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Course Outline

• Vectors and matrices
• System of linear equations
• Matrix inverse and determinants
• Vector spaces and matrix transformations
• Fundamental spaces and decompositions
• Eulerian tours
• Hamiltonian cycles
• Midterm
• Paths and spanning trees
• Trees and networks
• Matching
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Recommended reading

• Anton, Howard, and Chris Rorres. Elementary linear algebra: applications version.
John Wiley & Sons, 2013.

• Sections 4.7, 4.8, 4.10, 5.1, 5.2, 9.1
• Free copy online
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https://thuvienso.hoasen.edu.vn/bitstream/handle/123456789/8937/Contents.pdf?sequence=3


Lecture outline

• Row space, column space, and null space

• Rank and nullity

• Eigenvalues and Eigenvectors

• Diagonalization

• LU-Decompositions

• Find LU-Decompositions
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Fundamental spaces and decompositions

• Row space, column space, and null space

• Rank and nullity

• Eigenvalues and Eigenvectors

• Diagonalization

• LU-Decompositions

• Find LU-Decompositions
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Definitions

Definition
Let A ∈ Mm×n

• Row vectors of A: rows of A
• Row sapce of A: the subspace of Rn spanned by the row vectors of A
• Column vectors of A: columns of A
• Null space of A: the solution space of Ax = 0
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Elementary row operations

• Ax = 0 has augmented matrix
(
A|0

)
• By performing row operations, we do not change the solution set of Ax = 0

• Thus

Theorem
Elementary row operations do not change the null space of a matrix.

By analyzing every elementary row operation, it can be shown that

Theorem
Elementary row operations do not change the row space of a matrix.
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Find basis for null space
Example

A =

(
3 1 1 1
5 −1 1 −1

)

3x1 + x2 + x3 + x4 = 0

5x1 − x2 + x3 − x4 = 0

The general solution in vector form is given by(
−2t

7
, −s− 3t

7
, t, s

)
= t

(
−2

7
, −3

7
, 1, 0

)
+ s

(
0, −1, 0, 1

)
A basis for the solution space, i.e. null space of A is{(

−2

7
, −3

7
, 1, 0

)
,
(
0, −1, 0, 1

) }
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Row space and column space of matrix in reduced row echelon form

Theorem
If a matrix R is in row echelon form, then the row vectors with the leading 1’s (the
nonzero row vectors) form a basis for the row space of R, and the pivot columns form
a basis for the column space of R.

The theorem implies that

Remark
dimension of row space of R = dimension of column space of R = no of leading 1’s
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Row space and column space of matrix in reduced row echelon form

Example

R =


1 −2 5 0 3
0 1 3 0 0
0 0 0 1 0
0 0 0 0 0


• Basis for row space:(

1, −2, 5, 0, 3
)
,
(
0, 1, 3, 0, 0

)
,
(
0, 0, 0, 1, 0

)
• Basis for column space:(

1, 0, 0, 0
)
,
(
−2, 1, 0, 0

)
,
(
0, 0, 1, 0

)
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Find basis for row space

Note
Since elementary row operations do not change the row space, we can find a basis for
row space by row reduction.

Example

A =


1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7
−1 3 −4 2 −5 −4

 row reduction−−−−−−−−→ R =


1 −3 4 −2 5 4
0 0 1 3 −2 −6
0 0 0 0 1 5
0 0 0 0 0 0


A basis for the row space of A:(

1, −3, 4, −2, 5, 4
)
,
(
0, 0, 1, 3, −2, −6

)
,
(
0, 0, 0, 0, 1, 5

)
11 / 80



Elementary row operations and column spaces

By, e.g. analyzing each elementary operation:
• Elementary row operations do not alter dependence relationships or linear

independence among the column vectors
Then we have
Theorem
If A, B are row equivalent matrices, then

• A given set of column vectors of A is linearly independent iff the corresponding
column vectors of B are linearly independent

• AA given set of column vectors of A forms a basis for the column space of A iff
the corresponding column vectors of B forms a basis for the column space of B
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Basis for a column space by row reduction

Example

A =


1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7
−1 3 −4 2 −5 −4

 row reduction−−−−−−−−→ R =


1 −3 4 −2 5 4
0 0 1 3 −2 −6
0 0 0 0 1 5
0 0 0 0 0 0


A basis for the column space of A:(

1, 2, 2, −1
)
,
(
4, 9, 9, −4

)
,
(
5, 8, 9, −5

)
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Fundamental spaces and decompositions

• Row space, column space, and null space

• Rank and nullity

• Eigenvalues and Eigenvectors

• Diagonalization

• LU-Decompositions

• Find LU-Decompositions
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Rank
Theorem
The row space and the column space of A have the same dimension.

