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Course Outline

Vectors and matrices

System of linear equations

Matrix inverse and determinants

Vector spaces and matrix transformations
Fundamental spaces and decompositions
Eulerian tours

Hamiltonian cycles

Midterm

Paths and spanning trees

Trees and networks

Matching
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Recommended reading

® Anton, Howard, and Chris Rorres. Elementary linear algebra: applications version.
John Wiley & Sons, 2013.

® Sections 4.7, 4.8, 4.10, 5.1, 5.2, 9.1
® Free copy online
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https://thuvienso.hoasen.edu.vn/bitstream/handle/123456789/8937/Contents.pdf?sequence=3

Lecture outline

e Row space, column space, and null space
e Rank and nullity

e Eigenvalues and Eigenvectors

e Diagonalization

e LU-Decompositions

e Find LU-Decompositions
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Fundamental spaces and decompositions

e Row space, column space, and null space
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Definitions

Definition

Let A € M,,xn
® Row vectors of A: rows of A
® Row sapce of A: the subspace of R™ spanned by the row vectors of A
® Column vectors of A: columns of A

® Null space of A: the solution space of Ax =0
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Elementary row operations

* Az = 0 has augmented matrix (A|0)|

® By performing row operations, we do not change the solution set of Az =0
® Thus

Theorem

Elementary row operations do not change the null space of a matrix.
By analyzing every elementary row operation, it can be shown that

Theorem

Elementary row operations do not change the row space of a matrix.
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Find basis for null space

3 1 1 1
A‘<5 —11—1)

3xr1+ax2+x3+2x4 = 0
51 —x9o+ax3—24 = 0

Example

The general solution in vector form is given by

2t 3t 2 3
2 e = =t{-=. —-= 1 +s(0, =1, 0, 1
( AN b S) < 7 7 0) S( )

A basis for the solution space, i.e. null space of A is
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Row space and column space of matrix in reduced row echelon form

Theorem

If a matrix R is in row echelon form, then the row vectors with the leading 1's (the
nonzero row vectors) form a basis for the row space of R, and the pivot columns form
a basis for the column space of R.

The theorem implies that

Remark

dimension of row space of R = dimension of column space of R = no of leading 1's
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Row space and column space of matrix in reduced row echelon form

Example

oSO O =
S O =
S O W L
o~ O O
O O O W

® Basis for row space:
(1, -2, 5, 0, 3), (0, 1, 3, 0, 0), (O, 0, 0, 1, 0)
® Basis for column space:

(1, 0, 0, 0), (-2, 1, 0, 0),(0, 0, 1, 0)

10/80



Find basis for row space

Note

Since elementary row operations do not change the row space, we can find a basis for
row space by row reduction.

Example
1 -3 4 -2 5 4 1 -3 4 -2 5 4
A= 2 —6 9 -1 8 2 row reduction R— 0 0 1 3 -2 —6
12 -6 9 -1 9 7 10 0 0 O 1 5
-1 3 -4 2 -5 -4 0O 0 0 O 0 0

A basis for the row space of A:

(1, -3, 4, -2, 5, 4), (0, 0, 1, 3, =2, —6), (0, 0, 0, 0, 1, 5)
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Elementary row operations and column spaces

By, e.g. analyzing each elementary operation:

® Elementary row operations do not alter dependence relationships or linear
independence among the column vectors

Then we have
Theorem
If A, B are row equivalent matrices, then

® A given set of column vectors of A is linearly independent iff the corresponding
column vectors of B are linearly independent

® AA given set of column vectors of A forms a basis for the column space of A iff
the corresponding column vectors of B forms a basis for the column space of B
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Basis for a column space by row reduction

Example
1 -3 4 -2 5 4 1 -3 4 -2 5 4
A= 2 —6 9 —1 8 2 row reduction R 0 0 1 3 -2 —6
12 -6 9 -1 9 7 10 0 0 O 1 5
-1 3 -4 2 -5 -4 0O 0 0 O 0 0

A basis for the column space of A:

(1, 2, 2, -1), (4, 9, 9, —4), (5, 8, 9, —b)
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Fundamental spaces and decompositions

e Rank and nullity
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Rank

Theorem
The row space and the column space of A have the same dimension.

