
Algebra and Discrete Mathematics
ADM

Bc. Xiaolu Hou, PhD.

FIIT, STU
xiaolu.hou @ stuba.sk

1 / 78

Course Outline

• Vectors and matrices
• System of linear equations
• Matrix inverse and determinants
• Vector spaces and matrix transformations
• Fundamental spaces and decompositions
• Eulerian tours
• Hamiltonian cycles
• Midterm
• Paths and spanning trees
• Trees and networks
• Matching

2 / 78

Recommended reading

• Saoub, K. R. (2017). A tour through graph theory. Chapman and Hall/CRC.
• Sections 2.1, 2.2, 2.3
• Free copy online

3 / 78

https://api.pageplace.de/preview/DT0400.9781138197817_A36383051/preview-9781138197817_A36383051.pdf

Lecture outline

• Existence of Hamiltonian cycles

• Traveling salesman problem

• Digraphs and Asymmetric Traveling Salesman Problem

4 / 78

Hamiltonian cycles

• Existence of Hamiltonian cycles

• Traveling salesman problem

• Digraphs and Asymmetric Traveling Salesman Problem

5 / 78

Hamiltonian cycle and Hamiltonian path

Definition
A cycle in a graph G that contains every vertex of G is called a Hamiltoniain cycle. A
path that contains every vertex is called a Hamiltonian path.

• Recall that a cycle or a path can only pass through a vertex once, so the
Hamiltonian cycles and paths travel through every vertex exactly once.

• Named after mathematician: Sir William Hamilton

6 / 78

Hamiltonian cycle and Eulerian circuit – example

Example

a

b

c

d

a

b

c

d

1

2

3
4

5

The graph is connected and all vertices are even – it contains an Eulerian circuit

7 / 78

Hamiltonian cycle and Eulerian circuit – example
Example

a

b

c

d

a

b

c

d

There is no Hamiltonian cycle since we need to include c in the cycle and by doing so
we would pass b twice

8 / 78

Hamiltonian cycle and Eulerian circuit – example
Example

a

b c

d

e f

g h

a

b c

d

e f

g h

1
2

3

4

5

6

7

8

9

10

11

12

13

14

The graph is connected and all vertices are even – it contains an Eulerian circuit
9 / 78

Hamiltonian cycle and Eulerian circuit – example
Example

a

b c

d

e f

g h

a

b c

d

e f

g h

Hamiltonian cycles and Hamiltonian paths also exist. To find one such path, remove
any one of the highlighted edges from the Hamiltonian cycle

10 / 78

Hamiltonian cycle and Hamiltonain path

• If a graph has an Eulerian circuit, then it cannot have an Eulerian path, and vice
versa

• This is not true for the Hamiltonian version
• If a graph has a Hamiltonian cycle, it automatically has a Hamiltonian path (just

leave off the last edge of the cycle to obtain a path).
• If a graph has a Hamiltonian path, it may or may not have a Hamiltonian cycle.

11 / 78

Necessary conditions for Hamiltonian cycle

• G must be connected
• No vertex of G can have degree less than 2

• G cannot contain a cut-vertex
Cut-vertex: a vertex whose removal disconnects the graph

Note
These are not sufficient conditions

12 / 78

A sufficient condition for Hamiltonian cycle

Theorem (Dirac’s Theorem)
Let G be a graph with n ≥ 3 vertices. If every vertex v of G satisfies deg(v) ≥ n

2
,

then G has a Hamiltonian cycle.

Remark
• The proof of this theorem boils down to the fact that each vertex has so many

edges incident to it that in trying to find a cycle we will never get stuck at a
vertex.

• There are a few sufficient conditions for a graph to have Hamiltonian cycle, but
but no known necessary and sufficient condition that works for all graphs.

