
Algebra and Discrete Mathematics
ADM

Bc. Xiaolu Hou, PhD.

FIIT, STU
xiaolu.hou @ stuba.sk

1 / 87



Course Outline

• Vectors and matrices
• System of linear equations
• Matrix inverse and determinants
• Vector spaces and matrix transformations
• Fundamental spaces and decompositions
• Eulerian tours
• Hamiltonian cycles
• Midterm
• Paths and spanning trees
• Trees and networks
• Matching

2 / 87



Recommended reading

• Saoub, K. R. (2017). A tour through graph theory. Chapman and Hall/CRC.
• Sections 3.1, 3.2, 4.1, 4.2
• Free copy online

3 / 87

https://api.pageplace.de/preview/DT0400.9781138197817_A36383051/preview-9781138197817_A36383051.pdf


Lecture outline

• Dijkstra’s Algorithm

• Project scheduling

• Critical path

• Trees

• Spanning trees

4 / 87



Paths and spanning trees

• Dijkstra’s Algorithm

• Project scheduling

• Critical path

• Trees

• Spanning trees

5 / 87



Shortest path problem

• A path is a sequence of vertices in which there is an edge between consecutive
vertices and no vertex is repeated

• Weight: distance, cost, time, etc.
• Shortest path: the path of the least total weight
• A shortest path exists if the graph is connected
• Scenario: fastest route to travel from one location to another

6 / 87



Dijkstra’s Algorithm

• Proposed in 1956 by Edsger W. Dijkstra
• Almost every GIS (Geographic Information System, or mapping software) uses a

modification of Dijkstra’s algorithm to provide directions
• Numerous versions of Dijkstra’s Algorithm exist
• See original algorithm: DIJKSTRA, E. (1959). A Note on Two Problems in

Connexion with Graphs. Numerische Mathematik, 1, 269-271.

7 / 87



Dijkstra’s Algorithm – notations

• Each vertex is given a two-part label

L(v) = (x, ω (v))

• x: the name of the vertex used to travel to v

• ω (v): the weight of the path that was used to get to v from the designated
starting vertex

• F : a set of vertices that are not highlighted yet

8 / 87



Dijkstra’s Algorithm – input and output

• Input: Weighted connected graph G = (V,E) and vertices designated as Start
and End

• Output: Highlighted path from Start to End and total weight ω (End)

9 / 87



Dijkstra’s Algorithm – steps
1. For each vertex v of G, assign a label L(v):

L(v) =

{
(−, 0), if v = Start
(−,∞), Otherwise

Highlight Start. F = V − {Start}. Let current vertex= Start.
2. Update the labels for each vertex v in F that is a neighbor of current vertex, say u:

L(v) =

{
(u, ω (u) + ω (uv)), if ω (u) + ω (uv) < ω (v)

L(v), Otherwise

3. Highlight the vertex v in F with the lowest weight as well as the edge used to
update the label. Remove v from F . Redefine current vertex= v.

4. Repeat steps 2 and 3 until the vertex End has been highlighted.

10 / 87



Dijkstra’s Algorithm – steps

5. The shortest path from Start to End is found by tracing back from End using the
first component of the labels. The total weight of the path is the weight for End
given in the second component of its label.

Note
• The set F of vertices consists of all un-highlighted vertices and all are under

consideration for becoming the next highlighted vertex
• It is important that we do not only consider the neighbors of the last vertex

highlighted, as a path from a previously chosen vertex may in fact lead to the
shortest path

11 / 87



Dijkstra’s Algorithm – example

Example
Take Start= g, and End= c

a b c

d

e

f

g

6 5

5

68

1

21

1

9

12 / 87



Dijkstra’s Algorithm – example
Example

a(−,∞) b(−,∞) c(−,∞)

d(−,∞)

e(−,∞)

f(−,∞)

g(−,0)

