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Course Outline

• Vectors and matrices
• System of linear equations
• Matrix inverse and determinants
• Vector spaces and matrix transformations
• Fundamental spaces and decompositions
• Eulerian tours
• Hamiltonian cycles
• Midterm
• Paths and spanning trees
• Trees and networks
• Matching
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Recommended reading

• Saoub, K. R. (2017). A tour through graph theory. Chapman and Hall/CRC.
• Sections 1.1 – 1.5
• Free copy online
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https://api.pageplace.de/preview/DT0400.9781138197817_A36383051/preview-9781138197817_A36383051.pdf


Lecture outline

• Definitions and terminologies

• Different types of graphs

• Touring a graph

• Eulerian circuit algorithms

• Eulerization
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Eulerian tours

• Definitions and terminologies

• Different types of graphs

• Touring a graph

• Eulerian circuit algorithms

• Eulerization
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Graph

Definition
A graph consists of two sets: V (G), called the vertex set, and E(G), called the edge
set. An edge, denoted xy, is an unordered pair of vertices x, y ∈ E(G).

• We will often use G or G = (V,E) as short-hand.
• xy and yx are treated equally, though it is customary to write them in

alphabetical order
• Later in the course: direction graphs - the order in which an edge is written

provide additional meaning
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Graph – example

Example

• Let G be a graph where

V (G) = {a, b, c, d, e},

E(G) = {ab, cd, cd, bb, ad, bc}

• Visualization of G: a dot represents a
vertex and an edge is a line connecting
the two dots (vertices)

• Note: two edges between vertices c
and d; a loop at b; no edges at e

a

b

cd

e
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Terminologies

Definition
Let G = (V,E) be a graph

• xy ∈ E, x and y are the endpoints for edge xy. x (also y) is incident to edge xy

• Adjacent edges: share an endpoint
• Adjacent vertices (neighbors): incident to the same edge
• N(v): the set of all neighbors of a vertex v

• Isolated vertex: not incident to any edge
• Loop: both endpoints of an edge are the same vertex
• Multi-edges: more than one edge with the same endpoints
• Degree of a vertex: number of edges incident to the vertex, with a loop adding

two to the degree. Denoted det(v). If the degree is even (resp. odd), the vertex is
called even (resp. odd)
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Graph – example

Example

• Edges ab and ad are adjacent
• a and b are adjacent vertices
• N(d) = {a, c}, N(b) = {a, b, c}
• e is an isolated vertex
• bb is a loop
• cd is a multi-edge
• deg(a) = 2, deg(b) = 4, det(c) = 3,

deg(d) = 3, deg(e) = 0

a

b

cd

e
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Modeling with a graph – Königsberg bridge problem

Example
• 1763, Leonhard Euler, one of the

greatest mathematicians of all time,
published a short paper on the bridges
of Königsber, a city in Russia

• Can you leave your home, travel
across each of the bridges in the city
exactly once, and then return home?

• The puzzle is described as the birth of
graph theory
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Modeling with a graph – Königsberg bridge problem

Example

Euler reduced the map of Königsberg to a simpler version where only the relationships
between landmasses were of importance
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Modeling with a graph – Königsberg bridge problem
Example

b

a

c

d

We can use a simpler way to model the city with a graph – the vertices represent an
island, a south bank, a north bank, and a peninsula (a, b, c, d respectively) – can you
leave your home (vertex), travel across each of the bridges (edges) in the city (graph)
exactly once and then return home?

12 / 78



Order and size

Definition
• A graph G = (V (G), E(G)) is called finite if both V (G) and E(G) are finite.
• A graph that is not finite is called an infinite graph
• Order of G is the number of vertices of G, i.e. |V |
• Size of G, is the number of edges of G, i.e. |E|
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Eulerian tours

• Definitions and terminologies

• Different types of graphs

• Touring a graph

• Eulerian circuit algorithms

• Eulerization
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Simple graph

Definition
• Pseudograph: can contain multi-edges and loops
• Multipgraph: can contain multi-edges, but no loops
• Simple graph: no multi-edges or loops
• Trivial graph: one vertex, no edges
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Graphs – example
Example