13 / 78

Existence of Hamiltonian cycle – example
Example

a

b

c

de

f

g

a

b

c

de

f

g

n = 7 n = 7
deg = 4 ≥ 7

2 deg = 2 < 7
2

for all vertices for all vertices
14 / 78

Complete graph

Definition
A simple graph G is complete if every pair of distinct vertices is adjacent. The
complete graph on n vertices is denoted Kn.

• If we think of an edge as describing a relationship between two objects, then a
complete graph represents a scenario where every pair of vertices satisfies this
relationship.

15 / 78

The first six complete graphs
Example

K1 K2 K3

K4 K5 K6

16 / 78

Properties of Kn

• Each vertex in Kn has degree n− 1

• Kn has n(n−1)
2 edges

• Kn contains the most edges out of all simple graphs on n vertices

Note
• Any complete graph (on at least 3 vertices) satisfies the conditions of Dirac’s

Theorem, and therefore contains a Hamiltonian cycle

17 / 78

Number of Hamiltonian cycles in a complete graph
• When modeling a problem whose solution is a Hamiltonian cycle (or path) in the

appropriate graph, there is often a desired “home” location or starting vertex –
reference point

Definition
Given a specified reference point, the complete graph Kn has (n− 1)! distinct
Hamiltonian cycles. Half of these cycles are reversals of the others.

• When starting at the designated vertex there are n− 1 possible edges to choose
from

• Once that edge has been traveled to arrive at a new vertex, we cannot pick the
edge just traveled and so there remain n− 2 edges to choose from

• At the next vertex, we cannot travel back to either of the previously chosen
vertices, and so there remains n− 3 edges available

• Continuing in this manner, we have a total of
(n− 1)(n− 2)(n− 3) · · · (2)(1) = (n− 1)!

18 / 78

Hamiltonian cycles

• Existence of Hamiltonian cycles

• Traveling salesman problem

• Digraphs and Asymmetric Traveling Salesman Problem

19 / 78

The question

• How should a delivery service plan its route through a city to ensure each
customer is reached?

• A traveling salesman has customers in numerous cities. He must visit each of
them and return home, but wishes to do this with the least total cost

• Shortest Hamiltonian cycle visiting all cities in one country
• Model: weighted complete graph
• Weights: different distances
• Complete: it is reasonable to assume it’s possible to travel between any two cities

20 / 78

Brute Force Algorithm

• To find the Hamiltonian cycle of least total weight, one obvious method is to find
all possible Hamiltonian cycles and pick the cycle with the smallest total.

• The method of trying every possibility to find an optimal solution is referred to as
an exhaustive search, or use of the Brute Force Algorithm.

• Input: weighted complete graph Kn

• Output: Minimum Hamiltonian cycle

21 / 78

Brute Force Algorithm

1. Choose a starting vertex, call it v
2. Find all Hamiltonian cycles starting at v. Calculate the total weight of each cycle.
3. Compare all (n− 1)! cycles. Pick one with the least total weight.

Note
In step 3, there should be at least two options

22 / 78

Brute Force Algorithm – example
Example
Liz is planning her next business trip from her hometown of Addison and has
determined the cost for travel between any of the five cities she must visit.

Addison

Bristol

ChelseaDover

Essex

325

3
0
01

2
5

3
1
537

5

225

600

360

3
0
5

10
0

23 / 78

Brute Force Algorithm – example

Example
• Number of possible Hamiltonian cycles: 4× 3× 2× 1 = 24

• One method for finding all Hamiltonian cycles, and ensuring you indeed have all
24, is to use alphabetical or lexicographic ordering of the cycles.