Proof.
• It follows from the previous discussions that elementary row operations do not

change the dimension of the row space or of the column space of a matrix.
• Let R be a reduced row echelon form of A.
• We have shown that the row and column spaces of R have the same dimension.

Definition
The dimension of the row space (or column space) of a matrix A is called the rank of
A, denoted by rank(A). The dimension of the null space of A is called the nullity of
A, denoted by nullity(A)
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Rank and nullity – example

Example

A =


−1 2 0 4 5 −3
3 −7 2 0 1 4
2 −5 2 4 6 1
4 −9 2 −4 −4 7

 row reduction−−−−−−−−→


1 0 −4 −28 −37 13
0 1 −2 −12 −16 5
0 0 0 0 0 0
0 0 0 0 0 0


• rank(A) = 2

• Nullity: dimension of solution space of Ax = 0

x1 − 4x3 − 28x4 − 37x5 + 13x6 = 0

x2 − 2x3 − 12x4 − 16x5 + 5x6 = 0
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Rank and nullity – example
Example

• rank(A) = 2

• Nullity: dimension of solution space of Ax = 0

x1 − 4x3 − 28x4 − 37x5 + 13x6 = 0

x2 − 2x3 − 12x4 − 16x5 + 5x6 = 0

A vector form of the general solution is

x1
x2
x3
x4
x5
x6

 = r



4
2
1
0
0
0

+ s



28
12
0
1
0
0

+ t



37
16
0
0
1
0

+ u



−13
−5
0
0
0
1


nullity (A) = 4
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Dimension theorem for matrices

Theorem
If A has n columns, then

rank (A) + nullity (A) = n

Proof.
number of leading variables = number of leading 1’s = rank (A)

number of free variables in general solution of Ax = 0 = number of parameters in the
solution = nullity (A)

number of leading variables + number of free variables = n
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Rank and nullity
From the proof we have established
Theorem
A ∈ Mm×n

• rank (A) =the number of leading variables in the general solution of Ax = 0

• nullity (A) =the number of parameters in the general solution of Ax = 0

Example
A ∈ M5×7

• rank (A) = 3, find the number of parameters in the general solution of Ax = 0

number of parameters = nullity (A) = 7− 3 = 4

• Ax = 0 has a two-dimensional solution space, what is rank (A)?

rank (A) = 7− nullity (A) = 7− 2 = 5
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Dimension theorem for matrices – example

Example

A =


−1 2 0 4 5 −3
3 −7 2 0 1 4
2 −5 2 4 6 1
4 −9 2 −4 −4 7

 row reduction−−−−−−−−→


1 0 −4 −28 −37 13
0 1 −2 −12 −16 5
0 0 0 0 0 0
0 0 0 0 0 0


rank (A) + nullity (A) = 1 + 4 = 6
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Orthogonal complement

Definition
If W is a subspace of Rn, the the set of all vectors in Rn that are orthogonal to every
vector in W is called the orthogonal complement of w, denoted by W⊥, i.e.

W⊥ = { v | v ∈ Rn, v ·w = 0 ∀w ∈ W }
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Orthogonal complement
Theorem
If W is a subspace of Rn, then

• W⊥ is a subspace of Rn

• W ∩W⊥ = {0}
• (W⊥)⊥ = W

Proof.
• Take any u,v ∈ W⊥ and any α ∈ Rn. Then for any w ∈ W

(u+ v) ·w = u ·w + v ·w = 0 + 0 = 0, (αu) ·w = α(u ·w) = α× 0 = 0

W⊥ is closed under addition and scalar multiplication
• W ∩W⊥ = {x | x · x = 0} = {0}
• We will only show W ⊆ (W⊥)⊥: take any w ∈ W , we have w · v = 0 for all

v ∈ W⊥, thus w ∈ (W⊥)⊥.
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Orthogonal complement

Theorem
A ∈ Mm×n, the null space of A and the row space of A are orthogonal complements
in Rn.