6 5

5

68

1

21

1

9

• Step 1. Highlight g. Label

L(v) =

{
(−, 0) v = g

(−,∞) Otherwise

F = {a, b, c, d, e, f}. current vertex= g. 13 / 87



Dijkstra’s Algorithm – example
Example

a(g,9) b(−,∞) c(−,∞)

d(−,∞)

e(−,∞)

f(g,1)

g(−,0)

6 5

5

68

1

21

1

9

• Step 2. F = {a, b, c, d, e, f}. Neighbors of g : a, f

ω (g) + ω (ga) = 0 + 9 = 9 < ∞ = ω (a) =⇒ L(a) = (g, 9)

ω (g) + ω (gf) = 0 + 1 = 1 < ∞ = ω (f) =⇒ L(f) = (g, 1)

• Step 3. minimum weight: f ; highlight gf and f . F = {a, b, c, d, e}. current
vertex= f . 14 / 87



Dijkstra’s Algorithm – example
Example

a(f,2) b(f,3) c(−,∞)

d(f,2)

e(f,9)

f(g,1)

g(−,0)

6 5

5

68

1

21

1

9

• Step 2. F = {a, b, c, d, e}. Neighbors of f : a, b, d, e

ω (f) + ω (fa) = 1 + 1 = 2 < 9 = ω (a) =⇒ L(a) = (f, 2)

ω (f) + ω (fb) = 1 + 2 = 3 < ∞ = ω (b) =⇒ L(b) = (f, 3)

ω (f) + ω (fd) = 1 + 1 = 2 < ∞ = ω (d) =⇒ L(d) = (f, 2)

ω (f) + ω (fe) = 1 + 8 = 9 < ∞ = ω (e) =⇒ L(e) = (f, 9)

• Step 3. Highlight fa and a. current vertex= a.

15 / 87



Dijkstra’s Algorithm – example

Example
a(f,2) b(f,3) c(−,∞)

d(f,2)

e(f,9)

f(g,1)

g(−,0)

6 5

5

68

1

21

1

9

• Step 3. F = {a, b, c, d, e}. The minimum weight for all vertices in F is that of a
or d. Randomly choose one.

• Let us highlight fa and a.
• F = {b, c, d, e}.
• current vertex= a.

16 / 87



Dijkstra’s Algorithm – example
Example

a(f,2) b(f,3) c(−,∞)

d(f,2)

e(f,9)

f(g,1)

g(−,0)

6 5

5

68

1

21

1

9

• Step 2. F = {b, c, d, e}. Neighbor of a: b

ω (a) + ω (ba) = 1 + 6 = 8 > 2 = ω (b)

We do not update label for b
• Step 3. Highlight fd and d. F = {b, c, e}. current vertex= d.

17 / 87



Dijkstra’s Algorithm – example
Example

a(f,2) b(f,3) c(d,7)

d(f,2)

e(d,8)

f(g,1)

g(−,0)

6 5

5

68

1

21

1

9

• Step 2. F = {b, c, e}. Neighbors of d: c, e

ω (d) + ω (dc) = 2 + 5 = 7 < ∞ = ω (c) =⇒ L(c) = (d, 7)

ω (d) + ω (de) = 2 + 6 = 8 < 9 = ω (e) =⇒ L(e) = (d, 8)

• Step 3. Highlight fb and b. F = {c, e}. current vertex= b.
18 / 87



Dijkstra’s Algorithm – example
Example

a(f,2) b(f,3) c(d,7)

d(f,2)

e(d,8)

f(g,1)

g(−,0)

6 5

5

68

1

21

1

9

• Step 2. F = {c, e}. Neighbor of b: c ω (b) + ω (bc) = 3 + 5 = 8 > 7 = ω (c)

• Step 3. Highlight dc and c.
• Step 4. This terminates the iterations since we have reached End
• Step 5. The shortest path from g to c is gfdc, total weight 7

19 / 87



Dijkstra’s Algorithm for digraphs

• A digraph is a graph in which the edges now have a direction associated to them,
which could be used to model a one-way street.

