Algebra and Discrete Mathematics ADM Bc. Xiaolu Hou, PhD. FIIT, STU xiaolu.hou @ stuba.sk #### Course Outline - Vectors and matrices - System of linear equations - Matrix inverse and determinants - Vector spaces and matrix transformations - Fundamental spaces and decompositions - Eulerian tours - Hamiltonian cycles - Midterm - Paths and spanning trees - Trees and networks - Matching # Recommended reading - Saoub, K. R. (2017). A tour through graph theory. Chapman and Hall/CRC. - Sections 2.1, 2.2, 2.3 - Free copy online #### Lecture outline • Existence of Hamiltonian cycles • Traveling salesman problem • Digraphs and Asymmetric Traveling Salesman Problem # Hamiltonian cycles • Existence of Hamiltonian cycles • Traveling salesman problem • Digraphs and Asymmetric Traveling Salesman Problem # Hamiltonian cycle and Hamiltonian path #### Definition A cycle in a graph G that contains every vertex of G is called a *Hamiltoniain cycle*. A path that contains every vertex is called a *Hamiltonian path*. - Recall that a cycle or a path can only pass through a vertex once, so the Hamiltonian cycles and paths travel through every vertex exactly once. - Named after mathematician: Sir William Hamilton The graph is connected and all vertices are even - it contains an Eulerian circuit There is no Hamiltonian cycle since we need to include c in the cycle and by doing so we would pass b twice The graph is connected and all vertices are even - it contains an Eulerian circuit #### Example Hamiltonian cycles and Hamiltonian paths also exist. To find one such path, remove any one of the highlighted edges from the Hamiltonian cycle # Hamiltonian cycle and Hamiltonain path - If a graph has an Eulerian circuit, then it cannot have an Eulerian path, and vice versa - This is not true for the Hamiltonian version - If a graph has a Hamiltonian cycle, it automatically has a Hamiltonian path (just leave off the last edge of the cycle to obtain a path). - If a graph has a Hamiltonian path, it may or may not have a Hamiltonian cycle. #### Necessary conditions for Hamiltonian cycle - G must be connected - No vertex of G can have degree less than 2 - G cannot contain a cut-vertex Cut-vertex: a vertex whose removal disconnects the graph #### Note These are not sufficient conditions #### A sufficient condition for Hamiltonian cycle #### Theorem (Dirac's Theorem) Let G be a graph with $n \geq 3$ vertices. If every vertex v of G satisfies $\deg(v) \geq \frac{n}{2}$, then G has a Hamiltonian cycle. #### Remark - The proof of this theorem boils down to the fact that each vertex has so many edges incident to it that in trying to find a cycle we will never get stuck at a vertex. - There are a few sufficient conditions for a graph to have Hamiltonian cycle, but but no known necessary and sufficient condition that works for all graphs. # Existence of Hamiltonian cycle – example #### Complete graph #### Definition A simple graph G is *complete* if every pair of distinct vertices is adjacent. The complete graph on n vertices is denoted K_n . If we think of an edge as describing a relationship between two objects, then a complete graph represents a scenario where every pair of vertices satisfies this relationship. # The first six complete graphs # Properties of K_n - Each vertex in K_n has degree n-1 - K_n has $\frac{n(n-1)}{2}$ edges - K_n contains the most edges out of all simple graphs on n vertices #### Note Any complete graph (on at least 3 vertices) satisfies the conditions of Dirac's Theorem, and therefore contains a Hamiltonian cycle #### Number of Hamiltonian cycles in a complete graph When modeling a problem whose solution is a Hamiltonian cycle (or path) in the appropriate graph, there is often a desired "home" location or starting vertex – reference point #### Definition Given a specified reference point, the complete graph K_n has (n-1)! distinct Hamiltonian cycles. Half of these cycles are reversals of the others. - ullet When starting at the designated vertex there are n-1 possible edges to choose from - Once that edge has been traveled to arrive at a new vertex, we cannot pick the edge just traveled and so there remain n-2 edges to choose from - At the next vertex, we cannot travel back to either of the previously chosen vertices, and so there remains n-3 edges available - Continuing in this manner, we have a total of $$(n-1)(n-2)(n-3)\cdots(2)(1)=(n-1)!