Proof.
• Each solution of Ax = 0 satisfies ai ·x = 0 for all i, where ai is the ith row of A.
• The solution set of Ax = 0 consists of all vectors in Rn that are orthogonal to

every row vector of A
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Equivalent statements
Theorem
For any A ∈ Mn×n, the following statements are equivalent.
(a) A is invertible
(b) Ax = 0 has only the trivial solution
(c) The reduced row echelon form of A is In

(d) A is expressible as a product of elementary matrices
(e) Ax = b is consistent ∀b ∈ Rn

(f) Ax = b has exactly one solution ∀b ∈ Rn

(g) det(A) 6= 0

(h) The column vectors of A are linearly independent
(i) The row vectors of A are linearly independent
(j) The column vectors of A span Rn

(k) The row vectors of A span Rn
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(l) The column vectors of A form a basis for Rn

(m) The row vectors of A form a basis for Rn

(n) A has rank n

(o) A has nullity 0

(p) The orthogonal complement of the null space of A is Rn

(q) The orthogonal complement of the row space of A is {0}

Proof.
Let S be the set of row vectors of A, in the last lecture we have proved that

• S spans Rn iff det(A) 6= 0

• S is a basis for Rn iff det(A) 6= 0

• S is linearly independent iff det(A) 6= 0

Since det(A) = det(A⊤) and the row vectors of A are the column vectors of A, we
have the equivalence of (g)(h), (g)(i), (g)(j), (g)(k), (g)(l), (g)(m), gives the
equivalence from (a)-(m)
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Equivalence statements

(b) Ax = 0 has only the trivial solution
(n) A has rank n

(o) A has nullity 0

Proof.
rank (A) + nullity (A) = n proves the equivalence of (n)(o)
(b) ⇒ (o) If Ax = 0 has only the trivial solution, then the null space is the zero space
(o) ⇒ (b) We have proved that nullity (A) =the number of parameters in the general
solution of Ax = 0. nullity (A) = 0 implies there are no free variables and the trivial
solution is the only solution.
Now we have equivalence (a)-(o)
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Equivalent statements

(k) The row vectors of A span Rn

(p) The orthogonal complement of the null space of A is Rn

(q) The orthogonal complement of the row space of A is {0}

Proof.
We have just proved “the null space of A and the row space of A are orthogonal
complements in Rn,” which shows the equivalence of (k)(p) and (k)(q)
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Kernel and range of TA

Definition
TA : Rn → Rm is a matrix transformation, the kernel of TA, denoted ker(TA), is the
null space of A. The range of TA, denoted R (TA), is the column space of A

• ker(TA): the set of all vectors in Rn that TA maps into 0

• R (TA): the set of all vectors in Rm that are images of at least one vector from Rn
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TA and A

Theorem
A ∈ Mn×n, TA : Rn → Rn, the following statements are equivalent
(a) A is invertible
(b) ker(TA) = {0}
(c) R (TA) = Rn

(d) TA is bijective

Proof.
(a) ⇔ (b) (a) ⇔ nullity (A) = 0
(a) ⇔ (c) (a) ⇔ column vectors of A span Rn

(a) ⇒ (d) (a) ⇒ for any b ∈ Rn, Ax = b has a solution⇒ TA is injective. If TA is not
injective, ∃v1,v2 ∈ Rn s.t.

TA(v1) = TA(v2) ⇒ TA(v1 − v2) = 0 ⇒ nullity (A) 6= 0

a contradiction. Thus, TA is injective. 29 / 80



TA and A

Theorem
A ∈ Mn×n, TA : Rn → Rn, the following statements are equivalent
(a) A is invertible
(b) ker(TA) = {0}
(c) R (TA) = Rn

(d) TA is bijective

Proof.
(d) ⇒ (a) TA is surjective ⇒ for any b ∈ Rn, Ax = b has a solution ⇒ (a)

Remark
With a bit modification of the proof, we can prove that

TA is surjective ⇔ TA is injective ⇔ TA is bijective
30 / 80



The rotation operator on RR2 is surjective

Example
• T : Rotation about the origin through ab angle θ

[T ] =

(
cos θ − sin θ
sin θ cos θ

)
• det([T ]) = 1 6= 0
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Fundamental spaces and decompositions

• Row space, column space, and null space

• Rank and nullity

• Eigenvalues and Eigenvectors

• Diagonalization

• LU-Decompositions

• Find LU-Decompositions
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Definition

Definition
Let A ∈ Mn×n, a nonzero x ∈ Rn is called an eigenvector of A (or of the matrix
operator TA) if Ax is a scalar multiple of x, i.e.