• Arc yx, x is head, y is tail
• Instead of neighbors in Step 2, we consider the vertices that are heads for edges

with the current vertex as a tail, called out-neighbors

20 / 87



Dijkstra’s Algorithm for digraphs – example
Example
Start= g, End= c

a b c

d

e

f

g

2

9

5 6

1 5
2

4
8

5

2
9

1

We can record the changes with a table

g a b c d e f

21 / 87



Dijkstra’s Algorithm for digraphs – example

Example

• Step 1. current vertex= g,
F = {a, b, c, d, e, f}

g a b c d e f

0 ∞ ∞ ∞ ∞ ∞ ∞

a(−,∞) b(−,∞) c(−,∞)

d(−,∞)

e(−,∞)

f(−,∞)

g(−,0)

2

9

5 6

1 5
2

4
8

5

2
9

1

22 / 87



Dijkstra’s Algorithm for digraphs – example

Example

• Step 2. current vertex= g,
F = {a, b, c, d, e, f},
out-neighbors of g: f

ω (g) + ω (gf) = 0 + 1 < ∞

• Step 3. current vertex= f ,
F = {a, b, c, d, e}

a b c d e f

∞ ∞ ∞ ∞ ∞ ∞
g(0) ∞ ∞ ∞ ∞ ∞ (g, 1)

a(−,∞) b(−,∞) c(−,∞)

d(−,∞)

e(−,∞)

f(g,1)

g(−,0)

2

9

5 6

1 5
2

4
8

5

2
9

1

23 / 87



Dijkstra’s Algorithm for digraphs – example
Example
• Step 2. current vertex= f ,
F = {a, b, c, d, e},
out-neighbors of f : a, b, d

ω (f) + ω (fa) = 1 + 9 = 10 < ∞,
ω (f) + ω (fb) = 1 + 2 = 3 < ∞,
ω (f) + ω (fd) = 1 + 5 = 6 < ∞.

• Step 3. current vertex= b,
F = {a, c, d, e}

a b c d e f

∞ ∞ ∞ ∞ ∞ ∞
g(0) ∞ ∞ ∞ ∞ ∞ (g, 1)

f(1) (f, 10) (f, 3) ∞ (f, 6) ∞ (g, 1)

a(f,10) b(f,3) c(−,∞)

d(f,6)

e(−,∞)

f(g,1)

g(−,0)

2

9

5 6

1 5
2

4
8

5

2
9

1

24 / 87



Dijkstra’s Algorithm for digraphs – example
Example
• Step 2. current vertex= b,

F = {a, c, d, e},
out-neighbors of b: a, c, d

ω (b) + ω (ba) = 3 + 5 = 8 < 10,
ω (b) + ω (bc) = 3 + 6 = 9 < ∞,
ω (b) + ω (bd) = 3 + 1 = 4 < 6.

• Step 3. current vertex= d, F = {a, c, e}

a b c d e f

∞ ∞ ∞ ∞ ∞ ∞
g(0) ∞ ∞ ∞ ∞ ∞ (g, 1)

f(1) (f, 10) (f, 3) ∞ (f, 6) ∞ (g, 1)

b(3) (b, 8) (f, 3) (b, 9) (b, 4) ∞ (g, 1)

a(b,8) b(f,3) c(b,9)

d(b,4)

e(−,∞)

f(g,1)

g(−,0)

2

9

5 6

1 5
2

4
8

5

2
9

1

25 / 87



Dijkstra’s Algorithm for digraphs – example
Example
• Step 2. current vertex= d, F = {a, c, e},

out-neighbors of b: c, e

ω (d) + ω (dc) = 4 + 2 = 6 < 9,
ω (d) + ω (de) = 4 + 4 = 8 < ∞

• Step 3. current vertex= c

• Step 4. we have reached End
• Step 5. g → f → b → d → c, weight 6

a b c d e f

∞ ∞ ∞ ∞ ∞ ∞
g(0) ∞ ∞ ∞ ∞ ∞ (g, 1)

f(1) (f, 10) (f, 3) ∞ (f, 6) ∞ (g, 1)

b(3) (b, 8) (f, 3) (b, 9) (b, 4) ∞ (g, 1)

d(4) (b, 8) (f, 3) (d, 6) (b, 4) (d, 8) (g, 1)

a(b,8) b(f,3) c(d,6)

d(b,4)

e(d,8)

f(g,1)

g(−,0)