® |t follows from the previous discussions that elementary row operations do not
change the dimension of the row space or of the column space of a matrix.

® let R be a reduced row echelon form of A.

® We have shown that the row and column spaces of R have the same dimension.

Definition

The dimension of the row space (or column space) of a matrix A is called the rank of
A, denoted by rank(A). The dimension of the null space of A is called the nullity of
A, denoted by nullity(A)
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Rank and nullity — example

Example
-1 2 0 4 5 =3 1 0 -4 —-28 —-37 13
A = 3 -7 2 0 1 4 row reduction 01 -2 —-12 —-16 5
12 -5 2 4 6 1 00 O 0 0 O
4 -9 2 —4 -4 7 00 O 0 0 O
e rank(A) =2
e Nullity: dimension of solution space of Az =0
xr1 — 4ag — 28x4 — 3725+ 132¢ = 0

To — 223 — 1224 — 1625 + 52 = O
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Rank and nullity — example
Example

e rank(A4) =2

® Nullity: dimension of solution space of Ax =0

Tl — 41’3 — 28.7}4 — 37£B5 I 13:66 = 0
Tro — 2.7}3 — 12$4 — 16$5 i 5336 = 0

A vector form of the general solution is

1 4 28 37 ~13
o 9 12 16 -5
Sl [T I IS IRl IR (R IOV
4 0 1 0 0
s 0 0 1 0
6 0 0 0 1

1134 L AN — A
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Dimension theorem for matrices

Theorem

If A has n columns, then
rank (A) + nullity (4) =n

number of leading variables = number of leading 1's = rank (A)

number of free variables in general solution of Az = 0 = number of parameters in the
solution = nullity (A)

number of leading variables + number of free variables = n
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Rank and nullity

From the proof we have established

Theorem
Ac men
¢ rank (A) =the number of leading variables in the general solution of Ax = 0

e nullity (A) =the number of parameters in the general solution of Az = 0

Example
A € Msxr
¢ rank (A) = 3, find the number of parameters in the general solution of Az =0

number of parameters = nullity (A) =7 -3 =4
¢ Az = 0 has a two-dimensional solution space, what is rank (A)?

rank (A) =7 —nullity () =7—-2=5
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Dimension theorem for matrices — example

Example
-1 2 0 4 5 =3 1 0 -4 —-28 —-37 13
A= 3 -7 2 0 1 4 row reduction 01 -2 —-12 -—-16 5
- 2 -5 2 4 6 1 00 O 0 0 0
4 -9 2 -4 -4 7 0 0 O 0 0 0

rank (A) + nullity (A) =14+4=6

20/380



Orthogonal complement

Definition
If W is a subspace of R"”, the the set of all vectors in R™ that are orthogonal to every
vector in W is called the orthogonal complement of w, denoted by Wi, ie.

Wt={v | veR", v-w=0Ywe W}
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Orthogonal complement
Theorem
If W is a subspace of R", then
e W+ is a subspace of R
Wnwt = {0}
wht=w

® Take any w,v € W+ and any o € R”. Then for any w € W
(u+v) w=uv- w+v - w=0+0=0, (cu) - w=alu-w)=ax0=0

W is closed under addition and scalar multiplication

WnWt={x|x z=0}={0}

We will only show W C (W+)+: take any w € W, we have w - v = 0 for all
v e W, thus w e (W)L

22/80



Orthogonal complement

Theorem

A € Myuxn, the null space of A and the row space of A are orthogonal complements
in R™.

® Each solution of Az = 0 satisfies a; - & = 0 for all 4, where a; is the ith row of A.

® The solution set of Ax = 0 consists of all vectors in R™ that are orthogonal to
every row vector of A
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Equivalent statements

Theorem

For any A € M, the following statements are equivalent.