Ax = λx

for some λ ∈ R. λ is called an eigenvalue of A (or TA) and x is said to be an
eigenvector corresponding to λ.

• In general Ax differs from x in both magnitude and direction
• For eigenvectors, the direction is unchanged
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Eigenvector – example

Example (
3 0
8 −1

)(
1
2

)
=

(
3
6

)
x =

(
1
2

)
is an eigenvector of A corresponding to λ = 3

Ax = 3x
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Characteristic equation

• Ax = λx can be rewritten as Ax = λIx or

(λI −A)x = 0

• For λ to be an eigenvalue of A, the equation must have a nonzero solution for x
• Which is true iff det(λI −A) = 0

Theorem
Let A ∈ Mn×n, λ is an eigenvalue of A iff

det(λI −A) = 0

This is called the characteristic equation of A.
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Finding eigenvalues – example

Example

Consider A =

(
3 0
8 −1

)
, det(λI −A) = 0 gives

∣∣∣∣λ− 3 0
−8 λ+ 1

∣∣∣∣ = 0 =⇒ (λ− 3)(λ+ 1) = 0

Thus, the eigenvalues of A are 3 and −1.
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Characteristic polynomial

det(λI −A) =

∣∣∣∣∣∣∣∣∣
λ− a11 −a12 · · · −a1n
−a21 λ− a22 · · · −a2n

... ... . . . ...
−an1 −an2 · · · λ− ann

∣∣∣∣∣∣∣∣∣
• With cofactor expansion, the highest power of λ appears when multiplying all

diagonal entries
• Characteristic equation of A takes the form

λn + α1λ
n−1 + · · ·+ αn = 0

• The polynomial (left side of the equation)
p(λ) = λn + α1λ

n−1 + · · ·+ αn

is called the characteristic polynomial of A
• Degree n polynomial has at most n distinct roots =⇒ at most n distinct

eigenvalues
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Characteristic polynomial – example

Example

A =

(
3 0
8 −1

)
has characteristic polynomial

p(λ) = (λ− 3)(λ+ 1) = λ2 − 2λ− 3
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Characteristic polynomial – example
Example

A =

0 1 0
0 0 1
4 −17 8


Characteristic polynomial of A is

det(λI −A) =

∣∣∣∣∣∣
λ −1 0
0 λ −1
−4 17 λ− 8

∣∣∣∣∣∣ = λ3 − 8λ2 + 17λ− 4

• First we observe that an integer solution (if any) of a polynomial equation with
integer coefficients must be a divisor of the constant term

• In our case, divisors of −4: ±1, ±2, ±4

• λ = 4 is a solution
(λ− 4)(λ2 − 4λ+ 1) = 0 39 / 80



Characteristic polynomial – example

Example
Characteristic polynomial of A is λ3 − 8λ2 + 17λ− 4

• λ = 4 is a solution
(λ− 4)(λ2 − 4λ+ 1) = 0

• Solve the quadratic equation by the quadratic formula

λ =
4±

√
42 − 4

2
= 2±

√
3

• Eigenvalues of A are

λ1 = 4, λ2 = 2 +
√
3, λ3 = 2−

√
3
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Eigenvalues of an upper triangular matrix

Example

A =

1 8 0
0 2 6
0 0 3

, the characteristic equation of A is

det(λI −A) =

∣∣∣∣∣∣
λ− 1 8 0
0 λ− 2 6
0 0 λ− 3

∣∣∣∣∣∣ = (λ− 1)(λ− 2)(λ− 3)
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Eigenvalues of triangular matrices

Theorem
If A ∈ Mn×n is a triangular matrix (upper triangular, lower triangular, diagonal), then
the eigenvalues of A are the entries on the main diagonal of A.
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Equivalent statements

Theorem
Let A ∈ Mn×n, the following statements are equivalent

• λ is an eigenvalue of A
• λ is a solution of the characteristic equation det(λI −A) = 0

• The system of equations (λI −A)x = 0 has nontrivial solutions
• There is a nonzero vector x s.t. Ax = λx
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Eigenspace

• Eigenvectors of A corresponding to an eigenvalue λ are the nonzero vectors that
satisfy

(λI −A)x = 0

• The solution space is called the eigenspace of A corresponding to λ consist of
eigenvectors of A corresponding to λ and 0