Pseudograph
a

b

cd

e

Order: 5, size: 6

Multigraph

b

a

c

d

Order: 4, size: 7
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Regular graph
Definition

• Regular graph: all of its vertices have the same degree
• k−regular: all vertices have degree k

• A 3−regular graph is also called a cubic graph

Example

a b

cd

a b

cd

e f

g h
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Complete graph

Definition
A simple graph G is complete if every pair of distinct vertices is adjacent. The
complete graph on n vertices is denoted Kn.
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The first six complete graphs
Example

K1 K2 K3

K4 K5 K6
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Complement of a graph

Definition
The complement G = (V,E) of a graph G(V,E) is the graph having the same vertex
set as G, and its edge set E is the complement of E in the set of all unordered pairs of
vertices. In other words, for any u, v ∈ V , uv ∈ E iff uv ̸∈ E.

• G and G together forms a complete graph

Example

a b

c

a b a b

c
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Bipartite graphs
Definition
A graph G = (V,E) is bipartite if the vertices can be partitioned into two sets, V1 and
V2, so that

V1 ∩ V2 = ∅, V = V1 ∪ V2,

and every edge has exactly one endpoint in V1 and the other endpoint in V2.

Example

a b c

def 21 / 78



Complete bipartite graph
Definition
A simple bipartite graph G = (V1 ∪ V2, E) is a complete bipartite graph if every vertex
in V1 is adjacent to every vertex in V2. If |V1| = m, |V2| = n, we write Km,n

Example
K3,3

a b c

def
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Eulerian tours

• Definitions and terminologies

• Different types of graphs

• Touring a graph

• Eulerian circuit algorithms

• Eulerization
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Definitions
Definition
Let G be a graph

• Walk: a sequence of vertices so that there is an edge between consecutive
vertices. A walk can repeat vertices and edges.

• Trail: a walk with no repeated edges
• Path: a trial with no repeated vertices. A path on n vertices is denoted Pn

• Closed walk: a walk that starts and ends at the same vertex
• Circuit: a closed trial
• Cycle: a closed path. a cycle on n vertices is denoted Cn

Length of any of these tours is the number of edges.

• Path ⊆ Trail ⊆ Walk
• Cycle ⊆ Circuit ⊆ Closed walk
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Length of a tour – example

Example
• Pn has length n− 1

• Cn has length n
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Touring a graph – example
Example

Given the graph, find
• a trial (that is not a path) from a

to c

• a path from a to c

• a circuit (that is not a cycle)
starting at b

• a cycle starting at b

a b c

d

e

fg
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Touring a graph – example
Example

a b c

d

e

fg

1

2

5 4

6

7

3

Figure: A trial from a to c

a b c

d

e

fg

1

2

3

5

4

Figure: A path from a to c
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Touring a graph – example
Example

a b c

d

e

fg

1

2

3

4

5

6

Figure: A circuit starting at b

a b c

d

e

fg

1

2

3

4

Figure: A circle starting at b
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Connected vertices
Definition
Let G be a graph. Two vertices x and y are connected if there exists a path from x to
y in G. The graph G is connected if every pair of distinct vertices is connected.

Example
Not connected

a b

c

d

e
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Eulerian circuit

Definition
Let G be a graph. An Eulerian circuit (or trail) is a circuit (or trail) that contains every
edge and every vertex of G. If G contains an Euclidean circuit it is called Eulerian and
if G contains an Eulerian trail but not an Eulerian circuit it is called semi-Eulerian.
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Eulerian graph
Theorem
A graph G is Eulerian if and only if

• G is connected and
• every vertex has an even degree

A graph G is semi-Eulerian if and only if
• G is connected and
• exactly two vertices have odd degree
• When traveling through a graph, we need to pair each entry edge with an exit

edge.
• If a vertex is odd, then there is no pairing available and we would eventually get

stuck at that vertex
• If the starting and ending locations are different, then exactly two vertices must

be odd since the first edge out of the starting vertex does not need to be paired
with a return edge and the last edge to the ending vertex does not need to be
paired with an exit edge 31 / 78