(a) A is invertible

(b) Ax = 0 has only the trivial solution

(c) The reduced row echelon form of A is I,

(d) A is expressible as a product of elementary matrices
(e) Ax = b is consistent Vb € R"

(f) Az = b has exactly one solution Yb € R"

(g) det(A) #0

(h) The column vectors of A are linearly independent
(i) The row vectors of A are linearly independent

(J) The column vectors of A span R"

(k) The row vectors of A span R™
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The column vectors of A form a basis for R

0
(m) The row vectors of A form a basis for R™
(n) A has rank n

(o) A has nullity 0

(p) The orthogonal complement of the null space of A is R”
(q)

q) The orthogonal complement of the row space of A is {0}

Let S be the set of row vectors of A, in the last lecture we have proved that
e S spans R" iff det(A) # 0
e S is a basis for R™ iff det(A) # 0
e S is linearly independent iff det(A) # 0
Since det(A) = det(AT) and the row vectors of A are the column vectors of A, we

have the equivalence of (g)(h). (g)(i). (g)(i). (g)(k). (g)(1). (g)(m), gives the
equivalence from (a)-(m)
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Equivalence statements

(b) Az = 0 has only the trivial solution
(n) A has rank n
(o) A has nullity 0

rank (A) + nullity (A) = n proves the equivalence of (n)(o)
(b) = (o) If Az = 0 has only the trivial solution, then the null space is the zero space
(0) = (b) We have proved that nullity (A) =the number of parameters in the general

solution of Az = 0. nullity (A) = 0 implies there are no free variables and the trivial
solution is the only solution.

Now we have equivalence (a)-(0)
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Equivalent statements

(k) The row vectors of A span R"
(p) The orthogonal complement of the null space of A is R”
(q) The orthogonal complement of the row space of A is {0}

We have just proved “the null space of A and the row space of A are orthogonal
complements in R™,” which shows the equivalence of (k)(p) and (k)(q)
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Kernel and range of T4

Definition
T4 : R™ — R™ is a matrix transformation, the kernel of T4, denoted ker(7T4), is the
null space of A. The range of T4, denoted R (T4), is the column space of A

® ker(T4): the set of all vectors in R™ that T4 maps into 0

® R (T4): the set of all vectors in R™ that are images of at least one vector from R”
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TA and A

Theorem
A € Myxn, Ta : R® — R"™, the following statements are equivalent

(a) A is invertible
(b) ker(T) = {0}
(c) R(Ta) =R"
(d)

d) T4 is bijective

(a) < (b) (a) < nullity (A) =0

(a) & (¢) (a) < column vectors of A span R"

(a) = (d) (a) = for any b € R", Ax = b has a solution=- T4 is injective. If T4 is not
injective, Jv1, vy € R” s.t.

Ta(v1) = Ta(va) = Ta(vi — v2) = 0 = nullity (A) #0

a contradiction. Thus, T4 is injective. 29/80



TA and A

Theorem
A € Myxn, Ta : R® — R"™, the following statements are equivalent

(a) A is invertible
(b) ker(Ta) = {0}
(c) R(T4) =R"
(d)

d) T4 is bijective

(d) = (a) T4 is surjective = for any b € R", Az = b has a solution = (a)
Remark
With a bit modification of the proof, we can prove that

T4 is surjective < T4 is injective < T4 is bijective
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The rotation operator on RR? is surjective

Example
® T : Rotation about the origin through ab angle 6

cosf —sinb
1] = <sin9 cos @ >

o det([T]) =1#0

31/80



Fundamental spaces and decompositions

e Eigenvalues and Eigenvectors
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Definition

Definition
Let A € M,,xn, a nonzero x € R™ is called an eigenvector of A (or of the matrix
operator T4) if Ax is a scalar multiple of x, i.e.

Az = \x

for some A € R. X is called an eigenvalue of A (or T4) and x is said to be an
eigenvector corresponding to .

® In general Ax differs from x in both magnitude and direction

® For eigenvectors, the direction is unchanged

33/80



Eigenvector — example

Example
3 0 1y (3
8 —1)\2) \6
1\ . . .
ap = <2> is an eigenvector of A corresponding to A = 3

Ax = 3z
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Characteristic equation

e Ax = \x can be rewritten as Ax = A\l x or
M—-A)x=0

® For \ to be an eigenvalue of A, the equation must have a nonzero solution for x
e Which is true iff det(A\] — A) =0

Theorem
Let A € M,,xn, A is an eigenvalue of A iff

det(M — A) =0

This is called the characteristic equation of A.