• Eigenspace can also be reviewed as
• the null space of the matrix λI −A
• the kernel of the matrix operator TλI−A : Rn → Rn

• the set of vectors for which Ax = λx
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Find bases for eigenspaces – example

Example

A =

(
−1 3
2 0

)
,

∣∣∣∣λ+ 1 −3
−2 λ

∣∣∣∣ = (λ− 2)(λ+ 3) = 0

Eigenvalues of A are λ1 = 2, λ2 = 3.(
−3 −3
−2 2

)(
x1
x2

)
=

(
0
0

)
=⇒

(
x1
x2

)
= t

(
1
1

)

Thus the eigenspace corresponding to λ1 = 2 has basis
(
1
1

)
The eigenspace

corresponding to λ2 = 3 has basis

−3

2
1


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Equivalent statements
Theorem
For any A ∈ Mn×n, the following statements are equivalent.
(a) A is invertible
(b) Ax = 0 has only the trivial solution
(c) The reduced row echelon form of A is In

(d) A is expressible as a product of elementary matrices
(e) Ax = b is consistent ∀b ∈ Rn

(f) Ax = b has exactly one solution ∀b ∈ Rn

(g) det(A) 6= 0

(h) The column vectors of A are linearly independent
(i) The row vectors of A are linearly independent
(j) The column vectors of A span Rn

(k) The row vectors of A span Rn
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(l) The column vectors of A form a basis for Rn

(m) The row vectors of A form a basis for Rn

(n) A has rank n

(o) A has nullity 0

(p) The orthogonal complement of the null space of A is Rn

(q) The orthogonal complement of the row space of A is {0}
(r) ker(TA) = {0}
(s) R (TA) = {Rn}
(t) TA is surjective
(u) λ = 0 is not an eigenvalue of A

Proof.
The equivalence of (a)(r)(s)(t) was proved just now
We will prove (g) ⇔ (u)
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Equivalent statements

(g) det(A) 6= 0

(u) λ = 0 is not an eigenvalue of A

Proof.
We will prove (g) ⇔ (u)
λ = 0 is a solution of the characteristic equation

λn + α1λ
n−1 + · · ·+ αn = 0

iff αn = 0. On the other hand, setting λ = 0

det(λI −A) = det(−A) = λn + α1λ
n−1 + · · ·+ αn = αn

i.e. (−1)n det(A) = αn.
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Fundamental spaces and decompositions

• Row space, column space, and null space

• Rank and nullity

• Eigenvalues and Eigenvectors

• Diagonalization

• LU-Decompositions

• Find LU-Decompositions
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Matrix diagonalization problem

• A,P ∈ Mn×n, P invertible
• similarity transformation: A 7→ P−1AP

det(P−1AP ) = det(A)

i.e. similarity transformation preserves determinant
• Any property that is preserved by a similarity transformation is called a similarity

invariant and is said to be invariant under similarity
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Similarity invariants

Determinant det(A) = det(P−1AP )

Invertibility A is invertible iff P−1AP is invertible
Rank rank (A) = rank

(
P−1AP

)
Nullity nullity (A) = nullity

(
P−1AP

)
Trace tr (A) = tr

(
P−1AP

)
Characteristic polynomial
Eigenvalues
Eigenspace dimension Eigenspace of A corresponding to λ has same di-

mension as eigenspace of P−1AP corresponding
to λ
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Similar matrices

Definition
A,B ∈ Mn×n, if ∃P invertible s.t. B = P−1AP , then we say B is similar to A.

• If B = P−1AP , let Q = P−1

• A = Q−1BQ

• We usually say that A and B are similar matrices
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Diagonalizable

Definition
A ∈ Mn×n is said to be diagonalizable if it is similar to some diagonal matrix, i.e.
A = P−1DP for a diagonal matrix D. P is said to diagonalize A.
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Diagonalization

• Find n linearly independent eigenvectors of A: v1,v2, . . . , vn

• Construct
P =

(
v1 v2 · · · vn

)
• Then

AP =
(
Av1 Av2 · · · Avn

)
=
(
λ1v1 λ2v2 · · · λnvn

)
= PD,

where D is the diagonal matrix that has λ1, λ2, . . . , λn

• Since v1,v2, . . . , vn are linearly independent, P is invertible, we have
P−1AP = D
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Diagonalization – example

Example

A =

0 0 −2
1 2 1
1 0 3


Characteristic equation of A is (λ− 1)(λ− 2)2 = 0
Bases for the eigenspace

λ1 = 2 : v1 =

−1
0
1

 ,v2 =

0
1
0

 ; λ2 = 1 : v3 =

−2
1
1


P =

−1 0 −2
0 1 1
1 0 1

 , P−1AP =

2 0 0
0 2 0
0 0 1


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Diagonalizable matrices

Theorem
A ∈ Mn×n, A is diagonalizable iff A has n linearly independent eigenvectors.