$$ # Hamiltonian cycles • Existence of Hamiltonian cycles • Traveling salesman problem • Digraphs and Asymmetric Traveling Salesman Problem #### The question - How should a delivery service plan its route through a city to ensure each customer is reached? - A traveling salesman has customers in numerous cities. He must visit each of them and return home, but wishes to do this with the least total cost - Shortest Hamiltonian cycle visiting all cities in one country - Model: weighted complete graph - Weights: different distances - Complete: it is reasonable to assume it's possible to travel between any two cities #### Brute Force Algorithm - To find the Hamiltonian cycle of least total weight, one obvious method is to find all possible Hamiltonian cycles and pick the cycle with the smallest total. - The method of trying every possibility to find an optimal solution is referred to as an *exhaustive search*, or use of the *Brute Force Algorithm*. - ullet Input: weighted complete graph K_n - Output: Minimum Hamiltonian cycle #### Brute Force Algorithm - 1. Choose a starting vertex, call it v - 2. Find all Hamiltonian cycles starting at v. Calculate the total weight of each cycle. - 3. Compare all (n-1)! cycles. Pick one with the least total weight. #### Note In step 3, there should be at least two options #### Example Liz is planning her next business trip from her hometown of Addison and has determined the cost for travel between any of the five cities she must visit. - Number of possible Hamiltonian cycles: $4 \times 3 \times 2 \times 1 = 24$ - One method for finding all Hamiltonian cycles, and ensuring you indeed have all 24, is to use alphabetical or lexicographic ordering of the cycles. - Note that all cycles must start and end at Addison, and we will abbreviate all cities with their first letter - For example, the first cycle is abcdea #### Estimated effort | • | Effort for using Brute Force | |---|-------------------------------| | | Algorithm to find the optimal | | | Hamiltonian cycle in K_n | - Best: best supercomputer - Top 500: top 500 supercomputers - Earth is about 4.54×10^9 years old | Supercomputers | | | |---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Best | Top 500 | | | $2\times 10^{-15}~{\rm seconds}$ | $2 \times 10^{-16} \ \mathrm{seconds}$ | | | $2 imes 10^{-5} \; \mathrm{seconds}$ | $2 imes 10^{-6} \ { m seconds}$ | | | 40 seconds | 4 seconds | | | 14 minutes | 2 minutes | | | 5 hours | 32 minutes | | | 4.5 days | 12 hours | | | 16 weeks | 12 days | | | 7.5 years | 10 months | | | 2 centuries | 2 decades | | | 132 million years | 14 million years | | | 4.1×10^{23} years | $4.3 imes 10^{22}$ years | | | 1.4×10^{40} years | $1.5 imes 10^{39}$ years | | | | $\begin{array}{c} \textbf{Best} \\ 2\times10^{-15} \text{ seconds} \\ 2\times10^{-5} \text{ seconds} \\ 40 \text{ seconds} \\ 14 \text{ minutes} \\ 5 \text{ hours} \\ 4.5 \text{ days} \\ 16 \text{ weeks} \\ 7.5 \text{ years} \\ 2 \text{ centuries} \\ 132 \text{ million years} \\ 4.1\times10^{23} \text{ years} \end{array}$ | | Supercomputers #### Other algorithms - We will discuss a few more efficient algorithms - Mathematicians have been searching for algorithms that will find the optimal cycle in a relatively short time span; that is, an algorithm that is both efficient and optimal - Not only has no such algorithm been found for the Traveling Salesman Problem, but some mathematicians believe no such algorithm even exists. #### Nearest Neighbor Algorithm - 1. Choose a starting vertex, say v. Highlight v - 2. Among all edges incident to v, pick the one with the smallest weight. If more than one possible choices have the same weight, randomly pick one. - 3. Highlight the edge and move to its other endpoint u. Highlight u - 4. Repeat steps 2 and 3, where only edges to unhighlighted vertices are considered - 5. Close the cycle by adding the edge to v from the last vertex highlighted. Calculate the total weight. - ullet Step 1: Starting vertex is a - Step 2: Edge of smallest weight: ae - Step 3: Move to vertex e. Highlight e - ullet Step 2: Edge of smallest weight: eb, note here we do not consider edge ea - Step 3: Move to vertex b. Highlight b - Step 2: Edge of smallest weight: bc - ullet Step 3: Move to vertex c. Highlight c - Step 2: Only choice of edge: cd - Step 3: Move to vertex d. Highlight d #### Example • Step 5: close the cycle. Total weight is 1365 #### Remarks - The last two edges are completely