35/80



Finding eigenvalues — example

Example
. 3 0 .
Consider A = <8 1), det(A — A) = 0 gives
A—3 0
‘_8 )\+1‘O:>(>\—3)()\+1)0

Thus, the eigenvalues of A are 3 and —1.
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Characteristic polynomial

A—ain  —ai2 -+ —aln
—az1  A—azg - —ap
det(\ — A) = "
—anl —Aanp2 R Ann

With cofactor expansion, the highest power of A appears when multiplying all
diagonal entries
Characteristic equation of A takes the form

N4 N b, =0
The polynomial (left side of the equation)
pN) = A"+ A"

is called the characteristic polynomial of A
Degree n polynomial has at most n distinct roots => at most n distinct
eigenvalues
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Characteristic polynomial — example

Example

A= (g _01> has characteristic polynomial

PN =A=3)A+1)=X>-2)1-3
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Characteristic polynomial — example

Example

Characteristic polynomial of A is

Ao—-1 0
detOM[—A)={0 X —1|=X-8)\24+17\—4
—4 17 A-8

e First we observe that an integer solution (if any) of a polynomial equation with
integer coefficients must be a divisor of the constant term

® |n our case, divisors of —4: +1, 2, +4

® )\ =4 is a solution
A=—4)(A\2—4r+1)=0 19,80



Characteristic polynomial — example

Example

Characteristic polynomial of A is A3 —8\%2 + 17\ — 4

® )\ =4 is a solution
A=4N—4r+1)=0
® Solve the quadratic equation by the quadratic formula
4442 -4
A=——— =22+ V3

® Eigenvalues of A are

M=4, X=2+V3, A=2—-+3
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Eigenvalues of an upper triangular matrix

Example

, the characteristic equation of A is

i

I
S O =
S NN o
w o O

A—1 8 0

detAM —A)=| 0 A=-2 6 |=A-1)A-2)(A-3)

0 0 A—3
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Eigenvalues of triangular matrices

Theorem

If A € M,,xy, is a triangular matrix (upper triangular, lower triangular, diagonal), then
the eigenvalues of A are the entries on the main diagonal of A.
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Equivalent statements

Theorem
Let A € M,,xn, the following statements are equivalent
® )\ js an eigenvalue of A
® )\ is a solution of the characteristic equation det(A\l — A) =0

® The system of equations (A\I — A)x = 0 has nontrivial solutions

There is a nonzero vector x s.t. Ax = \x
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Eigenspace

e Eigenvectors of A corresponding to an eigenvalue A are the nonzero vectors that
satisfy
M—-A)zx=0

® The solution space is called the eigenspace of A corresponding to A consist of
eigenvectors of A corresponding to A and 0
® Eigenspace can also be reviewed as

® the null space of the matrix A\ — A
® the kernel of the matrix operator Th;_ 4 : R — R"
® the set of vectors for which Ax = \x
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Find bases for eigenspaces — example

Example

A—<_1 3), '“1 _3‘—()\—2)(/\+3)—0

(=)= ()

) The eigenspace

Eigenvalues of A are \; =2, A\, = 3.
-3 =3\ (x1) _ (O .
—2 2 o - 0

Thus the eigenspace corresponding to A\; = 2 has basis

3

corresponding to Ao = 3 has basis | 2
1

N\
— =
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Equivalent statements

Theorem

For any A € M, the following statements are equivalent.