• Note that all cycles must start and end at Addison, and we will abbreviate all
cities with their first letter

• For example, the first cycle is abcdea

24 / 78

Brute Force Algorithm – example

Example
Addison

Bristol

ChelseaDover

Essex

Addison

Bristol

ChelseaDover

Essex

Addison

Bristol

ChelseaDover

Essex

abcdea abceda abdcea
aedcba adecba aecdba
1645 1430 1760

25 / 78

Brute Force Algorithm – example

Example
Addison

Bristol

ChelseaDover

Essex

Addison

Bristol

ChelseaDover

Essex

Addison

Bristol

ChelseaDover

Essex

abdeca abecda abedca
acedba adceba acdeba
1665 1635 1755

26 / 78

Brute Force Algorithm – example

Example
Addison

Bristol

ChelseaDover

Essex

Addison

Bristol

ChelseaDover

Essex

Addison

Bristol

ChelseaDover

Essex

acbdea acbeda acdbea
aedbca adebca aebdca
1395 1270 1600

27 / 78

Brute Force Algorithm – example

Example
Addison

Bristol

ChelseaDover

Essex

Addison

Bristol

ChelseaDover

Essex

Addison

Bristol

ChelseaDover

Essex

acebda adbcea adcbea
adbeca aecbda aebcda
1385 1275 1365

28 / 78

Estimated effort

• Effort for using Brute Force
Algorithm to find the optimal
Hamiltonian cycle in Kn

• Best: best supercomputer
• Top 500: top 500 supercomputers
• Earth is about 4.54×109 years old

Supercomputers
n Best Top 500
5 2× 10−15 seconds 2× 10−16 seconds
15 2× 10−5 seconds 2× 10−6 seconds
20 40 seconds 4 seconds
21 14 minutes 2 minutes
22 5 hours 32 minutes
23 4.5 days 12 hours
24 16 weeks 12 days
25 7.5 years 10 months
26 2 centuries 2 decades
30 132 million years 14 million years
40 4.1× 1023 years 4.3× 1022 years
50 1.4× 1040 years 1.5× 1039 years

29 / 78

Other algorithms

• We will discuss a few more efficient algorithms
• Mathematicians have been searching for algorithms that will find the optimal

cycle in a relatively short time span; that is, an algorithm that is both efficient
and optimal

• Not only has no such algorithm been found for the Traveling Salesman Problem,
but some mathematicians believe no such algorithm even exists.

30 / 78

Nearest Neighbor Algorithm

1. Choose a starting vertex, say v. Highlight v
2. Among all edges incident to v, pick the one with the smallest weight. If more

than one possible choices have the same weight, randomly pick one.
3. Highlight the edge and move to its other endpoint u. Highlight u
4. Repeat steps 2 and 3, where only edges to unhighlighted vertices are considered
5. Close the cycle by adding the edge to v from the last vertex highlighted. Calculate

the total weight.

31 / 78

Nearest Neighbor Algorithm – example
Example

a

b

cd

e

325

3
0
0

1
2
5

10
0

a

b

cd

e

• Step 1: Starting vertex is a

• Step 2: Edge of smallest weight: ae

• Step 3: Move to vertex e. Highlight e 32 / 78

Nearest Neighbor Algorithm – example
Example

a

b

cd

e
225

3603
0
5

a

b

cd

e

• Step 2: Edge of smallest weight: eb, note here we do not consider edge ea

• Step 3: Move to vertex b. Highlight b
33 / 78

Nearest Neighbor Algorithm – example
Example

a

b

cd

e

3
1
537

5

a

b

cd

e

• Step 2: Edge of smallest weight: bc

• Step 3: Move to vertex c. Highlight c
34 / 78

Nearest Neighbor Algorithm – example
Example

a

b

cd

e

600

a

b

cd

e

• Step 2: Only choice of edge: cd

• Step 3: Move to vertex d. Highlight d

35 / 78

Nearest Neighbor Algorithm – example
Example

a

b

cd

e

• Step 5: close the cycle. Total weight is 1365 36 / 78

Remarks

• The last two edges are completely determined since we cannot travel back to
vertices that have already been chosen

• This could force us to use the heaviest edges in the graph, as happened above
• The arbitrary choice of a starting vertex could cause light edges to be eliminated

from consideration
Though we cannot do anything about the former concern, we can address the latter –
by using a different starting vertex, the Nearest Neighbor Algorithm may identify a new
Hamiltonian cycle, which may be better or worse than the initial cycle.