2

9

5 6

1 5
2

4
8

5

2
9

1

26 / 87



Remark

• It is possible for a path not to exist from one vertex to another based upon the
direction of the arcs

• e.g. if a is the head of all arcs, then no path originating at a could exist
• In such a case Dijkstra’s Algorithm would halt and note that a shortest path could

not be found

27 / 87



Paths and spanning trees

• Dijkstra’s Algorithm

• Project scheduling

• Critical path

• Trees

• Spanning trees

28 / 87



Definitions

Definition
Consider a project containing multiple parts of steps.

• Task: a required step of a project that cannot be broken into smaller pieces.
Labeled with lowercase letters

• Processor: the unit (such as a person) that completes a task. Labeled as P1, P2,
etc. At any time a processor will either be idle or busy performing a task

• At any stage of a project, a task can be in one of four states:
• eligible: the task can be performed
• ineligible: the task cannot be performed
• in execution: the task is currently being performed
• completed: the task has been completed

A task is eligible when all the tasks it relies upon are completed

29 / 87



Definitions

Definition
Consider a project containing multiple parts of steps.

• Processing time of a task: the time it takes to complete the task, denoted by
pt(v) for task v

• Precedence relationship: task b relies on the completion of task a before it can be
eligible, we call this a

• Finishing time of a schedule is the total time used in that schedule
• Optimal time of a project is the minimum finishing time among all possible

schedules, denoted OPT.

30 / 87



Tasks and schedules – example

Example
• Party planning

Task Vertex Name Processing Time Precedence Relationships
Buy Food f 40
Buy Drinks b 20
Dust d 20
Vacuum v 30 d
Cook Food c 60 f
Set Out Drinks s 30 b, c
Set Table t 20 v, c

31 / 87



Tasks and schedules – example
Example

Start

b(2)

f(4)

d(2)

s(3)

c(6)

v(3)

t(2)
End

• It is customary to include a vertex to represent the start and end of a project, as
well as lay out vertices to avoid edge crossings whenever possible

• The processing times are shown in parentheses next to the vertex labels
• Edges: precedence relationships

32 / 87



Priority List Model

• Once a digraph has been created, the next step is to determine which processor
(or person) should complete each task

• This may be easy in a project with only a few tasks, or if the interplay between
tasks is not complex

• As complexity grows, we will need a procedure for assigning tasks
• Priority List Model: tasks must be assigned to processors according to their order

in the priority list while precedence relationships, which are displayed in the
digraph, are used to determine eligibility of a given task.

33 / 87



Priority List Model – example

Example
• Continuing from the previous example
• Take priority list: b− d− t− v − s− f − c

• Consider two processors
• Each step represents a moment in time where a decision must be made

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 b b

P2 d d

• Step 1. T = 0 The first item in the priority list is b, since b does not rely on any
other task, assign it to P1. The next item d is also eligible. Assign d to P2.

34 / 87



Priority List Model – example
Example
Priority list: b− d− t− v − s− f − c

Start

b(2)

f(4)

d(2)

s(3)

c(6)

v(3)

t(2)
End

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 b b v v v

P2 d d f f f f

• Step 2. T = 20. The next point at which a processor is free to pick up a task is
at 20 minutes. Next task on the list is t, but ineligible. v is eligible, f is eligible

35 / 87



Priority List Model – example
Example
Priority list: b− d− t− v − s− f − c

Start

b(2)

f(4)

d(2)

s(3)

c(6)

v(3)

t(2)
End

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 b b v v v ∗
P2 d d f f f f

• Step 3. T = 60. At 60 minutes, Processor 1 is ready for a new task. All tasks
remaining require f to be complete. P1 will remain idle until f is complete