Eulerian and semi-Eulerian graphs – example
Example

a

b

cd

e

Not connected – not Eulerian, not semi-Eulerian. The graph has two components.
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Eulerian and semi-Eulerian graphs – example
Example

a

b

c

d

e

f

Eulerian – all vertices have degree 2 or 4
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Eulerian and semi-Eulerian graphs – example
Example

a

b

c

d

e

f

semi-Eulerian – exactly two vertices are odd
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Eulerian and semi-Eulerian graphs – example
Example

a b c

d

e

fg

Connected, but not Eulerian or semi-Eulerian - more than two odd vertices (a, b, e, f)
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Handshaking Lemma

Theorem (Handshaking Lemma)
Let G = (V,E) be a graph. Suppose V = {v1, v2, . . . , vn}, then

deg(v1) + deg(v2) + · · ·+ deg(vn) = 2|E|

Proof.
Since each edge contributes two to the sum of degrees, one at each of the two
endpoints, the sum of degrees is even and equal to twice the number of edges.
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Corollary

Corollary
In any graph, there is an even number of odd vertices.

Proof. ∑
vi has an odd degree

det(vi) +
∑

vj has an even degree
deg(vj) = 2|E|

The second term on the left is even, the sum is even.
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Eulerian tours

• Definitions and terminologies

• Different types of graphs

• Touring a graph

• Eulerian circuit algorithms

• Eulerization
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Fleury’s Algorithm

• Find an Eulerian circuit or an Eulerian trail
• By the previous theorem, the input graph must be connected and has zero or two

odd vertices

39 / 78



Fleury’s Algorithm
1. Choose a starting vertex:

• If the graph G has no vertices of odd degree, start from any vertex.
• If G has exactly two vertices of odd degree, start from one of them.

2. Choose an edge to traverse: Select an edge incident to the current vertex v,
ensuring that removing it does not disconnect the remaining graph

3. Traverse and remove the edge: Move to the other endpoint of the selected edge,
then delete the edge from the graph. The new vertex becomes the current vertex.

4. Repeat steps 2 and 3 until there are no more edges left in the graph.
Output

• If G originally had no odd-degree vertices, the sequence of traversed edges forms
an Eulerian cycle

• If G had exactly two odd-degree vertices, the sequence forms an Eulerian trail.
Practical Implementation: Maintain two copies of the graph:

• One for tracking the Eulerian path or cycle.
• Another for dynamically removing edges
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Fleury’s Algorithm – example
Example

v

w

u

x

y z

The graph is Eulerian:
deg(u) = 2, deg(v) = 4, deg(w) = 2, deg(x) = 4, deg(y) = 4, deg(z) = 2

• Step 1. start vertex v

• Step 2. choose edge vx
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Fleury’s Algorithm – example

Example
v

w

u

x

y z

1 v

w

u

x

y z

• Step 3. travel to vertex x and delete edge vx. Current vertex: x.
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Fleury’s Algorithm – example
Example
v

w

u

x

y z

1

2

v

w

u

x

y z

• Step 2. choose edge xy

• Step 3. travel to vertex y and delete edge xy. Current vertex: y.
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Fleury’s Algorithm – example
Example
v

w

u

x

y z

1

2
3

v

w

u

x

y z

• Step 2. choose edge yx, note: cannot choose edge yv, its removal would
disconnect the remaining graph

• Step 3. travel to vertex x and delete edge yx. Current vertex: x.
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Fleury’s Algorithm – example
Example
v

w

u

x

y z

1

2
3 4

v

w

u

x

y z

• Step 2. only one available edge xz

• Step 3. travel to vertex z and delete edge xz. Current vertex: z.
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Fleury’s Algorithm – example
Example
v

w

u

x

y z

1

2
3 4

5

v

w

u

x

y z

• Step 2. only one available edge zy

• Step 3. travel to vertex y and delete edge zy. Current vertex: y.
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Fleury’s Algorithm – example
Example
v

w

u

x

y z

1

2
3 4

5

6

v

w

u

x

y z

• Step 2. only one available edge yv

• Step 3. travel to vertex v and delete edge yv. Current vertex: v.
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Fleury’s Algorithm – example
Example

v

w

u

x

y z

1

2
3 4

5

6

7

v

w

u

x

y z

• Step 2. both vu and vw can be chosen. Here we choose vw.
• Step 3. travel to vertex w and delete edge vw. Current vertex: w.
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Fleury’s Algorithm – example
Example