37 / 78

Repetitive Nearest Neighbor Algorithm

1. Choose a starting vertex, say v

2. Apply the Nearest Neighbor Algorithm
3. Repeat steps 1 and 2 so each vertex of Kn serves as the starting vertex
4. Choose the cycle of least total weight. Rewrite it with the desired reference point.

38 / 78

Repetitive Nearest Neighbor Algorithm – example
Example
With the same example as before, we can obtain the following cycles with the
Repetitive Nearest Neighbor Algorithm

a

b

cd

e

a

b

cd

e

a

b

cd

e

aebcda beadcb caebdc
aebcda adcbea aebdca
1365 1365 1600

39 / 78

Repetitive Nearest Neighbor Algorithm – example
Example
With the same example as before, we can obtain the following cycles with the
Repetitive Nearest Neighbor Algorithm

a

b

cd

e

a

b

cd

e

daebcd eadbce
aebcda adbcea
1365 1275

40 / 78

Remarks

• It should come as no surprise that Repetitive Nearest Neighbor performs better
than Nearest Neighbor; however, there is no guarantee that this improvement will
produce the optimal cycle.

• Even though Repetitive Nearest Neighbor addressed the concern of missing small
weight edges, it is still possible that some of these will be bypassed as we travel a
cycle

• Cheapest Link Algorithm: choosing edges in order of weight as opposed to edges
along a tour

41 / 78

Cheapest Link Algorithm

1. Among all edges in the graph, pick the one with the smallest weight. If more than
one possible choices have the same weight, randomly choose one. Highlight the
chosen weight

2. Repeat step 1 with the added conditions
• no vertex has three highlighted edges incident to it
• no edge is chosen so that a cycle closes before hitting all the vertices

3. Calculate the total weight

42 / 78

Cheapest Link Algorithm – example
Example

a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

• Step 1. The smallest weight is 100 for edge ae

• Step 2. The next smallest weight is 125 with edge ad
43 / 78

Cheapest Link Algorithm – example
Example

a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

• Step 2. The next smallest weight is 225 for be
• Step 2. ac has the next smallest weight, but highlighting ac will cause a to have

three incident edges 44 / 78

Cheapest Link Algorithm – example
Example

a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

• Step 2. ed has the next smallest weight, but highlighting ed will close a cycle too
early

• Step 2. next available is bc 45 / 78

Cheapest Link Algorithm – example
Example

a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

• Step 2. at this point we must close the cycle and there is only one choice cd

• Output: resulting cycle is aebcda with total weight 1365
46 / 78

Remarks

• In the example above, Cheapest Link ran into the same trouble as the initial cycle
created using Nearest Neighbor

• Although the lightest edges were chosen, the heaviest also had to be included due
to the outcome of the previous steps

• The downfall of the last two algorithms is the focus on choosing the smallest
weighted edges at every opportunity.

• In some instances, it may be beneficial to work for a balance —choose more
moderate weight edges to avoid later using the heaviest.

• Nearest Insertion Algorithm: forms a small circuit initially from the smallest
weighted edge and balances newly added edges with the removal of a previously
chosen edge.

47 / 78

Nearest Insertion Algorithm

1. Among all edges in the graph, pick one with the smallest weight. Highlight the
edge and its endpoints.

2. Pick a vertex that is closest to one of the two already chosen vertices. Highlight
the new vertex and its edges to both of the previously chosen vertices.

3. Identify the unvisited vertex that is closest to any vertex already in the current
cycle. Insert this vertex into the existing cycle by connecting it to the nearest
chosen vertex. Then, add a second edge to complete the insertion and remove one
existing edge to maintain a cycle. Choose the scenario with the smallest total
weight.