36 / 87



Priority List Model – example
Example
Priority list: b− d− t− v − s− f − c

Start

b(2)

f(4)

d(2)

s(3)

c(6)

v(3)

t(2)
End

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 b b v v v ∗ c c c c c c

P2 d d f f f f ∗ ∗ ∗ ∗ ∗ ∗

• Step 4. T = 70. At 70 minutes, both processors are ready to take up a new task.
Only eligible task is c. By convention, we assign the task to the lower indexed
processor. The other processor remains idle 37 / 87



Priority List Model – example
Example
Priority list: b− d− t− v − s− f − c

Start

b(2)

f(4)

d(2)

s(3)

c(6)

v(3)

t(2)
End

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P1 b b v v v ∗ c c c c c c t t ∗
P2 d d f f f f ∗ ∗ ∗ ∗ ∗ ∗ s s s

• Step 5. T = 130. Once c is complete, we can assign t to P1 and s to P2

The priority list b− d− t− v − s− f − c yields a finishing time of 150 minutes using
two processors. 38 / 87



Remarks

• The schedule we obtained contains a large amount of idle time, 8 hours in total
• Although some idle time may be unavoidable, its presence should indicate that

more investigation is warranted.
• The priority list given did not seem to have any connection with the digraph (in

fact, it was generated randomly)
• A better approach would be to use information from the digraph to obtain a good

priority list.

39 / 87



Paths and spanning trees

• Dijkstra’s Algorithm

• Project scheduling

• Critical path

• Trees

• Spanning trees

40 / 87



Critical path

• Critical path: the path with the highest total time out of all paths that begin at
vertex Start and finish at End

• This path is of interest because it easily identifies restrictions on the completion
time of a project

• In addition, it indicates which tasks should be prioritized.
• To find the critical path, we first need to find the critical times of all vertices in

the graph.

41 / 87



Critical time

Definition
The critical time ct[x] of a vertex x is defined as the sum of the processing time of x
and the maximum of the critical times for all vertices y for which xy is an arc

ct[x] = pt(x) + max { ct[y] | xy is an arc }

Note
In the definition, y is an out-neighbor of x

42 / 87



Critical Path Algorithm

Input: Project digraph G with processing times given
Steps:

1. Label the vertex End with pt(End) = 0 and ct[End] = 0. For any vertex x with an
arc to End, define ct[x] = pt(x).

2. Travel the arcs in reverse order. When a new vertex is encountered, calculate its
critical time.

3. Once all critical times have been obtained, find the path from Start to End where
if more than one arc exists out of a vertex, take the arc to the neighbor vertex of
largest critical time.

4. Create a priority list by ordering vertices by decreasing critical time
Output: Critical path and critical path priority list

43 / 87



Critical Path Algorithm – example
Example

• Continuing from the previous example
• We will use brackets for the critical times, distinguishing them from the processing

times

Start

b(2)

f(4)

d(2)

s(3)[3]

c(6)

v(3)

t(2)[2]
End(0)[0]

• Step 1. Label End with critical times 0. Since s and t have arcs to End, set

ct[s] = pt(s) = 3, ct[t] = pt(t) = 2
44 / 87



Critical Path Algorithm – example
Example

Start

b(2)

f(4)

d(2)

s(3)[3]

c(6)[9]

v(3[5])

t(2)[2]
End(0)[0]

• Step 2. As v has a single arc to t

ct[v] = pt(v) + ct[t] = 3 + 2 = 5

c has an arc to both s and t. ct[s] > ct[t]

ct[c] = pt(c) + ct[s] = 6 + 3 = 9
45 / 87



Critical Path Algorithm – example
Example

Start

b(2)[5]

f(4)[13]

d(2)[7]

s(3)[3]

c(6)[9]

v(3[5])

t(2)[2]
End(0)[0]

• Step 3. The remaining vertices each have a single arc to previously considered
vertices

ct[b] = pt(b) + ct[s] = 2 + 3 = 5
ct[f ] = pt(f) + ct[c] = 4 + 9 = 13
ct[d] = pt(d) + ct[v] = 2 + 5 = 7