determined since we cannot travel back to vertices that have already been chosen - This could force us to use the heaviest edges in the graph, as happened above - The arbitrary choice of a starting vertex could cause light edges to be eliminated from consideration Though we cannot do anything about the former concern, we can address the latter – by using a different starting vertex, the Nearest Neighbor Algorithm may identify a new Hamiltonian cycle, which may be better or worse than the initial cycle. ## Repetitive Nearest Neighbor Algorithm - 1. Choose a starting vertex, say v - 2. Apply the Nearest Neighbor Algorithm - 3. Repeat steps 1 and 2 so each vertex of K_n serves as the starting vertex - 4. Choose the cycle of least total weight. Rewrite it with the desired reference point. # Repetitive Nearest Neighbor Algorithm – example #### Example With the same example as before, we can obtain the following cycles with the Repetitive Nearest Neighbor Algorithm ## Repetitive Nearest Neighbor Algorithm – example #### Example With the same example as before, we can obtain the following cycles with the Repetitive Nearest Neighbor Algorithm #### Remarks - It should come as no surprise that Repetitive Nearest Neighbor performs better than Nearest Neighbor; however, there is no guarantee that this improvement will produce the optimal cycle. - Even though Repetitive Nearest Neighbor addressed the concern of missing small weight edges, it is still possible that some of these will be bypassed as we travel a cycle - Cheapest Link Algorithm: choosing edges in order of weight as opposed to edges along a tour ## Cheapest Link Algorithm - 1. Among all edges in the graph, pick the one with the smallest weight. If more than one possible choices have the same weight, randomly choose one. Highlight the chosen weight - 2. Repeat step 1 with the added conditions - no vertex has three highlighted edges incident to it - no edge is chosen so that a cycle closes before hitting all the vertices - 3. Calculate the total weight - ullet Step 1. The smallest weight is 100 for edge ae - \bullet Step 2. The next smallest weight is 125 with edge ad - ullet Step 2. The next smallest weight is 225 for be - Step 2. ac has the next smallest weight, but highlighting ac will cause a to have three incident edges - ullet Step 2. ed has the next smallest weight, but highlighting ed will close a cycle too early - ullet Step 2. next available is bc - ullet Step 2. at this point we must close the cycle and there is only one choice cd - Output: resulting cycle is *aebcda* with total weight 1365 #### Remarks - In the example above, Cheapest Link ran into the same trouble as the initial cycle created using Nearest Neighbor - Although the lightest edges were chosen, the heaviest also had to be included due to the outcome of the previous steps - The downfall of the last two algorithms is the focus on choosing the smallest weighted edges at every opportunity. - In some instances, it may be beneficial to work for a balance —choose more moderate weight edges to avoid later using the heaviest. - Nearest Insertion Algorithm: forms a small circuit initially from the smallest weighted edge and balances newly added edges with the removal of a previously chosen edge. ## Nearest Insertion Algorithm - 1. Among all edges in the graph, pick one with the smallest weight. Highlight the edge and its endpoints. - 2. Pick a vertex that is closest to one of the two already chosen vertices. Highlight the new vertex and its edges to both of the previously chosen vertices. - 3. Identify the unvisited vertex that is closest to any vertex already in the current cycle. Insert this vertex into the existing cycle by connecting it to the nearest chosen vertex. Then, add a second edge to complete the insertion and remove one existing edge to maintain a cycle. Choose the scenario with the smallest total weight. - 4. Repeat step 3 until all vertices have been included in the cycle - 5. Calculate the total weight - ullet Step 2: closest vertex to either a or e is d through edge ad. Form a cycle by adding ad and de - Step 3: closes vertex to any of a, d or e is b through the edge be Step 3: After adding edge be, we need to decide whether to add ba and delete ea or add bd and delete ed $\omega\left(ba\right)-\omega\left(ea\right)~=~325-100=225$ $\omega (bd) - \omega (ed) = 375 - 305 = 70$ - ullet Step 3: We add edge bd and remove