(a) A is invertible

(b) Ax = 0 has only the trivial solution

(c) The reduced row echelon form of A is I,

(d) A is expressible as a product of elementary matrices
(e) Ax = b is consistent Vb € R"

(f) Az = b has exactly one solution Yb € R"

(g) det(4) £0

(h) The column vectors of A are linearly independent
(i) The row vectors of A are linearly independent

(j) The column vectors of A span R"

(k) The row vectors of A span R"
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(I) The column vectors of A form a basis for R™
(m) The row vectors of A form a basis for R”
(n) A has rank n
(o) A has nullity 0
(p) The orthogonal complement of the null space of A is R”

) The orthogonal complement of the row space of A is {0}
(r) ker(T4) = {0}
()
(t)

) A

(q

R (Ta) = {R"}

t) T4 is surjective

(u

= 0 is not an eigenvalue of A

The equivalence of (a)(r)(s)(t) was proved just now
We will prove (g) < (u)
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Equivalent statements

(g) det(4) £ 0
(u) A =0 is not an eigenvalue of A

We will prove (g) < (u)
A =0 is a solution of the characteristic equation

AN, =0
iff a, = 0. On the other hand, setting A =0
det(A\] — A) = det(—A) = X"+ a1 A" 1+t ap, = ap

ie. (—1)"det(A) = ay.
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Fundamental spaces and decompositions

e Diagonalization
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Matrix diagonalization problem

® A P& M,xn, P invertible

e similarity transformation: A +— P~1AP
det(P71AP) = det(A)

i.e. similarity transformation preserves determinant

® Any property that is preserved by a similarity transformation is called a similarity
invariant and is said to be invariant under similarity
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Similarity invariants

Determinant det(A) = det(P~1AP)

Invertibility A is invertible iff P~TAP is invertible

Rank rank (A) = rank (P~'AP)

Nullity nullity (A) = nullity (P_lAP)

Trace tr(A) =tr (P1AP)

Characteristic polynomial

Eigenvalues

Eigenspace dimension Eigenspace of A corresponding to A has same di-
mension as eigenspace of P~1 AP corresponding
to A
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Similar matrices

Definition
A, B € My, xp, if AP invertible s.t. B = P~'AP, then we say B is similar to A.

e If B=P'AP let Q= P!
e A=Q'BQ

® We usually say that A and B are similar matrices
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Diagonalizable

Definition
A € M,,«n is said to be diagonalizable if it is similar to some diagonal matrix, i.e.
A = P71DP for a diagonal matrix D. P is said to diagonalize A.

53 /380



Diagonalization

Find n linearly independent eigenvectors of A: v1,vs,...,v,
Construct
P = ('v1 Vo - 'vn)
Then
AP = (A’Ul A’UQ cee A’Un) = ()\1’01 )\2’1)2 e )\nvn) = PD,
where D is the diagonal matrix that has A\, Ag, ..., A,
Since vy, o, ..., v, are linearly independent, P is invertible, we have

PlAP=D
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Diagonalization — example

Example

—

0 0
A=1|1 2
10 3

Characteristic equation of A is (A — 1)(A —2)2 =0
Bases for the eigenspace

-1 0 =%
)\1221’012 0 , V2 = 1 5 /\221:’03: 1
1 0 1
-1 0 -2
1
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Diagonalizable matrices

Theorem
A € My xn, A is diagonalizable iff A has n linearly independent eigenvectors.

We have just proved <.

= Assume AP = PD, P has columns v1,v9,...,v,, D has diagonal entries
A17)\27"'7)\71

AP = (A’Ul A’U2 000 A’Un), PD = ()\1’1}1 )\2’02 /\nvn)
P invertible implies that vy, vo, ..., v, are linearly independent.
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Linearly independent eigenvectors

Theorem
® [f A1, Ao, ..., \p are distinct eigenvalues of A, and if vi,vs,..., v} are
corresponding eigenvectors, then {v1,va,..., vk} is a linearly independent set

® [f A1, Aa,..., N\, are distinct eigenvalues of A, and if S1,S3,...,Sy are
corresponding sets of linearly independent eigenvectors, then the union of these
sets is linearly independent.

® Ann X n matrix with n distinct eigenvalues is diagonalizable.
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Fundamental spaces and decompositions

e LU-Decompositions
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Solving linear systems

Gaussian elimination (reduction to row echelon form) and Gauss—Jordan
elimination (reduction to reduced row echelon form)

Fine for small-scale problems, not suitable for large-scale problems in which
computer roundoff error, memory usage, and speed are concerns

We will discuss a method for solving linear systems based on factoring its
coefficient matrix into a product of lower and upper triangular matrices

LU-decomposition is the basis for many computer algorithms in common use
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LU-decomposition

Definition
A factorization of a square matrix A as

A=LU,

where L is lower triangular and U is upper triangular, is called an LU-decomposition
(or LU-factorization) of A.