4. Repeat step 3 until all vertices have been included in the cycle
5. Calculate the total weight

48 / 78

Nearest Insertion Algorithm – example

Example
a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

a

b

cd

e

• Step 1. the smallest weight edge is ae

49 / 78

Nearest Insertion Algorithm – example
Example

a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

a

b

cd

e

• Step 2: closest vertex to either a or e is d through edge ad. Form a cycle by
adding ad and de

• Step 3: closes vertex to any of a, d or e is b through the edge be 50 / 78

Nearest Insertion Algorithm – example
Example

a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

a

b

cd

e

Step 3: After adding edge be, we need to decide whether to add ba and delete ea or
add bd and delete ed

ω (ba)− ω (ea) = 325− 100 = 225

ω (bd)− ω (ed) = 375− 305 = 70
51 / 78

Nearest Insertion Algorithm – example

Example
a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

a

b

cd

e

• Step 3: We add edge bd and remove edge ed to get a bigger cycle than before
• Step 3: Only vertex left is c, c is closest to a

52 / 78

Nearest Insertion Algorithm – example
Example

a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

a

b

cd

e

Step 3: After adding edge ca, we need to decide whether to add cd and delete ad or
add ce and delete ae

ω (cd)− ω (ad) = 600− 125 = 475

ω (ce)− ω (ae) = 360− 100 = 260
53 / 78

Nearest Insertion Algorithm – example

Example
a

b

cd

e

325

3
0
0

1
2
5

3
1
5

37
5

225

600

360

3
0
5

10
0

a

b

cd

e

• Step 3: We add edge ce and remove edge ae to get a bigger cycle than before
• Step 5: The cycle is acebda with total weight 1385.

54 / 78

Hamiltonian cycles

• Existence of Hamiltonian cycles

• Traveling salesman problem

• Digraphs and Asymmetric Traveling Salesman Problem

55 / 78

Directed graph
Definition
A directed graph, or digraph, is a graph G = (V,A that consists of a vertex set V and
an arc set A. An arc is an ordered pair of vertices.

Example
Let G be a digraph with V = {a, b, c, d} and A = {ab, ba, cc, dc, db, da}.

a

b

c

d

56 / 78

Terminologies

Definition
Let G = (V,A) be a digraph

• Arc yx, x is head, y is tail
• in-degree of vertex x: the number of arcs for which x is a head, denoted deg−(x)
• out-degree of vertex x: the number of arcs for which x is the tail, denoted

deg+(x)
• The underlying graph for a digraph is the graph G′ = (V,E) which is formed by

removing the direction from each arc to form an edge
• A directed path is a path in which the head of an arc is the tail of the next arc in

the path
• A directed cycle is a cycle in which the head of an arc is the tail of the next arc in

the cycle

57 / 78

Terminologies – example

Example
• a is the tail of arc ab and the head of

arcs da and ba

• deg−1(a) = 2, deg−1(b) = 2,
deg−1(c) = 2, deg− (d) = 0

• deg+ (a) = 1, deg+ (b) = 1,
deg+ (c) = 1, deg+ (d) = 3

• d → a → b is a directed path
• c → d → a → b is not a directed path

since cd is not an arc in the graph
• a → b → a is a directed cycle
• d → a → b → d is not a directed cycle

a

b

c

d

58 / 78

Degrees of vertices

Theorem
Let G = (V,A) be a digraph and |A| denote the number of arcs in G. Then both the
sum of the in-degrees of the vertices and the sum of the out-degrees equals the
number of arcs. In other words, if V = {v1, v2, . . . , vn}, then

deg−(v1) + · · · deg−(vn) = |A| = deg+(v1) + · · · deg+(vn)

• Since each arc will contribute to the in-degree to its head and to the out-degree of
its tail, the sum of the in-degrees equals the sum of the out-degrees.

• Each arc is counted exactly once in the sum of the in-degrees (or out-degrees)
since it has a unique head (or tail).