edge ed to get a bigger cycle than before - Step 3: Only vertex left is c, c is closest to a Step 3: After adding edge ca, we need to decide whether to add cd and delete ad or add ce and delete ae $\omega\left(cd\right)-\omega\left(ad\right)~=~600-125=475$ $\omega(ce) - \omega(ae) = 360 - 100 = 260$ - ullet Step 3: We add edge ce and remove edge ae to get a bigger cycle than before - Step 5: The cycle is *acebda* with total weight 1385. # Hamiltonian cycles • Existence of Hamiltonian cycles • Traveling salesman problem • Digraphs and Asymmetric Traveling Salesman Problem ## Directed graph #### Definition A directed graph, or digraph, is a graph G=(V,A) that consists of a vertex set V and an arc set A. An arc is an ordered pair of vertices. #### Example Let G be a digraph with $V = \{a, b, c, d\}$ and $A = \{ab, ba, cc, dc, db, da\}$. ## **Terminologies** #### Definition Let G = (V, A) be a digraph - Arc yx, x is head, y is tail - in-degree of vertex x: the number of arcs for which x is a head, denoted $\deg^-(x)$ - out-degree of vertex x: the number of arcs for which x is the tail, denoted $\deg^+(x)$ - The underlying graph for a digraph is the graph G'=(V,E) which is formed by removing the direction from each arc to form an edge - A *directed path* is a path in which the head of an arc is the tail of the next arc in the path - A directed cycle is a cycle in which the head of an arc is the tail of the next arc in the cycle ## Terminologies – example - a is the tail of arc ab and the head of arcs da and ba - $\deg^{-1}(a) = 2$, $\deg^{-1}(b) = 2$, $\deg^{-1}(c) = 2$, $\deg^{-}(d) = 0$ - $\deg^+(a) = 1$, $\deg^+(b) = 1$, $\deg^+(c) = 1$, $\deg^+(d) = 3$ - $d \rightarrow a \rightarrow b$ is a directed path - $c \to d \to a \to b$ is not a directed path since cd is not an arc in the graph - $a \rightarrow b \rightarrow a$ is a directed cycle - $d \rightarrow a \rightarrow b \rightarrow d$ is not a directed cycle ## Degrees of vertices #### **Theorem** Let G=(V,A) be a digraph and |A| denote the number of arcs in G. Then both the sum of the in-degrees of the vertices and the sum of the out-degrees equals the number of arcs. In other words, if $V=\{v_1,v_2,\ldots,v_n\}$, then $$\deg^-(v_1) + \cdots \deg^-(v_n) = |A| = \deg^+(v_1) + \cdots \deg^+(v_n)$$ - Since each arc will contribute to the in-degree to its head and to the out-degree of its tail, the sum of the in-degrees equals the sum of the out-degrees. - Each arc is counted exactly once in the sum of the in-degrees (or out-degrees) since it has a unique head (or tail). ## Hamiltonian cycles A few properties should be immediately apparent for a digraph to have a Hamiltonian cycle - G must be connected - ullet No vertex of G can have in-degree or out-degree 0 - G cannot contain a cut-vertex ## A sufficient condition for Hamiltonian cycles #### **Theorem** Let G be a digraph. If $$\deg^{-}(v) \ge \frac{n}{2}, \quad \deg^{+}(v) \ge \frac{n}{2}$$ for every vertex v of G, then G has a Hamiltonian cycle. # Asymmetric Traveling Salesman Problem - The Asymmetric Traveling Salesman Problem is to find the optimal Hamiltonian *directed* cycle on a digraph. - The weight of the arc ab need not equal the weight of arc ba - Complete digraph: for each pair of vertices x and y both arcs xy and yx exist in the graph - We will only consider complete digraphs in which each arc has a positive weight - To utilize the algorithms discussed before, we convert a digraph into an undirected graph ## Undirecting Algorithm Input: Weighted complete digraph $G=(V,A,\omega)$ #### Steps: - 1. For each vertex x, make a clone x'. Form the edge xx' with weight 0 - 2. For each arc xy form the edge x'y - 3. The weight of an edge is equal to the weight of its corresponding arc - $\omega(xx') = 0$ - $\omega(x'y) = \omega(xy)$ - $\omega(xy') = \omega(yx)$ Output: weighted clone graph $G' = (V', E, \omega')$ #### Note - We need to ensure that when forming a cycle an arc into a vertex is immediately followed by an arc out of that same vertex - By giving the edge between a vertex and its clone a weight of 0 (when all other arcs have positive weights), we ensure this edge will always be included in any Hamiltonian cycle. - In addition, this extra edge does not impact the total weight of the final cycle #### Example Liz is heading out on the road to visit her customers, the direction of a route impacts its cost Example Table representation. e.g. Addison