v

w

u

x

y z

1

2
3 4

5

6

7

8

v

w

u

x

y z

• Step 2. only one available edge wu

• Step 3. travel to vertex u and delete edge wu. Current vertex: u.
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Fleury’s Algorithm – example
Example

v

w

u

x

y z

1

2
3 4

5

6

7

8

9

v

w

u

x

y z

• Step 2. only one available edge uv

• Step 3. travel to vertex v and delete edge uv

• We have obtained an Eulerian circuit starting and ending at vertex v
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Hierholzer’s Algorithm

• Find an Eulerian cycle
• Input: an Eulerian graph G – connected, all vertices are even
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Hierholzer’s Algorithm

1 Choose a starting vertex, say v, and find an initial circuit C starting at v.
2 If there exists a vertex x in the current circuit C that has unused edges, form a

new circuit C ′ starting at x that uses two of those unused edges
3 Merge the newly found circuit C ′ into the existing circuit C, updating C

accordingly.
4 Repeat steps 2 and 3 until all edges of G have been traversed.
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Hierholzer’s Algorithm – example

Example
v

w

u

x

y z

Same graph, we have discussed that the graph is Eulerian.
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Hierholzer’s Algorithm – example

Example
v

w

u

x

y z

1

2

3

• Step 1: choose vertex v and find a circuit starting at v

54 / 78



Hierholzer’s Algorithm – example
Example

v

w

u

x

y z

1

2

3

4

• Step 2: since det(v) = 4, two edges remain from v. We can find a second circuit
starting at v.
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Hierholzer’s Algorithm – example
Example

v

w

u

x

y z

1

2

3

4

5

6

7

• Step 3: combine the two circuits from Step 1 and Step 2. There are multiple ways
to combine two circuits.
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Hierholzer’s Algorithm – example
Example

v

w

u

x

y z

1
2

• Step 2: deg(x) = 4 and two edges remain for x, we can find a circuit starting
from x
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Hierholzer’s Algorithm – example
Example

v

w

u

x

y z

1

2

3

4

5

6

7
8

9

• Step 3: combine the new circuit with the existing one
• We have obtained an Eulerian circuit
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Eulerian tours

• Definitions and terminologies

• Different types of graphs

• Touring a graph

• Eulerian circuit algorithms

• Eulerization
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Eulerization – definition

Definition
Given a connected graph G = (V,E), an Eulerization of G is the graph G′ = (V,E′)
so that

• G′ is obtained by duplicating edges of G, and
• every vertex of G′ is even

A semi-Eulerization of G results in a graph G′ so that
• G′ is obtained by duplicating edges of G, and
• exactly two vertices of G′ are odd
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Optimal exhaustive tour

• In the context of the Königsberg Bridge Problem, duplicating an edge would be
equivalent to walking the same bridge twice

• Although this solution would be outside the original parameters (walking each
bridge exactly once), it allows for an approximate solution using the fewest
number of duplications.

• This is referred to as finding an optimal exhaustive tour of a graph
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The Königsberg Bridge Problem
Example

b

a

c

d

We have discussed that the graph modeling Königsberg city is not Eulerian or
semi-Eulerian
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The Königsberg Bridge problem
Example

Eulerization semi-Eulerization not an Eulerization

b

a

c

d

b

a

c

d

b

a

c

d

• Note that when creating the new graph, edges must be duplicated, not added
• Of course edges can be added in a city, but unrealistic from the standpoint of a

person touring the bridges of a city during a specific moment in time. Hence, we
only allow duplications of edges
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The optimization question

• We are interested in the question: how can we Eulerize (or semi-Eulerize) a graph
using the fewest number of edge duplications?