59 / 78

Hamiltonian cycles

A few properties should be immediately apparent for a digraph to have a Hamiltonian
cycle

• G must be connected
• No vertex of G can have in-degree or out-degree 0

• G cannot contain a cut-vertex

60 / 78

A sufficient condition for Hamiltonian cycles

Theorem
Let G be a digraph. If

deg− (v) ≥ n

2
, deg+ (v) ≥ n

2

for every vertex v of G, then G has a Hamiltonian cycle.

61 / 78

Asymmetric Traveling Salesman Problem

• The Asymmetric Traveling Salesman Problem is to find the optimal Hamiltonian
directed cycle on a digraph.

• The weight of the arc ab need not equal the weight of arc ba

• Complete digraph: for each pair of vertices x and y both arcs xy and yx exist in
the graph

• We will only consider complete digraphs in which each arc has a positive weight
• To utilize the algorithms discussed before, we convert a digraph into an undirected

graph

62 / 78

Undirecting Algorithm
Input: Weighted complete digraph G = (V,A, ω)
Steps:

1. For each vertex x, make a clone x′. Form the edge xx′ with weight 0
2. For each arc xy form the edge x′y
3. The weight of an edge is equal to the weight of its corresponding arc

• ω (xx′) = 0
• ω (x′y) = ω (xy)
• ω (xy′) = ω (yx)

Output: weighted clone graph G′ = (V ′, E, ω′)

Note
• We need to ensure that when forming a cycle an arc into a vertex is immediately

followed by an arc out of that same vertex
• By giving the edge between a vertex and its clone a weight of 0 (when all other

arcs have positive weights), we ensure this edge will always be included in any
Hamiltonian cycle.

• In addition, this extra edge does not impact the total weight of the final cycle 63 / 78

Undirecting Algorithm – example
Example
Liz is heading out on the road to visit her customers, the direction of a route impacts
its cost

Addison

Bristol

ChelseaDover

Essex

325

4
0
0

1
5
0

25
0 375

3
1
5

37
5

225

3
0
0

3
5
0

600

360

1
2
5

37
5

650

3
0
5

10
0

350

4004
0
0

64 / 78

Undirecting Algorithm – example

Example
Table representation. e.g. Addison to Bristol - 325

Addison Bristol Chelsea Dover Essex

Addison . 325 400 150 250
Bristol 375 . 315 375 225
Chelsea 300 350 . 600 360
Dover 125 375 650 . 305
Essex 100 350 400 400 .

65 / 78

Undirecting Algorithm – example
Example
Note: original edges do not exist. The table is symmetric, with a copy of the original
table in the lower left quadrant and its mirror image in the upper right quadrant.

a b c d e a’ b’ c’ d’ e’

a . 325 400 150 250 0 375 300 125 100
b 375 . 315 375 225 325 0 350 375 350
c 300 350 . 600 360 400 315 0 650 400
d 125 375 650 0 305 150 375 600 0 400
e 100 350 400 400 0 250 225 360 305 0
a’ 0 325 400 150 250
b’ 375 0 315 375 225
c’ 300 350 0 600 360
d’ 125 375 650 0 305
e’ 100 350 400 400 0

66 / 78

Undirecting Algorithm – example
Example

a

b

cd

e

a′

b′

c′

d′

e′

325

375
4
0
0

3
0
015

0

12
5

250

100

31
535

0375375

225

350

600

650

360

400

3
0
5

4
0
0

0

0

0

0

0

67 / 78

Remarks

• Even though the input of the algorithm is a complete digraph, the output is not a
complete graph

• The Undirecting Algorithm can be applied to a digraph that is not complete;
however, the resulting graph may not have a Hamiltonian cycle.

• When applied to a complete digraph G with n vertices, the resulting graph G′ has
2n vertices, each of degree n, is guaranteed to have a Hamiltonian cycle.

• The cycle from G′ can then be translated to a Hamiltonian directed cycle of the
digraph G where vertex copies get reduced back to a single vertex

68 / 78

Asymmetric Traveling Salesman Problem – example

Example
Continue from the previous example, the table below lists the four cycles found using
Nearest Neighbor and their conversion to a directed cycle in the digraph.