60 /80



Step 1.

Step 2.

Step 3.

Step 4.

Solving linear systems by LU-decomposition

Rewrite the system Ax = b as

LUx =b
Define a new n x 1 matrix y by

Ux =y
Rewrite (1) as

Ly=0»b

and solve this system for y

Substitute y in (2) and sovle for x.
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Example
A=LU

LUx =0

Solving linear systems by LU-decomposition
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Solving linear systems by LU-decomposition

Example
Ux=yand Ly=0>

1 3 1 I Y1 2 0 0 Y1 2
01 3 T2 = Y2 s -3 1 0 Y2 = 2
0 0 1 I3 Y3 4 -3 7 Y3 3
Solve for y
2y1 = 2
By+y = 2 = yi=1, y2=5, ys=2
dy1 —3y2 +Tys = 3
Substitute y to Ux = y and solve for x
1 3 1 T 1
01 3 To | =05 = x1=2, z0=-1, x23=2
0 01 3 2
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Solving linear systems by LU-decomposition
® Consider A = LU € M3yx3

s [y=">
iy 0 0 Y1 by
(le ly 0 ) (ZD) = (b2)

l31 f32 f33) \y3 b3

® Solving for y
luyy = by " 311

loayr +looy2s = by = y2 = % — (b2 — la131)
O31y1 + L32y2 + l33y3 = b3 12
ys = @(53 — {3191 — l3212)

General formula

Ekk (bk - Z stys>
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Solving linear systems by LU-decomposition

Consider A = LU € Msxs

Ux=1y
Uil u12 U3 z1 n
0wz was x2 | = | v2
0 0 |uss x3 Y3

Solving for x

General formula
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A sufficient condition
® Not every square matrix has an LU-decomposition

Theorem

If A is a square matrix that can be reduced to a row echelon form U by Gaussian
elimination without row interchanges, then A can be factored as A = LU, where L is
a lower triangular matrix.

® [: row echelon form, upper triangular

® Row operations on A can be accomplished by multiplying A on the left by an
appropriate sequence of elementary matrices

By EsE1A=U
® Elementary matrices are invertible

A=E'E;'. E'U
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A sufficient condition

A=E'E;t. - E'U

U: row echelon form, upper triangular
L:=E'E;'. . B!

. - Tutorial 4 -1 . . Tutorial 1 -
Ej is lower triangular ——— E; " is lower triangular ———— L is lower

triangular
Since row interchanges are excluded, each Ej results by

® adding a scalar multiple of one row of an identity matrix to a row below
® multiplying one row of an identity matrix by a nonzero scalar
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Fundamental spaces and decompositions

e Find LU-Decompositions
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Find LU-decomposition — example

Example
2 6 2
A=|(-3 -8 0
4 9 2

To obtain LU-decomposition, we reduce A to a row echelon form U using Gaussian
elimination

1
. 1 3 1 5; 00 2 0 0
1= 5 R 2 1

Step 1 -3 -8 0 FE = E/ =101 0
4 9 2 gy 00 1

0 1
13 1 100 1 00
Step2 [2utREZ 4 4 3) g, — - Ey'=(-3 10
49 2 0 0 1
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Find LU-decomposition — example

Example

301 1 00 100
Step3 et g 3 3 ) Ey=[0 1 0] E'=[0 10
0 -3 -2 4 0 1 4 0 1
131 100 1 0 0
Step 4 ~ fesfetfs o g Es=|0 10| Ef=(0 1 o0
007 03 1 0 -3 1

100
peoin, (131 01 0 [t
Step 5 01 3 Ey = E =1010
00 1 03 L 00 7

7

2 0 0

L=E'E;'EJ'E;'=(1-3 1 0

4 -3 7
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Find LU-decomposition