46 / 87



Critical Path Algorithm – example

Example

Start

b(2)[5]

f(4)[13]

d(2)[7]

s(3)[3]

c(6)[9]

v(3[5])

t(2)[2]
End(0)[0]

• Step 4. Label the processing time of Start as 0. f is the out-neighbor with the
largest critical time

ct(Start) = 0 + 13 = 13

47 / 87



Critical Path Algorithm – example
Example

Start

b(2)[5]

f(4)[13]

d(2)[7]

s(3)[3]

c(6)[9]

v(3[5])

t(2)[2]
End(0)[0]

• Step 5. Follow the path from Start to End where the vertices are chosen based on
the largest critical times. This gives the path

Start → f → c → s → End

of total time 130 Ordering the vertices in decreasing order of critical times gives
the critical path priority list

f − c− d− b− v − s− t

48 / 87



Priority List Model for project scheduling – example
Example
Now we use the critical path priority list f − c− d− b− v − s− t to find a new
schedule for the tasks

Start

b(2)

f(4)

d(2)

s(3)

c(6)

v(3)

t(2)
End

10 20 30 40 50 60 70 80 90 100 110 120 130

P1 f f f f

P2 d d

• Step 1. T = 0. Since f is the first item in the list, assigne it to P1. c is not
eligible. Assign d to P2

49 / 87



Priority List Model for project scheduling – example
Example
f − c− d− b− v − s− t

Start

b(2)

f(4)

d(2)

s(3)

c(6)

v(3)

t(2)
End

10 20 30 40 50 60 70 80 90 100 110 120 130

P1 f f f f

P2 d d b b

• Step 2. T = 20. P2 can be assigned a new task. Assign b, the next eligible task
to P2

50 / 87



Priority List Model for project scheduling – example

Example
f − c− d− b− v − s− t

Start

b(2)

f(4)

d(2)

s(3)

c(6)

v(3)

t(2)
End

10 20 30 40 50 60 70 80 90 100 110 120 130

P1 f f f f c c c c c c

P2 d d b b v v v

• Step 3. T = 40. c is eligible. The next eligible task is v

51 / 87



Priority List Model for project scheduling – example
Example
f − c− d− b− v − s− t

Start

b(2)

f(4)

d(2)

s(3)

c(6)

v(3)

t(2)
End

10 20 30 40 50 60 70 80 90 100 110 120 130

P1 f f f f c c c c c c

P2 d d b b v v v ∗ ∗ ∗

• Step 4. T = 70. All remaining taks are ineligible since they reply on the
completion of c. P2 remians idle.

52 / 87



Priority List Model for project scheduling – example
Example
f − c− d− b− v − s− t

Start

b(2)

f(4)

d(2)

s(3)

c(6)

v(3)

t(2)
End

10 20 30 40 50 60 70 80 90 100 110 120 130

P1 f f f f c c c c c c s s s

P2 d d b b v v v ∗ ∗ ∗ t t ∗

• Step 5. T = 100. s and t are now eligible
• Finishing time: 130 minutes, 4 hours of idle time

53 / 87



Remarks

• Both schedules contained some idle time, though the one utilizing the critical path
priority list had half that of the initial example – This is in part because items on
the critical path were prioritized over less important tasks

• The schedule above must be optimal since its finishing time is equal to the critical
time of Start

• In general, the critical path priority list results in a very good, though not always
optimal, schedule

54 / 87



Optimal schedule

• The optimal time of a schedule is no less than the critical time of Start

OPT ≥ ct[Start]

• Calculate the sum of all processing times of all tasks. The optimal time is no less
than this sum divided by the total number of processors used

OPT ≥
∑

v pt(v)
number of processors

55 / 87



Optimal schedule – example

Example
With our running example, sum of all processing times is 220 minutes

• Using two processors OPT ≥ 220
2 = 110

• Using three processors OPT ≥ 220
3 ≈ 73

• ct(Start) = 130. Neither of the above two calculations provides additional insight
into the optimal schedule.

Remark
The calculations also show that 2 processors are sufficient, no need more processors.