Proof.
We have just proved ⇐.
⇒ Assume AP = PD, P has columns v1,v2, . . . , vn, D has diagonal entries
λ1, λ2, . . . , λn

AP =
(
Av1 Av2 · · · Avn

)
, PD =

(
λ1v1 λ2v2 · · ·λnvn

)
P invertible implies that v1,v2, . . . , vn are linearly independent.
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Linearly independent eigenvectors

Theorem
• If λ1, λ2, . . . , λk are distinct eigenvalues of A, and if v1,v2, . . . , vk are

corresponding eigenvectors, then {v1,v2, . . . , vk} is a linearly independent set
• If λ1, λ2, . . . , λk are distinct eigenvalues of A, and if S1, S2, . . . , Sk are

corresponding sets of linearly independent eigenvectors, then the union of these
sets is linearly independent.

• An n× n matrix with n distinct eigenvalues is diagonalizable.
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Fundamental spaces and decompositions

• Row space, column space, and null space

• Rank and nullity

• Eigenvalues and Eigenvectors

• Diagonalization

• LU-Decompositions

• Find LU-Decompositions
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Solving linear systems

• Gaussian elimination (reduction to row echelon form) and Gauss–Jordan
elimination (reduction to reduced row echelon form)

• Fine for small-scale problems, not suitable for large-scale problems in which
computer roundoff error, memory usage, and speed are concerns

• We will discuss a method for solving linear systems based on factoring its
coefficient matrix into a product of lower and upper triangular matrices

• LU-decomposition is the basis for many computer algorithms in common use
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LU-decomposition

Definition
A factorization of a square matrix A as

A = LU,

where L is lower triangular and U is upper triangular, is called an LU-decomposition
(or LU-factorization) of A.
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Solving linear systems by LU-decomposition

Step 1. Rewrite the system Ax = b as
LUx = b (1)

Step 2. Define a new n× 1 matrix y by
Ux = y (2)

Step 3. Rewrite (1) as
Ly = b

and solve this system for y
Step 4. Substitute y in (2) and sovle for x.
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Solving linear systems by LU-decomposition

Example
A = LU  2 6 2

−3 −8 0
4 9 2

 =

 2 0 0
−3 1 0
4 −3 7

1 3 1
0 1 3
0 0 1


Ax = b  2 6 2

−3 −8 0
4 9 2

x1
x2
x3

 =

2
2
3


LUx = b  2 0 0

−3 1 0
4 −3 7

1 3 1
0 1 3
0 0 1

x1
x2
x3

 =

2
2
3


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Solving linear systems by LU-decomposition
Example
Ux = y and Ly = b1 3 1

0 1 3
0 0 1

x1
x2
x3

 =

y1
y2
y3

 ,

 2 0 0
−3 1 0
4 −3 7

y1
y2
y3

 =

2
2
3


Solve for y

2y1 = 2
−3y1 + y2 = 2

4y1 − 3y2 + 7y3 = 3
=⇒ y1 = 1, y2 = 5, y3 = 2

Substitute y to Ux = y and solve for x1 3 1
0 1 3
0 0 1

x1
x2
x3

 =

1
5
2

 =⇒ x1 = 2, x2 = −1, x3 = 2
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Solving linear systems by LU-decomposition
• Consider A = LU ∈ M3×3

• Ly = b ℓ11 0 0
ℓ21 ℓ22 0
ℓ31 ℓ32 ℓ33

y1
y2
y3

 =

b1
b2
b3


• Solving for y

ℓ11y1 = b1
ℓ21y1 + ℓ22y2 = b2

ℓ31y1 + ℓ32y2 + ℓ33y3 = b3

=⇒

y1 =
b1
ℓ11

y2 =
1

ℓ22
(b2 − ℓ21y1)

y3 =
1

ℓ33
(b3 − ℓ31y1 − ℓ32y2)

