithm, 97
critical time, 97
cut, 253

capacity, 253
Min-Cut Method, 254

cut-vertex, 39
cycle, 7

Hamiltonian, 35

degree, 4
in-degree, 63
out-degree, 63

depth-first search tree, 258
descendant, 257

301

302 A Tour through Graph Theory

digraph, 63
strong, 244

Dijkstra’s Algorithm , 82–91
Dijkstra, Edsger, 81
Dirac’s Theorem, 39
directed graph, 63
distinct representatives, 166
Dynamic Storage Allocation, 221

edge, 2
-set, 2

edge-coloring, 274
Edmonds, Jack, 178
efficient, 18
Egerváry, Jenö, 160
endpoint, 3
Euler’s Theorem, 269
Euler, Leonhard, 1
Eulerian

circuit, 10
graph, 10
trail, 10

Eulerization, 19–23
even vertex, 4
exponential-time algorithm, 229

factorial, 41
factorial-time algorithm, 229
Fermat point, 131

Torricelli’s Construction, 132
Fermat, Pierre de, 131
First-Fit Algorithm, 201
Fleury’s Algorithm, 12–16
flow, 246

Augmenting Flow Algorithm,
248

feasible, 246
maximum, 247
slack, 247
value, 247

forest, 110
Four Color Theorem, 189–191

Gale, David, 170
Gale-Shapley Algorithm, 170

Unacceptable Partners, 174

graph, 2

Haken, Wolfgang, 191
Hall’s Marriage Theorem, 158
Hamilton, William, 35
Hamiltonian

cycle, 35
path, 35
tournament, 245

Handshaking Lemma, 11
head, 63
Hierholzer’s Algorithm, 16–18
Hierholzer, Carl, 11

in-degree, 63
incident, 3
independent edges, 151
independent set, 281
interval graph, 207
isolated vertex, 3
isomorphic, 232

König, Dénes, 160
König-Egerváry Theorem, 164
Königsberg Bridge Problem, 1–12
Kempe, Alfred, 190
Kirkman, T.P., 35
Kruskal’s Algorithm, 115–123
Kruskal, Joseph, 115
Kuratowski’s Theorem, 269
Kwan, Mei-Ku, 24

leaf, 110
line graph, 279
list coloring, 225
loop, 3

matching, 151
M -alternating, 160
M -augmenting, 160
X-, 156
maximal, 156
maximum, 156
perfect, 156

Max Flow–Min Cut Theorem, 253

Index 303

Minimum Spanning Tree Problem,
115–130

Algorithms
Bor̊uvka’s, 149
Kruskal’s, 115
Prim’s, 123

multi-edges, 4
Mycielski’s Construction, 194
Mycielski, Jan, 194

Nearest Insertion Algorithm, 54–58
Nearest Neighbor Algorithm, 47–51
necessary condition, 10
neighbor, 3
network, 110

odd vertex, 4
on-line algorithm, 201
out-degree, 63

parent, 257
path, 7

cycle, 64
directed, 64
Hamiltonian, 35

perfect graph, 207
performance function, 228
planar, 265
planar graph, 190
polynomial-time algorithm, 228
precedence relationship, 94
Prim’s Algorithm, 123–130
Prim, Robert, 123
Priority List Model, 95
processing time, 94
processor, 93

Ramsey number, 281
reference point, 41
relative error, 57
Repetitive Nearest Neighbor

Algorithm, 49–51
Robertson, Niel, 191
rooted tree, 256

ancestor, 257
child, 257

descendant, 257
parent, 257
sibling, 257

Roth, Alvin, 173

Sanders, Daniel, 191
saturated vertex, 155
score sequence, 238
semi-Eulerization, 19
Seymour, Paul, 191
Shapley, Lloyd, 170
Shortest Network Problem, 131–140
sibling, 257
simple graph, 4
sink, 246
source, 246
stable matching, 168

Gale-Shapley Algorithm, 170
marriages, 168
roommates, 178
with unacceptable partners, 173

Steiner point, 136
Steiner tree, 136
Steiner, Jakob, 136
subdivision, 268
subgraph, 114

induced, 200
spanning, 114

sufficient condition, 10

tail, 63
task, 93
Thomas, Robin, 191
tolerance graph, 213
Torricelli’s Construction, 132
Torricelli, Evangelista, 131
tournament, 236

score sequence, 238
transitive, 243

trail, 6
Eulerian trail, 10

Traveling Salesman Problem, 41–62
Algorithms

Brute Force, 42
Cheapest Link, 51

304 A Tour through Graph Theory

Farthest Insertion, 76
Nearest Insertion, 54
Nearest Neighbor, 47
Repetitive Nearest Neighbor,