Nearest Neighbor Cycle Conversion Total Weight

a a′ d d′ e e′ b b′ c c′ a a → d → e → b → c → a 1420

a′ a e′ e b′ b c′ c d′ d a′ a → d → c → b → e → a 1475

e e′ a a′ d d′ b b′ c c′ e e → a → d → b → c → e 1300

e′ e b′ b c′ c a′ a d′ d e′ e → d → a → c → b → e 1500

Note that cycles beginning with a clone vertex must be reversed in the translation back
into a direct cycle.

69 / 78

Asymmetric Traveling Salesman Problem – example
Example

a

b

cd

e

a′

b′

c′

d′

e′

325

375
4
0
0

3
0
015
0

12
5

250

100

31
535

0375375

225

350

600

650

360

400

3
0
5

4
0
0

0

0

0

0

0

Addison

Bristol

ChelseaDover

Essex

325

4
0
0

1
5
0

25
0 375

3
1
5

37
5

225

3
0
0

3
5
0

600

360

1
2
5

37
5

650

3
0
5

10
0

350

4004
0
0

70 / 78

Remarks

• Unlike in the undirected case, reversals of a Hamiltonian cycle in a digraph (that
is not a complete digraph) might not exist, and those that do will most likely
result in a different total weight.

• Thus when applying the Nearest Neighbor Algorithm to graphs formed using the
Undirecting Algorithms, we must consider starting at both copies of a vertex, such
as a and a′, e and e′ as in the example

71 / 78

Cheapest Link Algorithm

• All edges of weight 0 must be included in the final cycle since picking the edges of
minimum weight would initially result in choosing all the weight 0 edges as no two
of these are adjacent (so there is no concern of a vertex having degree 3 or closing
the circuit too early)

72 / 78

Cheapest Link Algorithm – example
Example
Continuing from the previous example.

• Step 1. Since all edges between a
vertex and its clone have a weight of
0, all of these edges will be chosen

a

b

cd

e

a′

b′

c′

d′

e′

0

0

0

0

0

73 / 78

Cheapest Link Algorithm – example
Example

• Step 2. The edge of smallest weight is
ae′

a

b

cd

e

a′

b′

c′

d′

e′

0

0

0

0

0

100

74 / 78

Cheapest Link Algorithm – example
Example

• Step 2. The next lowest is ad′.
However, we cannot choose this edge
since it would cause a to be incident
to three highlighted edges. We skip
this edge and move to a′d.

a

b

cd

e

a′

b′

c′

d′

e′

0

0

0

0

0

100

15
0

75 / 78

Cheapest Link Algorithm – example
Example

• Step 2. Continuing with the
Algorithm, we add edges b′e, c′b.
Then we close the cycle with edge cd′.

a

b

cd

e

a′

b′

c′

d′

e′

0

0

0

0

0

100

15
0225

650

35
0

76 / 78

Cheapest Link Algorithm – example
Example

• Step 2. Convert the cycle
aa′dd′cc′bb′ee′a to directed cycle in
the digraph

a → d → c → b → e → a

Addison

Bristol

ChelseaDover

Essex

325

4
0
0

1
5
0

25
0 375

3
1
5

37
5

225
3
0
0

3
5
0

600

360

1
2
5

37
5

650

3
0
5

10
0

350

4004
0
0

77 / 78

Nearest Insertion Algorithm

• The Nearest Insertion Algorithm in its original form does not function on the
weighted clone graphs

• There are no cycles of length 3 in the graph created by the undirecting Algorithm
and the second step of Nearest Insertion results in a cycle on three vertices
originating from the cheapest edge of the graph

• A modification of Nearest Insertion for the weighted clone graphs, which treats
the weight 0 edges differently will be discussed during the tutorial

78 / 78

	Existence of Hamiltonian cycles
	Traveling salesman problem
	Digraphs and Asymmetric Traveling Salesman Problem