Example
2 0 O
L=]1-3 1 0
4 -3 7

® /11 = 2: a multiplier of % was needed in Step 1 to introduce a leading 1 in the
first row
® (33 = 7: a multiplier of % was needed in Step 5 to introduce a leading 1 in the
third row
® (99 = 1: a multiplier of 1 to introduce a leading 1 in the second row
® To introduce 0 below the leading 1's:
® /oy = —3: Step 2 Ry —» 3R + R2
® (31 =4: Step 3 R3 —+ —4R; + R3
® (35 3. Step 4 R3 — 3Ry + R3 71/80



Find LU-decomposition

® Each position along the main diagonal of L: reciprocal of the multiplier that
introduced the leading 1 in that position in U

® Fach position below the main diagonal of L: the negative of the multiplier used to
introduce the zero in that position in U
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Find LU-decomposition — example

Example
6 —
A=19 -1 1
3 7 5
1
1 —= 0
RlﬁéRl 3 . . a O
multiplier —, first row 0
9 —1 1 N
3 7 5
1
n —3 0 6 0
e e N multiplier —9, position (2, 1), 9
R3—3R, 0 2 . "
0 8 5 multiplier —3, position (3, 1) 3 x %
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Find LU-decomposition — example

Example
1 L 0
Res— LR, 3 ) 1 6 0 0
2 1 = multiplier i,second row 9 2 0
2 3 *
0 8 5
1 L 0
n 3 6 0 0
SEnaLLAZL N O multiplier —8, position (3,2) 9 2 0
2 3 8 «x
0 0 1
1
1 -3 0 6 0 0
U= 0 1 1 multiplier 1, third row L=19 2 0
2 3 8 1
0 0 1
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Another sufficient condition
Definition

A = (aij) € My, xn, the leading principal minors of A are
det(Aq),det(As),...,det(A,,), where Ay is the top-left k x k submatrix of A

ail a2 - Qg

a1 G2 - G2k
A =

ag1 Qg2 - Qgk

Theorem

Let A = (aij) € My, xn, if the leading principal minors of A are all nonzero, then there
exists an LU-decomposition A = LU.

Remark
If A is invertible, then the sufficient condition is also necessary.
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Find LU-decomposition — Doolittle decomposition

Example
2 5 6 1 0
A=14 13 19| =LU, L= |45 1
6 27 50 l31 f32
First row
U] =2, up =95,
Second row 1 12
lru;n = 4 U1
loruin +ue = 13 = ua
lo1uis +ug3 = 19 U23
Third row
l3iur = 6 b1
l31urp + l3ouze = 27 = [39
l31u13 + €32u23 +u33 = 50

0

0
1

Ul U2
, U= 0 w99
0 0

U13
u23
u33

U13:6

2
12-2x5=3
19-2x6=7

3
2_
7 3><5:4

3
50—-3x6—-4xT7=4
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Find LU-decomposition — Doolittle decomposition

1 0 0 -0 U] U2 U3 Uln
l21 1 0 -0 0 wop wa3z -+ w2,
L = s U e
.0 : : : . :
gnl an €n3 -1 0 0 0 o Upn
For reach row ¢
e Computing U: for j > i:
i—1
Ujj = Qij — Zeikukj- (3)
k=1

® Computing L: for j < 4:
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Find LU-decomposition — Crout decomposition

611 0 0 s 0 1 ui2 U3 -+ Uln
621 522 0 ce 0 0 1 U3 - U2p
fnl €n2 £n3 o gnn 0 0 0 te 1

For each column:
e Computing L: for i > j:

7j—1
fij = aij — Z&kuk] (5)
k=1
e Computing U: for i > j:
1 =
’U,Z'j = 7 (aij — Z@kukl> . (6)
77 k=1

Same result as using Gaussian elimination
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LU-dcomposition is not unique

Example
® Note that Crout decomposition and Doolittle decomposition produce different
matrices
2 10
® Another example: A = <7 44)
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What can we do with LU-dcomposition

® Solving linear systems

® Find inverse
A=LU, A'l=vUu"'L7!

® Compute determinant
det(A) = det(L) det(U)

where det(L) and det(U are easy to compute - product of diagonal entries
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