• We are attempting to find an optimal tour of the graph, that is minimize the total
length of the circuit (or trail).
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Eulerization method

1 Identify the odd vertices of the graph
2 Pair up the odd vertices, trying to pair as many adjacent vertices possible while

also avoiding paring vertices far away from each other
3 Duplicate the edges along an optimal path from one vertex to its pair

Note:
• In the process of determining which edges to duplicate along optimal paths, never

repeat an edge more than once.
• If an edge is crossed three times, removing two of the duplications will not change

the parity of the endpoint of the edge;
• that is, a vertex will remain odd or remain even when subtracting two from the

degree.
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Eulerization – example

Example
• The citizens of the small island town

of Sunset Island want to hire a night
patrol during the busy summer tourist
season

• Model the town as a graph and find
an optimal Eulerization of the graph
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Eulerization – example
Example
The graph modeling - vertices represent intersections and edges represent street blocks

a

b

c

d

e

f

g

h

i

j

k
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Eulerization – example
Example

• Four odd vertices: a, i, j, k

• They can be split into two pairs of adjacent vertices: a, i and j, k

a

b

c

d

e

f

g

h

i

j

k

a

b

c

d

e

f

g

h

i

j

k
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Eulerization – example
Example

• Task: put up fliers along each block of a small portion of a town
• Requirement: travel along each street once but cannot put up fliers in the park
a b c d

efg
h

i
j k m

n
op

q

We model the graph and identify the odd vertices (in blue)
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Eulerization – example

Example

• Unlike the previous example, we cannot split all
the 8 odd vertices into adjacent pairs, which
corresponds to only 4 duplicated edges

• 5 duplicated edges is also not possible
• if we use exactly 2 adjacent pairs, we are left

with 2 pairs each of which is of distance 2
apart and thus requiring another 4 edges
duplications

• if we use 3 adjacent pairs, we are left with 1
pair of distance 3 apart, which requires 3 more
edges

• At least 6 edge duplications are needed

a b c d

efg
h

i
j k m

n
op

q
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Eulerization – example

Example

a b c d

efg
h

i
j k m

n
op

q

a b c d

efg
h

i
j k m

n
op

q
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Eulerization – example

Example

a b c d

efg
h

i
j k m

n
op

q

a b c d

efg
h

i
j k m

n
op

q
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Weighted graph

• In the previous examples, the streets follow a highly structured grid layout, where
traveling along one block is comparable to traveling along another.

• What happens when different streets require varying levels of effort to traverse?

Definition
A weighted graph G = (V,E, ω) is a graph where each of the edges has a real number
associated with it. This number is referred to as the weight and denoted ω(xy) for an
edge xy

Remark
• Wight of an edge can represent: length, time, cost, etc.
• A weighted graph can also refer to a graph in which each of the vertices is

assigned a weight
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Chinese Postman Problem

• The weighted version of an Eulerian problem is called the Chinese Postman
Problem

• The name originates not from anything particular about postmen in China, but
rather from the mathematician who first proposed the problem —the Chinese
mathematician Mei-Ku Kwan (管梅谷) in 1962
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Chinese Postman Problem – example
Example

• Suppose the travel time through the
streets of Sunset Island varies
depending on the street.

• Find an optimal Eulerization taking
into account the weights

a

b

c

d

e

f

g

h

i

j

k

10

1
2

20

4

6

5

5
5

7
8

2

6

3

5

5

5

75 / 78



Chinese Postman Problem – example
Example
The previous Eulerization we have obtained (on the right) is not optimal (two
duplicated edges total 18). A better Eulerization duplicates three edges for a total of
15

a

b

c

d

e

f

g

h

i

j

k

10

12

20

4

6

5

5578

2

6

3

5

5

5

10
3

2

a

b

c

d

e

f

g

h

i

j

k

10

12

20

4

6

5

5578

2

6

3

5

5

5

12

6

76 / 78



Remarks

• Be careful when duplicating edges in a graph with multi-edges, indicating which
edge has been duplicated – including the edge weight clarifies which option was
used.

• In general, solving the Chinese Postman Problem can be quite challenging
• Most small examples can be solved by inspection
• The choice of which edges to duplicate when working with a weighted graph relies

in part on shortest paths between two vertices.
• The difficulty is in choosing which vertices to pair.
• This will be discussed later in the course
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About tutorials

• Enrichment Questions
• These questions are intended to deepen your understanding.
• Will NOT appear in the exams
• Participation is optional and for your interest.
• If you’d like to discuss them, feel free to email me or your tutor (cvičiaci) to arrange

a meeting.
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