56 / 87



Paths and spanning trees

• Dijkstra’s Algorithm

• Project scheduling

• Critical path

• Trees

• Spanning trees

57 / 87



Definition

Definition
A graph G is

• acyclic if there are no cycles or circuits in the graph
• a network if it is connected
• a tree if it is an acyclic network, i.e. acyclic and connected
• a forest if it is an acyclic graph

A vertex of degree 1 is called a leaf.

58 / 87



Trees – example

Example
Game

• Adam flips a coin, Jano rolls a die
• Adam gets heads, Jano rolls an even number → Jano wins 2 Euros
• Adam gets heads, Jano rolls an odd number → Adam wins 3 Euros
• Adam gets tails, Jano rolls 1 or 4 → Jano wins 5 Euros
• Adam gets heads, Jano rolls 2, 3, 5, or 6 → Adam wins 2 Euros

A probability tree – vertices representing possible outcomes, edges labeled with the
probability of the outcome

59 / 87



Trees – example
Example

• Adam gets heads, Jano rolls an even number → Jano wins 2 Euros
• Adam gets heads, Jano rolls an odd number → Adam wins 3 Euros
• Adam gets tails, Jano rolls 1 or 4 → Jano wins 5 Euros
• Adam gets heads, Jano rolls 2, 3, 5, or 6 → Adam wins 2 Euros

Start

H

T

evens

odds

{1, 4}

{2, 3, 5, 6}

1
2

1
2

1
2

1
2

1
3

2
3

1
2
· 1
2
= 1

4

1
2
· 1
2
= 1

4

1
2
· 1
3
= 1

6

1
2
· 2
3
= 1

3

60 / 87



Trees – example
Example

• The probability Jano wins 5 Euros (tails and 1 or 4) is §
6

• The probability that Jano wins any money is 1
6 + 1

4 = 5
12

Start

H

T

evens

odds

{1, 4}

{2, 3, 5, 6}

1
2

1
2

1
2

1
2

1
3

2
3

1
2
· 1
2
= 1

4

1
2
· 1
2
= 1

4

1
2
· 1
3
= 1

6

1
2
· 2
3
= 1

3

61 / 87



Trees – example

Example
• Trees can be used to store information for quick access
• Consider the following sequence of numbers

4, 2, 7, 10, 1, 3, 5

• We can form a tree by creating a vertex for each number in the list
• As we move from one entry in the list to the next, we place an item below and to

the left if it is less than the previously viewed vertex and below and to the right if
it is greater

• If we add the restriction that no vertex can have more than two edges coming
down from it, then we are forming a binary tree.

62 / 87



Trees – example
Example

• As we move from one entry in the list to the next, we place an item below and to
the left if it is less than the previously viewed vertex and below and to the right if
it is greater

• Restriction: no vertex can have more than two edges coming down from it
4, 2, 7, 10, 1, 3, 5

4

2 7

1 3 5 10

63 / 87



Trees – example
Example

• If we want to search for an item, then we only need to make comparisons with at
most half of the items in the list

• Find item 5, first compare it to the vertex at the top of the tree → move along
the edge to the right of 4 → compare to 7 → move along the edge to the left of 7

• Only two comparisons

4

2 7

1 3 5 10

64 / 87



Properties of trees

1. For every n ≥ 1, any tree with n vertices has n− 1 edges
2. For any tree with n ≥ 1 vertices, the sum of the degrees is 2n− 2

3. Every tree with at least two vertices contains at least two leaves
4. Any network on n vertices with n− 1 edges must be a tree
5. For any two vertices in a tree, there is a unique path between them
6. The removal of any edge of a tree will disconnect the graph

Note
• 1 ⇒ 2

• By counting the degrees of vertices, 2 ⇒ 3

65 / 87



Paths and spanning trees

• Dijkstra’s Algorithm

• Project scheduling

• Critical path

• Trees

• Spanning trees

66 / 87



Spanning Tree

Definition
• A subgraph H of a graph G is a graph s.t. V (H) ⊆ V (G), E(H) ⊆ E(G)

• H is a spanning subgraph if V (H) = V (G)

• Spanning tree: is a spanning subgraph that is also a tree

Note
• If an edge appears in a subgraph, then both endpoints must also be included in

the subgraph
• If a vertex appears in a subgraph, any number of its incident edges may be

included

67 / 87



Kruskal’s Algorithm

• First published in 1956 by Joseph Kruskal, an American mathematician
• Input: weighted connected graph G = (V,E, ω)

• Steps
1. Choose the edge of least weight from not highlighted edges. Highlight it and add it

to T = (V,E′, ω′)
2. Repeat step 1 as long as no circuit is created.