• General formula

yk =
1

ℓkk

(
bk −

k−1∑
s=1

ℓksys

)
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Solving linear systems by LU-decomposition

• Consider A = LU ∈ M3×3

• Ux = y u11 u12 u13
0 u22 u23
0 0 u33

x1
x2
x3

 =

y1
y2
y3


• Solving for x
• General formula

xk =
1

ukk

(
bk −

n∑
s=k+1

uksxs

)
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A sufficient condition
• Not every square matrix has an LU-decomposition

Theorem
If A is a square matrix that can be reduced to a row echelon form U by Gaussian
elimination without row interchanges, then A can be factored as A = LU , where L is
a lower triangular matrix.

Proof.
• U : row echelon form, upper triangular
• Row operations on A can be accomplished by multiplying A on the left by an

appropriate sequence of elementary matrices

Ek · · ·E2E1A = U

• Elementary matrices are invertible

A = E−1
1 E−1

2 · · ·E−1
k U
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A sufficient condition

Proof.
A = E−1

1 E−1
2 · · ·E−1

k U

• U : row echelon form, upper triangular
• L := E−1

1 E−1
2 · · ·E−1

k

• Ej is lower triangular Tutorial 4−−−−−→ E−1
j is lower triangular Tutorial 1−−−−−→ L is lower

triangular
• Since row interchanges are excluded, each Ej results by

• adding a scalar multiple of one row of an identity matrix to a row below
• multiplying one row of an identity matrix by a nonzero scalar
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Fundamental spaces and decompositions

• Row space, column space, and null space

• Rank and nullity

• Eigenvalues and Eigenvectors

• Diagonalization

• LU-Decompositions

• Find LU-Decompositions
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Find LU-decomposition – example
Example

A =

 2 6 2
−3 −8 0
4 9 2


To obtain LU-decomposition, we reduce A to a row echelon form U using Gaussian
elimination

Step 1
R1→ 1

2
R1−−−−−−→

 1 3 1
−3 −8 0
4 9 2

 E1 =


1

2
0 0

0 1 0
0 0 1

 E−1
1 =

2 0 0
0 1 0
0 0 1



Step 2 R2→3R1+R2−−−−−−−−→

1 3 1
0 1 3
4 9 2

 E2 =


1 0 0

3 1 0
0 0 1

 E−1
2 =

 1 0 0
−3 1 0
0 0 1


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Find LU-decomposition – example
Example

Step 3 R3→−4R1+R3−−−−−−−−−→

1 3 1
0 1 3
0 −3 −2

 E3 =

 1 0 0
0 1 0
−4 0 1

 E−1
3 =

1 0 0
0 1 0
4 0 1


Step 4 R3→3R2+R3−−−−−−−−→

1 3 1
0 1 3
0 0 7

 E4 =

1 0 0
0 1 0
0 3 1

 E−1
4 =

1 0 0
0 1 0
0 −3 1


Step 5

R3→ 1
7
R3−−−−−−→

1 3 1
0 1 3
0 0 1

 E4 =


1 0 0
0 1 0

0 3
1

7

 E−1
4 =

1 0 0
0 1 0
0 0 7



L = E−1
1 E−1

2 E−1
3 E−1

4 =

 2 0 0
−3 1 0
4 −3 7


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Find LU-decomposition
Example

L =

 2 0 0
−3 1 0
4 −3 7


• ℓ11 = 2: a multiplier of 1

2
was needed in Step 1 to introduce a leading 1 in the

first row
• ℓ33 = 7: a multiplier of 1

7
was needed in Step 5 to introduce a leading 1 in the

third row
• ℓ22 = 1: a multiplier of 1 to introduce a leading 1 in the second row
• To introduce 0 below the leading 1’s:
• ℓ21 = −3: Step 2 R2 → 3R1 +R2

• ℓ31 = 4: Step 3 R3 → −4R1 +R3

• ℓ32=−3: Step 4 R3 → 3R2 +R3 71 / 80



Find LU-decomposition

• Each position along the main diagonal of L: reciprocal of the multiplier that
introduced the leading 1 in that position in U

• Each position below the main diagonal of L: the negative of the multiplier used to
introduce the zero in that position in U
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Find LU-decomposition – example