to Bristol - 325 | | Addison | Bristol | Chelsea | Dover | Essex | |---------|---------|---------|---------|-------|-------| | Addison | | 325 | 400 | 150 | 250 | | Bristol | 375 | | 315 | 375 | 225 | | Chelsea | 300 | 350 | | 600 | 360 | | Dover | 125 | 375 | 650 | | 305 | | Essex | 100 | 350 | 400 | 400 | | #### Example Note: original edges do not exist. The table is symmetric, with a copy of the original table in the lower left quadrant and its mirror image in the upper right quadrant. | | a | b | С | d | е | a' | b' | c' | ď | e' | |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | а | | 325 | 400 | 150 | 250 | 0 | 375 | 300 | 125 | 100 | | b | 375 | | 315 | 375 | 225 | 325 | 0 | 350 | 375 | 350 | | С | 300 | 350 | | 600 | 360 | 400 | 315 | 0 | 650 | 400 | | d | 125 | 375 | 650 | 0 | 305 | 150 | 375 | 600 | 0 | 400 | | е | 100 | 350 | 400 | 400 | 0 | 250 | 225 | 360 | 305 | 0 | | a' | 0 | 325 | 400 | 150 | 250 | | | | | | | b' | 375 | 0 | 315 | 375 | 225 | | | | | | | c' | 300 | 350 | 0 | 600 | 360 | | | | | | | ď | 125 | 375 | 650 | 0 | 305 | | | | | | | e' | 100 | 350 | 400 | 400 | 0 | | | | | | #### Remarks - Even though the input of the algorithm is a complete digraph, the output is not a complete graph - The Undirecting Algorithm can be applied to a digraph that is not complete; however, the resulting graph may not have a Hamiltonian cycle. - When applied to a complete digraph G with n vertices, the resulting graph G' has 2n vertices, each of degree n, is guaranteed to have a Hamiltonian cycle. - ullet The cycle from G' can then be translated to a Hamiltonian directed cycle of the digraph G where vertex copies get reduced back to a single vertex # Asymmetric Traveling Salesman Problem – example #### Example Continue from the previous example, the table below lists the four cycles found using Nearest Neighbor and their conversion to a directed cycle in the digraph. | Nearest Neighbor Cycle | Conversion | Total Weight | |---------------------------------------------------------------------------------------|-----------------------------------|--------------| | $a\ a'\ d\ d'\ e\ e'\ b\ b'\ c\ c'\ a$ | $a \to d \to e \to b \to c \to a$ | 1420 | | a^\prime a e^\prime e b^\prime b c^\prime c d^\prime d a^\prime | $a \to d \to c \to b \to e \to a$ | 1475 | | $e\ e'\ a\ a'\ d\ d'\ b\ b'\ c\ c'\ e$ | $e \to a \to d \to b \to c \to e$ | 1300 | | e' e b' b c' c a' a d' d e' | $e \to d \to a \to c \to b \to e$ | 1500 | Note that cycles beginning with a clone vertex must be reversed in the translation back into a direct cycle. # Asymmetric Traveling Salesman Problem – example 600 #### Remarks - Unlike in the undirected case, reversals of a Hamiltonian cycle in a digraph (that is not a complete digraph) might not exist, and those that do will most likely result in a different total weight. - Thus when applying the Nearest Neighbor Algorithm to graphs formed using the Undirecting Algorithms, we must consider starting at both copies of a vertex, such as a and a', e and e' as in the example ## Cheapest Link Algorithm • All edges of weight 0 must be included in the final cycle since picking the edges of minimum weight would initially result in choosing all the weight 0 edges as no two of these are adjacent (so there is no concern of a vertex having degree 3 or closing the circuit too early) #### Example Continuing from the previous example. • Step 1. Since all edges between a vertex and its clone have a weight of 0, all of these edges will be chosen #### Example Step 2. The next lowest is ad'. However, we cannot choose this edge since it would cause a to be incident to three highlighted edges. We skip this edge and move to a'd. ### Example • Step 2. Continuing with the Algorithm, we add edges b'e, c'b. Then we close the cycle with edge cd'. #### Example • Step 2. Convert the cycle aa'dd'cc'bb'ee'a to directed cycle in the digraph $$a \to d \to c \to b \to e \to a$$ ## Nearest Insertion Algorithm - The Nearest Insertion Algorithm in its original form does not function on the weighted clone graphs - There are no cycles of length 3 in the graph created by the undirecting Algorithm and the second step of Nearest Insertion results in a cycle on three vertices originating from the cheapest edge of the graph - A modification of Nearest Insertion for the weighted clone graphs, which treats the weight 0 edges differently will be discussed during the tutorial