• Output: minimum spanning tree (MST) T of G

Note
• If there are more than two edges with the least weight, randomly choose one
• At each step of the algorithm we are building a forest subgraph that will

eventually result in a spanning tree

68 / 87



Kruskal’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Step 1. edge with the least weight: gd

69 / 87



Kruskal’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Step 1. two choices: ef and bc, let’s choose bc

70 / 87



Kruskal’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Step 1. the other edge with weight 2 is still a valid choice. Highlight ef
71 / 87



Kruskal’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Step 1. the next smallest edge weight is 3. We randomly pick bf

72 / 87



Kruskal’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Step 1. both of the other edges of weight 3 are still available. We choose bd

73 / 87



Kruskal’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Step 1. cannot choose fg. The next smallest edge weight is 5. But we cannot
choose bg. Next available edge is af of weight 6 74 / 87



Kruskal’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Step 2. Now we have a tree containing all vertices, we can stop. With 7 vertices
and 6 edges, we know we have a tree. MST weight 17 75 / 87



Kruskal’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• When we were choosing edge with weight 3, we chose ef

• Two other spanning trees exist 76 / 87



Kruskal’s Algorithm – remarks

• When we skipped over an edge, e.g. bg of weight 5, we did so because including it
would create a cycle

• This means a path between the endpoints of that edge, e.g. b and g, must already
exist and the other edges along that path must each be of weight no greater than
the edge we skip over

• In a way, if you think of finding a spanning tree as breaking cycles, then the
largest edge on that cycle should never be chosen

77 / 87



Prim’s Algorithm

• Named after Robert C. Prim, American mathematician and computer scientist,
published in 1957

• Originally discovered by Vojtĕch Jarnik, Czech mathematician, in 1930
• Root: a clear starting point for the tree

78 / 87



Prim’s Algorithm

• Input: Weighted connected graph G = (V,E)

• Steps
1. Let v be the root. If no root is specified, choose a vertex at random. Highlight it

and add it to T = (V ′, E′)
2. Among all edges incident to v, choose the one of minimum weight. Highlight it.

Add the edge and its other endpoint to T .
3. Let S be the set of all edges with exactly one endpoint from V (T ). Choose the edge

of minimum weight from S. Add it and its other endpoint to T
4. Repeat step 3 until T contains all vertices of G

• Output: rooted MST T of G

79 / 87



Prim’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Same example as before
• Step 1. Choose a as the starting vertex 80 / 87



Prim’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Step 2. among the edges incident to a, af , ab, ac, the edge of the least weight is
af 81 / 87



Prim’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Step 3. S consists edges with one endpoint a or f . The edge with the minimum
weight is ef 82 / 87



Prim’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Step 3. S consists edges with one endpoint a, e or f . The edges with the
minimum weight fb or fg. Let us choose fg 83 / 87



Prim’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Step 3. The next edge to add to the tree is dg

84 / 87



Prim’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Step 3. There are two possible minimum weight edges, bf or bd. We choose bf

85 / 87



Prim’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• Step 3. Now the only edges to consider are those with one endpoint of c since this
is the only vertex not part of our tree. The edge of minimum weight is bc 86 / 87



Prim’s Algorithm – example
Example

a
b

c

d

e

f
g

10 2

7

72

6 3 5 3

3 1

7

• We have obtained a MST of weight 17
87 / 87


	Dijkstra's Algorithm
	Project scheduling
	Critical path
	Trees
	Spanning trees