Example

A =

6 −2 0
9 −1 1
3 7 5



R1→ 1
6
R1−−−−−−→


1 −1

3
0

9 −1 1
3 7 5

 multiplier 1

6
, first row

6 0 0
∗ ∗ 0
∗ ∗ ∗


R2→−9R1+R2−−−−−−−−−→

R3−3R1

1 −1

3
0

0 2 1
0 8 5

 multiplier −9, position (2, 1),
multiplier −3, position (3, 1)

6 0 0
9 ∗ 0
3 ∗ ∗


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Find LU-decomposition – example
Example

R2→− 1
2
R2−−−−−−−→


1 −1

3
0

0 1
1

2

0 8 5

 multiplier 1

2
, second row

6 0 0
9 2 0
3 ∗ ∗



R3→−8R2+R3−−−−−−−−−→


1 −1

3
0

0 1
1

2
0 0 1

 multiplier −8, position (3, 2)

6 0 0
9 2 0
3 8 ∗



U =


1 −1

3
0

0 1
1

2
0 0 1

 multiplier 1, third row L =

6 0 0
9 2 0
3 8 1


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Another sufficient condition
Definition
A = (aij) ∈ Mn×n, the leading principal minors of A are
det(A1), det(A2), . . . , det(An), where Ak is the top-left k × k submatrix of A

Ak =


a11 a12 · · · a1k
a21 a22 · · · a2k
... ... . . . ...

ak1 ak2 · · · akk


Theorem
Let A = (aij) ∈ Mn×n, if the leading principal minors of A are all nonzero, then there
exists an LU-decomposition A = LU .

Remark
If A is invertible, then the sufficient condition is also necessary.
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Find LU-decomposition – Doolittle decomposition
Example

A =

2 5 6
4 13 19
6 27 50

 = LU, L =

 1 0 0
ℓ21 1 0
ℓ31 ℓ32 1

 , U =

u11 u12 u13
0 u22 u23
0 0 u33


First row

u11 = 2, u12 = 5, u13 = 6
Second row

ℓ21u11 = 4
ℓ21u12 + u22 = 13
ℓ21u13 + u23 = 19

=⇒
ℓ21 = 2
u22 = 12− 2× 5 = 3
u23 = 19− 2× 6 = 7

Third row

ℓ31u11 = 6
ℓ31u12 + ℓ32u22 = 27

ℓ31u13 + ℓ32u23 + u33 = 50
=⇒

ℓ31 = 3

ℓ32 =
27− 3× 5

3
= 4

u33 = 50− 3× 6− 4× 7 = 4
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Find LU-decomposition – Doolittle decomposition

L =


1 0 0 · · · 0
ℓ21 1 0 · · · 0
... ... ... . . . 0

ℓn1 ℓn2 ℓn3 · · · 1

 , U =


u11 u12 u13 · · · u1n
0 u22 u23 · · · u2n
... ... ... . . . ...
0 0 0 · · · unn

 .

For reach row i

• Computing U : for j ≥ i:

uij = aij −
i−1∑
k=1

ℓikukj . (3)

• Computing L: for j < i:

ℓij =
1

ujj

(
aij −

i−1∑
k=1

ℓikukj

)
. (4)
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Find LU-decomposition – Crout decomposition

L =


ℓ11 0 0 · · · 0
ℓ21 ℓ22 0 · · · 0
... ... ... . . . ...

ℓn1 ℓn2 ℓn3 · · · ℓnn

 , U =


1 u12 u13 · · · u1n
0 1 u23 · · · u2n
... ... ... . . . ...
0 0 0 · · · 1

 .

For each column:
• Computing L: for i ≥ j:

ℓij = aij −
j−1∑
k=1

ℓikukj . (5)

• Computing U : for i > j:

uij =
1

ℓjj

(
aij −

j−1∑
k=1

ℓjkuki

)
. (6)

Same result as using Gaussian elimination
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LU-dcomposition is not unique

Example
• Note that Crout decomposition and Doolittle decomposition produce different

matrices
• Another example: A =

(
2 10
7 44

)

L =

1 0

7

2
1

 , U =

(
2 10
0 9

)

L′ =

(
2 0
7 3

)
, U ′ =

(
1 5
0 3

)
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What can we do with LU-dcomposition

• Solving linear systems
• Find inverse

A = LU, A−1 = U−1L−1

• Compute determinant
det(A) = det(L) det(U)

where det(L) and det(U are easy to compute - product of diagonal entries
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