49
Asymmetric, 65–72
metric TSP, 140, 186

tree, 110
binary search, 258
breadth-first search, 261
depth-first search, 258
height, 256
level, 256
rooted, 113, 256
spanning, 114

triangle inequality, 140
triangle-free, 194

underlying graph, 64

vertex, 2
-cover, 164
-set, 2
even, 4
odd, 4

Vizing’s Theorem, 275

walk, 6
closed walk, 7

weighted coloring, 217
weighted graph, 24
wheel, 193

	Cover
	Half Title

	Published titles
	Title
	Copyrights

	Dedication
	Contents
	Preface��������������
	Chapter 1. Eulerian Tours
	1.1 K�onigsberg Bridge Problem�������������������������������������
	1.2 Introduction to Graph Models���������������������������������������
	1.3 Touring a Graph��������������������������
	1.4 Eulerian Circuit Algorithms��������������������������������������
	Fleury's Algorithm�������������������������
	Hierholzer's Algorithm�����������������������������

	1.5 Eulerization�����������������������
	Chinese Postman Problem������������������������������

	1.6 Exercises��������������������

	Chapter 2. Hamiltonian Cycles
	2.1 Conditions for Existence�����������������������������������
	2.2 Traveling Salesman Problem�������������������������������������
	Brute Force������������������
	Nearest Neighbor�����������������������
	Cheapest Link��������������������
	Nearest Insertion������������������������

	2.3 Digraphs�������������������
	Asymmetric Traveling Salesman Problem��

	2.4 Exercises��������������������

	Chapter 3. Paths
	3.1 Shortest Paths�������������������������
	Dijkstra's Algorithm���������������������������
	Chinese Postman Problem Revisited��

	3.2 Project Scheduling�����������������������������
	Critical Paths���������������������

	3.3 Exercises��������������������

	Chapter 4. Trees and Networks
	4.1 Trees����������������
	4.2 Spanning Trees�������������������������
	Kruskal's Algorithm��������������������������
	Prim's Algorithm�����������������������

	4.3 Shortest Networks����������������������������
	Steiner Trees��������������������

	4.4 Traveling Salesman Problem Revisited���
	4.5 Exercises��������������������

	Chapter 5. Matching
	5.1 Bipartite Graphs���������������������������
	5.2 Matching Terminology and Strategies��
	Augmenting Paths and Vertex Covers���

	5.3 Stable Marriages���������������������������
	Unacceptable Partners����������������������������

	5.4 Matchings in Non-Bipartite Graphs��
	Stable Roommates�����������������������

	5.5 Exercises��������������������

	Chapter 6. Graph Coloring
	6.1 Four Color Theorem�����������������������������
	6.2 Coloring Bounds��������������������������
	6.3 Coloring Strategies������������������������������
	General Strategies�������������������������
	On-line Coloring�����������������������

	6.4 Perfect Graphs�������������������������
	Interval Graphs����������������������
	Tolerance Graphs�����������������������

	6.5 Weighted Coloring����������������������������
	6.6 Exercises��������������������

	Chapter 7. Additional Topics
	7.1 Algorithm Complexity�������������������������������
	Exercises����������������

	7.2 Graph Isomorphism����������������������������
	Exercises����������������

	7.3 Tournaments����������������������
	Exercises����������������

	7.4 Flow and Capacity����������������������������
	Exercises����������������

	7.5 Rooted Trees�����������������������
	Depth-First Search Tree������������������������������
	Breadth-First Search Tree��������������������������������
	Exercises����������������

	7.6 Planarity��������������������
	Exercises����������������

	7.7 Edge-Coloring������������������������
	Ramsey Numbers���������������������
	Exercises����������������

	Appendix���������������
	Creating a Triangle��������������������������
	Finding Angle Measure����������������������������
	Finding the Fermat Point�������������������������������
	Other Items������������������
	Exercises����������������

	Selected Answers and Solutions�������������������������������������
	Bibliography�������������������
	Image Credits��������������������
	Index������������

