Algebra and Discrete Mathematics ADM

Bc. Xiaolu Hou, PhD.

FIIT, STU xiaolu.hou @ stuba.sk

Course Outline

- Vectors and matrices
- System of linear equations
- Matrix inverse and determinants
- Vector spaces and matrix transformations
- Fundamental spaces and decompositions
- Eulerian tours
- Hamiltonian cycles
- Midterm
- Paths and spanning trees
- Trees and networks
- Matching

Recommended reading

- Anton, Howard, and Chris Rorres. Elementary linear algebra: applications version. John Wiley & Sons, 2013.
 - Sections 4.7, 4.8, 4.10, 5.1, 5.2, 9.1
 - Free copy online

Lecture outline

- Row space, column space, and null space
- Rank and nullity
- Eigenvalues and Eigenvectors
- Diagonalization
- LU-Decompositions
- Find LU-Decompositions

Fundamental spaces and decompositions

- Row space, column space, and null space
- Rank and nullity
- Eigenvalues and Eigenvectors
- Diagonalization
- LU-Decompositions
- Find LU-Decompositions

Definitions

Definition

Let $A \in \mathcal{M}_{m \times n}$

- Row vectors of A: rows of A
- Row sapce of A: the subspace of \mathbb{R}^n spanned by the row vectors of A
- Column vectors of A: columns of A
- *Null space* of A: the solution space of Ax = 0

Elementary row operations

- $Ax = \mathbf{0}$ has augmented matrix $(A|\mathbf{0})$
- By performing row operations, we do not change the solution set of Ax=0
- Thus

Theorem

Elementary row operations do not change the null space of a matrix.

By analyzing every elementary row operation, it can be shown that

Theorem

Elementary row operations do not change the row space of a matrix.

Find basis for null space

Example

$$A = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 5 & -1 & 1 & -1 \end{pmatrix}$$
$$3x_1 + x_2 + x_3 + x_4 = 0$$
$$5x_1 - x_2 + x_3 - x_4 = 0$$

The general solution in *vector form* is given by

$$\left(-\frac{2t}{7}, -s - \frac{3t}{7}, t, s\right) = t\left(-\frac{2}{7}, -\frac{3}{7}, 1, 0\right) + s\left(0, -1, 0, 1\right)$$

A basis for the solution space, i.e. null space of A is

$$\left\{ \left(-\frac{2}{7}, -\frac{3}{7}, 1, 0 \right), (0, -1, 0, 1) \right\}$$

Row space and column space of matrix in reduced row echelon form

Theorem

If a matrix R is in row echelon form, then the row vectors with the leading 1's (the nonzero row vectors) form a basis for the row space of R, and the pivot columns form a basis for the column space of R.

The theorem implies that

Remark

dimension of row space of $R=\mbox{dimension}$ of column space of $R=\mbox{no}$ of leading 1's

Row space and column space of matrix in reduced row echelon form

Example

$$R = \begin{pmatrix} 1 & -2 & 5 & 0 & 3 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• Basis for row space:

$$(1, -2, 5, 0, 3), (0, 1, 3, 0, 0), (0, 0, 0, 1, 0)$$

• Basis for column space:

$$(1, 0, 0, 0), (-2, 1, 0, 0), (0, 0, 1, 0)$$

Find basis for row space

Note

Since elementary row operations do not change the row space, we can find a basis for row space by row reduction.

Example

$$A = \begin{pmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{pmatrix} \xrightarrow{\text{row reduction}} R = \begin{pmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

A basis for the row space of *A*:

$$(1, -3, 4, -2, 5, 4), (0, 0, 1, 3, -2, -6), (0, 0, 0, 1, 5)$$

Elementary row operations and column spaces

By, e.g. analyzing each elementary operation:

• Elementary row operations do not alter dependence relationships or linear independence among the column vectors

Then we have

Theorem

If A, B are row equivalent matrices, then

- A given set of column vectors of A is linearly independent iff the corresponding column vectors of B are linearly independent
- AA given set of column vectors of A forms a basis for the column space of A iff the corresponding column vectors of B forms a basis for the column space of B

Basis for a column space by row reduction

Example

$$A = \begin{pmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{pmatrix} \xrightarrow{\text{row reduction}} R = \begin{pmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

A basis for the column space of A:

$$(1, 2, 2, -1), (4, 9, 9, -4), (5, 8, 9, -5)$$

Fundamental spaces and decompositions

- Row space, column space, and null space
- Rank and nullity
- Eigenvalues and Eigenvectors
- Diagonalization
- LU-Decompositions
- Find LU-Decompositions

Rank

Theorem

The row space and the column space of A have the same dimension.

Proof.

- It follows from the previous discussions that elementary row operations do not change the dimension of the row space or of the column space of a matrix.
- Let R be a reduced row echelon form of A.
- ullet We have shown that the row and column spaces of R have the same dimension.

Definition

The dimension of the row space (or column space) of a matrix A is called the rank of A, denoted by $\operatorname{rank}(A)$. The dimension of the null space of A is called the nullity of A, denoted by $\operatorname{nullity}(A)$

Rank and nullity - example

Example

- $\operatorname{rank}(A) = 2$
- Nullity: dimension of solution space of Ax = 0

$$x_1 - 4x_3 - 28x_4 - 37x_5 + 13x_6 = 0$$

$$x_2 - 2x_3 - 12x_4 - 16x_5 + 5x_6 = 0$$

Rank and nullity – example

Example

- $\operatorname{rank}(A) = 2$
- Nullity: dimension of solution space of Ax = 0

$$x_1 - 4x_3 - 28x_4 - 37x_5 + 13x_6 = 0$$

$$x_2 - 2x_3 - 12x_4 - 16x_5 + 5x_6 = 0$$

A vector form of the general solution is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = r \begin{pmatrix} 4 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 28 \\ 12 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 37 \\ 16 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + u \begin{pmatrix} -13 \\ -5 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Dimension theorem for matrices

Theorem

If A has n columns, then

$$\operatorname{rank}(A) + \operatorname{nullity}(A) = n$$

Proof.

number of leading variables = number of leading 1's = rank(A)

number of free variables in general solution of Ax = 0 = number of parameters in the solution = $\operatorname{nullity}(A)$

number of leading variables + number of free variables = n

Rank and nullity

From the proof we have established

Theorem

 $A \in \mathcal{M}_{m \times n}$

- $\operatorname{rank}(A)$ = the number of leading variables in the general solution of Ax = 0
- $\operatorname{nullity}(A) =$ the number of parameters in the general solution of $Ax = \mathbf{0}$

Example

 $A \in \mathcal{M}_{5 \times 7}$

ullet rank (A)=3, find the number of parameters in the general solution of $Aoldsymbol{x}=oldsymbol{0}$

number of parameters = nullity
$$(A) = 7 - 3 = 4$$

• Ax = 0 has a two-dimensional solution space, what is rank (A)?

$$rank(A) = 7 - nullity(A) = 7 - 2 = 5$$

Dimension theorem for matrices – example

Example

rank(A) + nullity(A) = 1 + 4 = 6

Orthogonal complement

Definition

If W is a subspace of \mathbb{R}^n , the the set of all vectors in \mathbb{R}^n that are orthogonal to every vector in W is called the *orthogonal complement* of w, denoted by W^{\perp} , i.e.

$$W^{\perp} = \{ \boldsymbol{v} \mid \boldsymbol{v} \in \mathbb{R}^n, \ \boldsymbol{v} \cdot \boldsymbol{w} = 0 \ \forall \boldsymbol{w} \in W \}$$

Orthogonal complement

Theorem

If W is a subspace of \mathbb{R}^n , then

- W^{\perp} is a subspace of \mathbb{R}^n
- $W \cap W^{\perp} = \{0\}$
- $(W^{\perp})^{\perp} = W$

Proof

• Take any $u, v \in W^{\perp}$ and any $\alpha \in \mathbb{R}^n$. Then for any $w \in W$

$$(\boldsymbol{u} + \boldsymbol{v}) \cdot \boldsymbol{w} = \boldsymbol{u} \cdot \boldsymbol{w} + \boldsymbol{v} \cdot \boldsymbol{w} = 0 + 0 = 0, \quad (\alpha \boldsymbol{u}) \cdot \boldsymbol{w} = \alpha (\boldsymbol{u} \cdot \boldsymbol{w}) = \alpha \times 0 = 0$$

 W^{\perp} is closed under addition and scalar multiplication

- $W \cap W^{\perp} = \{ x \mid x \cdot x = 0 \} = \{ 0 \}$
- We will only show $W\subseteq (W^\perp)^\perp$: take any ${\boldsymbol w}\in W$, we have ${\boldsymbol w}\cdot{\boldsymbol v}=0$ for all ${\boldsymbol v}\in W^\perp$, thus ${\boldsymbol w}\in (W^\perp)^\perp$.

Orthogonal complement

Theorem

 $A \in \mathcal{M}_{m \times n}$, the null space of A and the row space of A are orthogonal complements in \mathbb{R}^n .

Proof.

- Each solution of Ax = 0 satisfies $a_i \cdot x = 0$ for all i, where a_i is the ith row of A.
- The solution set of $Ax=\mathbf{0}$ consists of all vectors in \mathbb{R}^n that are orthogonal to every row vector of A

Equivalent statements

Theorem

For any $A \in \mathcal{M}_{n \times n}$, the following statements are equivalent.

- (a) A is invertible
- (b) $Ax = \mathbf{0}$ has only the trivial solution
- (c) The reduced row echelon form of A is I_n
- (d) A is expressible as a product of elementary matrices
- (e) $A\boldsymbol{x} = \boldsymbol{b}$ is consistent $\forall \boldsymbol{b} \in \mathbb{R}^n$
- (f) $A\boldsymbol{x} = \boldsymbol{b}$ has exactly one solution $\forall \boldsymbol{b} \in \mathbb{R}^n$
- (g) $\det(A) \neq 0$
- (h) The column vectors of A are linearly independent
- (i) The row vectors of A are linearly independent
- (j) The column vectors of A span \mathbb{R}^n
- (k) The row vectors of A span \mathbb{R}^n

- (1) The column vectors of A form a basis for \mathbb{R}^n
- (m) The row vectors of A form a basis for \mathbb{R}^n
- (n) A has rank n
- (o) A has nullity 0
- (p) The orthogonal complement of the null space of A is \mathbb{R}^n
- (q) The orthogonal complement of the row space of A is $\{\mathbf{0}\}$

Proof.

Let S be the set of row vectors of A, in the last lecture we have proved that

- S spans \mathbb{R}^n iff $\det(A) \neq 0$
- S is a basis for \mathbb{R}^n iff $\det(A) \neq 0$
- S is linearly independent iff $det(A) \neq 0$

Since $\det(A) = \det(A^{\top})$ and the row vectors of A are the column vectors of A, we have the equivalence of (g)(h), (g)(i), (g)(j), (g)(k), (g)(l), (g)(m), gives the equivalence from (a)-(m)

Equivalence statements

- (b) Ax = 0 has only the trivial solution
- (n) A has rank n
- (o) A has nullity 0

Proof.

rank(A) + nullity(A) = n proves the equivalence of (n)(o)

- $(b)\Rightarrow (o)$ If Ax=0 has only the trivial solution, then the null space is the zero space
- $(o) \Rightarrow (b)$ We have proved that $\operatorname{nullity}(A)$ =the number of parameters in the general solution of $Ax = \mathbf{0}$. $\operatorname{nullity}(A) = 0$ implies there are no free variables and the trivial solution is the only solution.

Now we have equivalence (a)-(o)

Equivalent statements

- (k) The row vectors of A span \mathbb{R}^n
- (p) The orthogonal complement of the null space of A is \mathbb{R}^n
- (q) The orthogonal complement of the row space of A is $\{0\}$

Proof.

We have just proved "the null space of A and the row space of A are orthogonal complements in \mathbb{R}^n ," which shows the equivalence of (k)(p) and (k)(q)

Kernel and range of T_A

Definition

 $T_A: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation, the *kernel* of T_A , denoted $\ker(T_A)$, is the null space of A. The *range* of T_A , denoted $\operatorname{R}(T_A)$, is the column space of A

- $\ker(T_A)$: the set of all vectors in \mathbb{R}^n that T_A maps into $\mathbf{0}$
- $\mathrm{R}\left(T_{A}\right)$: the set of all vectors in \mathbb{R}^{m} that are images of at least one vector from \mathbb{R}^{n}

T_A and A

Theorem

 $A \in \mathcal{M}_{n \times n}$, $T_A : \mathbb{R}^n \to \mathbb{R}^n$, the following statements are equivalent

- (a) A is invertible
- (b) $\ker(T_A) = \{0\}$
- (c) $R(T_A) = \mathbb{R}^n$
- (d) T_A is bijective

- $(a) \Leftrightarrow (b) (a) \Leftrightarrow \text{nullity}(A) = 0$
- $(a) \Leftrightarrow (c) (a) \Leftrightarrow \text{column vectors of } A \text{ span } \mathbb{R}^n$
- $(a) \Rightarrow (d)$ $(a) \Rightarrow$ for any $b \in \mathbb{R}^n$, Ax = b has a solution $\Rightarrow T_A$ is injective. If T_A is not

injective,
$$\exists oldsymbol{v}_1, oldsymbol{v}_2 \in \mathbb{R}^n$$
 s.t.

$$T_A(\boldsymbol{v}_1) = T_A(\boldsymbol{v}_2) \Rightarrow T_A(\boldsymbol{v}_1 - \boldsymbol{v}_2) = \boldsymbol{0} \Rightarrow \text{nullity}(A) \neq 0$$

a contradiction. Thus, T_A is injective.

T_A and A

Theorem

 $A \in \mathcal{M}_{n \times n}$, $T_A : \mathbb{R}^n \to \mathbb{R}^n$, the following statements are equivalent

- (a) A is invertible
- (b) $\ker(T_A) = \{0\}$
- (c) $R(T_A) = \mathbb{R}^n$
- (d) T_A is bijective

Proof

$$(d)\Rightarrow(a)$$
 T_A is surjective \Rightarrow for any $m{b}\in\mathbb{R}^n$, $Am{x}=m{b}$ has a solution $\Rightarrow(a)$

Remark

With a bit modification of the proof, we can prove that

 T_A is surjective $\Leftrightarrow T_A$ is injective $\Leftrightarrow T_A$ is bijective

The rotation operator on RR^2 is surjective

Example

ullet T : Rotation about the origin through ab angle heta

$$[T] = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

• $\det([T]) = 1 \neq 0$

Fundamental spaces and decompositions

- Row space, column space, and null space
- Rank and nullity
- Eigenvalues and Eigenvectors
- Diagonalization
- LU-Decompositions
- Find LU-Decompositions

Definition

Definition

Let $A \in \mathcal{M}_{n \times n}$, a nonzero $x \in \mathbb{R}^n$ is called an *eigenvector* of A (or of the matrix operator T_A) if Ax is a scalar multiple of x, i.e.

$$Ax = \lambda x$$

for some $\lambda \in \mathbb{R}$. λ is called an *eigenvalue* of A (or T_A) and x is said to be an *eigenvector corresponding to* λ .

- ullet In general Ax differs from x in both magnitude and direction
- For eigenvectors, the direction is unchanged

Eigenvector – example

Example

$$\begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

$$oldsymbol{x} = egin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 is an eigenvector of A corresponding to $\lambda = 3$

$$Ax = 3x$$

Characteristic equation

• $Ax = \lambda x$ can be rewritten as $Ax = \lambda Ix$ or

$$(\lambda I - A)\boldsymbol{x} = \mathbf{0}$$

- ullet For λ to be an eigenvalue of A, the equation must have a **nonzero** solution for $oldsymbol{x}$
- Which is true iff $det(\lambda I A) = 0$

Theorem

Let $A \in \mathcal{M}_{n \times n}$, λ is an eigenvalue of A iff

$$\det(\lambda I - A) = 0$$

This is called the characteristic equation of A.

Finding eigenvalues – example

Example

Consider
$$A=\begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$$
, $\det(\lambda I-A)=0$ gives

$$\begin{vmatrix} \lambda - 3 & 0 \\ -8 & \lambda + 1 \end{vmatrix} = 0 \Longrightarrow (\lambda - 3)(\lambda + 1) = 0$$

Thus, the eigenvalues of A are 3 and -1.

Characteristic polynomial

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

- With cofactor expansion, the highest power of λ appears when multiplying all diagonal entries
- Characteristic equation of A takes the form

$$\lambda^n + \alpha_1 \lambda^{n-1} + \dots + \alpha_n = 0$$

The polynomial (left side of the equation)

$$p(\lambda) = \lambda^n + \alpha_1 \lambda^{n-1} + \dots + \alpha_n$$

is called the *characteristic polynomial* of A

• Degree n polynomial has at most n distinct roots \Longrightarrow at most n distinct eigenvalues

Characteristic polynomial – example

Example

$$A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$$
 has characteristic polynomial

$$p(\lambda) = (\lambda - 3)(\lambda + 1) = \lambda^2 - 2\lambda - 3$$

Characteristic polynomial – example

Example

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{pmatrix}$$

Characteristic polynomial of A is

$$\det(\lambda I - A) = \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{vmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4$$

- First we observe that an integer solution (if any) of a polynomial equation with integer coefficients must be a divisor of the constant term
- In our case, divisors of -4: ± 1 , ± 2 , ± 4
- $\lambda = 4$ is a solution

$$(\lambda - 4)(\lambda^2 - 4\lambda + 1) = 0$$

Characteristic polynomial – example

Example

Characteristic polynomial of A is $\lambda^3 - 8\lambda^2 + 17\lambda - 4$

• $\lambda = 4$ is a solution

$$(\lambda - 4)(\lambda^2 - 4\lambda + 1) = 0$$

• Solve the quadratic equation by the quadratic formula

$$\lambda = \frac{4 \pm \sqrt{4^2 - 4}}{2} = 2 \pm \sqrt{3}$$

ullet Eigenvalues of A are

$$\lambda_1 = 4, \quad \lambda_2 = 2 + \sqrt{3}, \quad \lambda_3 = 2 - \sqrt{3}$$

Eigenvalues of an upper triangular matrix

Example

$$A = \begin{pmatrix} 1 & 8 & 0 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{pmatrix}$$
, the characteristic equation of A is

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & 8 & 0 \\ 0 & \lambda - 2 & 6 \\ 0 & 0 & \lambda - 3 \end{vmatrix} = (\lambda - 1)(\lambda - 2)(\lambda - 3)$$

Eigenvalues of triangular matrices

Theorem

If $A \in \mathcal{M}_{n \times n}$ is a triangular matrix (upper triangular, lower triangular, diagonal), then the eigenvalues of A are the entries on the main diagonal of A.

Equivalent statements

Theorem

Let $A \in \mathcal{M}_{n \times n}$, the following statements are equivalent

- λ is an eigenvalue of A
- λ is a solution of the characteristic equation $\det(\lambda I A) = 0$
- The system of equations $(\lambda I A)x = 0$ has nontrivial solutions
- There is a nonzero vector x s.t. $Ax = \lambda x$

Eigenspace

• Eigenvectors of A corresponding to an eigenvalue λ are the **nonzero** vectors that satisfy

$$(\lambda I - A)\boldsymbol{x} = \mathbf{0}$$

- The solution space is called the *eigenspace* of A corresponding to λ consist of eigenvectors of A corresponding to λ and $\mathbf{0}$
- Eigenspace can also be reviewed as
 - the null space of the matrix $\lambda I A$
 - the kernel of the matrix operator $T_{\lambda I-A}: \mathbb{R}^n \to \mathbb{R}^n$
 - the set of vectors for which $Ax = \lambda x$

Find bases for eigenspaces – example

Example

$$A = \begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix}, \quad \begin{vmatrix} \lambda+1 & -3 \\ -2 & \lambda \end{vmatrix} = (\lambda-2)(\lambda+3) = 0$$

Eigenvalues of A are $\lambda_1=2$, $\lambda_2=3$.

$$\begin{pmatrix} -3 & -3 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Thus the eigenspace corresponding to $\lambda_1=2$ has basis $\begin{pmatrix}1\\1\end{pmatrix}$ The eigenspace

corresponding to
$$\lambda_2=3$$
 has basis $\begin{pmatrix} -\frac{3}{2}\\1 \end{pmatrix}$

Equivalent statements

Theorem

For any $A \in \mathcal{M}_{n \times n}$, the following statements are equivalent.

- (a) A is invertible
- (b) $Ax = \mathbf{0}$ has only the trivial solution
- (c) The reduced row echelon form of A is I_n
- (d) A is expressible as a product of elementary matrices
- (e) $A \boldsymbol{x} = \boldsymbol{b}$ is consistent $\forall \boldsymbol{b} \in \mathbb{R}^n$
- (f) $A \boldsymbol{x} = \boldsymbol{b}$ has exactly one solution $\forall \boldsymbol{b} \in \mathbb{R}^n$
- (g) $\det(A) \neq 0$
- (h) The column vectors of A are linearly independent
- (i) The row vectors of A are linearly independent
- (j) The column vectors of A span \mathbb{R}^n
- (k) The row vectors of A span \mathbb{R}^n

- (I) The column vectors of A form a basis for \mathbb{R}^n
- (m) The row vectors of A form a basis for \mathbb{R}^n
- (n) A has rank n
- (o) A has nullity 0
- (p) The orthogonal complement of the null space of A is \mathbb{R}^n
- (q) The orthogonal complement of the row space of A is $\{0\}$
- (r) $\ker(T_A) = \{0\}$
- (s) $R(T_A) = \{\mathbb{R}^n\}$
- (t) T_A is surjective
- (u) $\lambda = 0$ is not an eigenvalue of A

Proof

The equivalence of (a)(r)(s)(t) was proved just now We will prove $(g) \Leftrightarrow (u)$

Equivalent statements

- (g) $det(A) \neq 0$
- (u) $\lambda = 0$ is not an eigenvalue of A

Proof.

We will prove $(g) \Leftrightarrow (u)$

 $\lambda=0$ is a solution of the characteristic equation

$$\lambda^n + \alpha_1 \lambda^{n-1} + \dots + \alpha_n = 0$$

iff $\alpha_n = 0$. On the other hand, setting $\lambda = 0$

$$\det(\lambda I - A) = \det(-A) = \lambda^n + \alpha_1 \lambda^{n-1} + \dots + \alpha_n = \alpha_n$$

i.e. $(-1)^n \det(A) = \alpha_n$.

Fundamental spaces and decompositions

- Row space, column space, and null space
- Rank and nullity
- Eigenvalues and Eigenvectors
- Diagonalization
- LU-Decompositions
- Find LU-Decompositions

Matrix diagonalization problem

- $A, P \in \mathcal{M}_{n \times n}, P$ invertible
- similarity transformation: $A \mapsto P^{-1}AP$

$$\det(P^{-1}AP) = \det(A)$$

i.e. similarity transformation preserves determinant

• Any property that is preserved by a similarity transformation is called a *similarity* invariant and is said to be invariant under similarity

Similarity invariants

Determinant	$\det(A) = \det(P^{-1}AP)$
Invertibility	A is invertible iff $P^{-1}AP$ is invertible
Rank	$\operatorname{rank}(A) = \operatorname{rank}(P^{-1}AP)$
Nullity	$\operatorname{nullity}(A) = \operatorname{nullity}(P^{-1}AP)$
Trace	$\operatorname{tr}(A) = \operatorname{tr}(P^{-1}AP)$
Characteristic polynomial	
Eigenvalues	
Eigenspace dimension	Eigenspace of A corresponding to λ has same di-
	mension as eigenspace of $P^{-1}AP$ corresponding
	to λ

Similar matrices

Definition

 $A, B \in \mathcal{M}_{n \times n}$, if $\exists P$ invertible s.t. $B = P^{-1}AP$, then we say B is similar to A.

- If $B = P^{-1}AP$, let $Q = P^{-1}$
- $A = Q^{-1}BQ$
- ullet We usually say that A and B are similar matrices

Diagonalizable

Definition

 $A \in \mathcal{M}_{n \times n}$ is said to be diagonalizable if it is similar to some diagonal matrix, i.e.

 $A = P^{-1}DP$ for a diagonal matrix D. P is said to diagonalize A.

Diagonalization

- Find n linearly independent eigenvectors of A: v_1, v_2, \ldots, v_n
- Construct

$$P = \begin{pmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_n \end{pmatrix}$$

Then

$$AP = (A\mathbf{v}_1 \ A\mathbf{v}_2 \ \cdots \ A\mathbf{v}_n) = (\lambda_1\mathbf{v}_1 \ \lambda_2\mathbf{v}_2 \ \cdots \ \lambda_n\mathbf{v}_n) = PD,$$

where D is the diagonal matrix that has $\lambda_1, \lambda_2, \dots, \lambda_n$

• Since v_1, v_2, \ldots, v_n are linearly independent, P is invertible, we have $P^{-1}AP = D$

Diagonalization – example

Example

$$A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$$

Characteristic equation of A is $(\lambda - 1)(\lambda - 2)^2 = 0$ Bases for the eigenspace

$$\lambda_1 = 2 : \boldsymbol{v}_1 = \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \boldsymbol{v}_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}; \quad \lambda_2 = 1 : \boldsymbol{v}_3 = \begin{pmatrix} -2\\1\\1 \end{pmatrix}$$

$$P = \begin{pmatrix} -1 & 0 & -2\\0 & 1 & 1\\1 & 0 & 1 \end{pmatrix}, \quad P^{-1}AP = \begin{pmatrix} 2 & 0 & 0\\0 & 2 & 0\\0 & 0 & 1 \end{pmatrix}$$

Diagonalizable matrices

Theorem

 $A \in \mathcal{M}_{n \times n}$, A is diagonalizable iff A has n linearly independent eigenvectors.

Proof.

We have just proved \Leftarrow .

 \Rightarrow Assume AP=PD, P has columns v_1,v_2,\ldots,v_n , D has diagonal entries $\lambda_1,\lambda_2,\ldots,\lambda_n$

$$AP = \begin{pmatrix} Av_1 & Av_2 & \cdots & Av_n \end{pmatrix}, \quad PD = \begin{pmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \cdots \lambda_n v_n \end{pmatrix}$$

P invertible implies that v_1, v_2, \ldots, v_n are linearly independent.

Linearly independent eigenvectors

Theorem

- If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct eigenvalues of A, and if v_1, v_2, \ldots, v_k are corresponding eigenvectors, then $\{v_1, v_2, \ldots, v_k\}$ is a linearly independent set
- If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct eigenvalues of A, and if S_1, S_2, \ldots, S_k are corresponding sets of linearly independent eigenvectors, then the union of these sets is linearly independent.
- An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Fundamental spaces and decompositions

- Row space, column space, and null space
- Rank and nullity
- Eigenvalues and Eigenvectors
- Diagonalization
- LU-Decompositions
- Find LU-Decompositions

Solving linear systems

- Gaussian elimination (reduction to row echelon form) and Gauss–Jordan elimination (reduction to reduced row echelon form)
- Fine for small-scale problems, not suitable for large-scale problems in which computer roundoff error, memory usage, and speed are concerns
- We will discuss a method for solving linear systems based on factoring its coefficient matrix into a product of lower and upper triangular matrices
- LU-decomposition is the basis for many computer algorithms in common use

LU-decomposition

Definition

A factorization of a square matrix A as

$$A = LU$$
,

where L is lower triangular and U is upper triangular, is called an LU-decomposition (or LU-factorization) of A.

Step 1. Rewrite the system
$$Ax = b$$
 as

$$LUx = b \tag{1}$$

Step 2. Define a new $n \times 1$ matrix \boldsymbol{y} by

$$Ux = y \tag{2}$$

Step 3. Rewrite (1) as

$$Ly = b$$

and solve this system for $oldsymbol{y}$

Step 4. Substitute y in (2) and sovle for x.

Example

$$A = LU$$

$$\begin{pmatrix} 2 & 6 & 2 \\ -3 & -8 & 0 \\ 4 & 9 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -3 & 7 \end{pmatrix} \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

$$Ax = b$$

$$\begin{pmatrix} 2 & 6 & 2 \\ -3 & -8 & 0 \\ 4 & 9 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$$

$$LU\boldsymbol{x} = \boldsymbol{b}$$

$$\begin{pmatrix} 2 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -3 & 7 \end{pmatrix} \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$$

Example

$$U \boldsymbol{x} = \boldsymbol{y}$$
 and $L \boldsymbol{y} = \boldsymbol{b}$

$$\begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \quad \begin{pmatrix} 2 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -3 & 7 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$$

Solve for y

$$2y_1 = 2
-3y_1 + y_2 = 2 \implies y_1 = 1, \quad y_2 = 5, \quad y_3 = 2
4y_1 - 3y_2 + 7y_3 = 3$$

Substitute \boldsymbol{y} to $U\boldsymbol{x}=\boldsymbol{y}$ and solve for \boldsymbol{x}

$$\begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} \Longrightarrow x_1 = 2, \quad x_2 = -1, \quad x_3 = 2$$

- Consider $A = LU \in \mathcal{M}_{3\times 3}$
- Ly = b

$$\begin{pmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

• Solving for u

$$y_{1} = \frac{b_{1}}{\ell_{11}}$$

$$\ell_{11}y_{1} = b_{1}$$

$$\ell_{21}y_{1} + \ell_{22}y_{2} = b_{2} \implies y_{2} = \frac{1}{\ell_{22}}(b_{2} - \ell_{21}y_{1})$$

$$\ell_{31}y_{1} + \ell_{32}y_{2} + \ell_{33}y_{3} = b_{3}$$

$$y_{3} = \frac{1}{\ell_{33}}(b_{3} - \ell_{31}y_{1} - \ell_{32}y_{2})$$

General formula

$$y_k = \frac{1}{\ell_{kk}} \left(b_k - \sum_{s=1}^{k-1} \ell_{ks} y_s \right)$$

- Consider $A = LU \in \mathcal{M}_{3\times 3}$
- Ux = y

$$\begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

- ullet Solving for x
- General formula

$$x_k = \frac{1}{u_{kk}} \left(b_k - \sum_{s=k+1}^n u_{ks} x_s \right)$$

A sufficient condition

• Not every square matrix has an LU-decomposition

Theorem

If A is a square matrix that can be reduced to a row echelon form U by Gaussian elimination without row interchanges, then A can be factored as A = LU, where L is a lower triangular matrix.

Proof.

- U: row echelon form, upper triangular
- Row operations on A can be accomplished by multiplying A on the left by an appropriate sequence of elementary matrices

$$E_k \cdots E_2 E_1 A = U$$

• Elementary matrices are invertible

$$A = E_1^{-1} E_2^{-1} \cdots E_k^{-1} U$$

A sufficient condition

Proof.

$$A = E_1^{-1} E_2^{-1} \cdots E_k^{-1} U$$

- *U*: row echelon form, upper triangular
- $L := E_1^{-1} E_2^{-1} \cdots E_k^{-1}$
- E_j is lower triangular $\xrightarrow{\mathsf{Tutorial}\ 4} E_j^{-1}$ is lower triangular $\xrightarrow{\mathsf{Tutorial}\ 1} L$ is lower triangular
- Since row interchanges are excluded, each E_j results by
 - adding a scalar multiple of one row of an identity matrix to a row below
 - multiplying one row of an identity matrix by a nonzero scalar

Fundamental spaces and decompositions

- Row space, column space, and null space
- Rank and nullity
- Eigenvalues and Eigenvectors
- Diagonalization
- LU-Decompositions
- Find LU-Decompositions

Find LU-decomposition – example

Example

$$A = \begin{pmatrix} 2 & 6 & 2 \\ -3 & -8 & 0 \\ 4 & 9 & 2 \end{pmatrix}$$

To obtain LU-decomposition, we reduce ${\cal A}$ to a row echelon form ${\cal U}$ using Gaussian elimination

Step 1
$$\xrightarrow{R_1 \to \frac{1}{2}R_1} \begin{pmatrix} 1 & 3 & 1 \\ -3 & -8 & 0 \\ 4 & 9 & 2 \end{pmatrix}$$
 $E_1 = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $E_1^{-1} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Step 2
$$\xrightarrow{R_2 \to 3R_1 + R_2}$$
 $\begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 4 & 9 & 2 \end{pmatrix}$ $E_2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $E_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Find LU-decomposition – example

Example

Step 3
$$\xrightarrow{R_3 \to -4R_1 + R_3} \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 0 & -3 & -2 \end{pmatrix}$$
 $E_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{pmatrix}$ $E_3^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix}$

Step 4 $\xrightarrow{R_3 \to 3R_2 + R_3} \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 7 \end{pmatrix}$ $E_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$ $E_4^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix}$

Step 5 $\xrightarrow{R_3 \to \frac{1}{7}R_3} \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$ $E_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & \frac{1}{7} \end{pmatrix}$ $E_4^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{pmatrix}$

$$L = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1} = \begin{pmatrix} 2 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -3 & 7 \end{pmatrix}$$

Find LU-decomposition

Example

$$L = \begin{pmatrix} 2 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -3 & 7 \end{pmatrix}$$

- $\ell_{11}=2$: a multiplier of $\frac{1}{2}$ was needed in Step 1 to introduce a leading 1 in the first row
- $\ell_{33}=7$: a multiplier of $\frac{1}{7}$ was needed in Step 5 to introduce a leading 1 in the third row
- $\ell_{22} = 1$: a multiplier of 1 to introduce a leading 1 in the second row
- To introduce 0 below the leading 1's:
- $\ell_{21} = -3$: Step 2 $R_2 \to 3R_1 + R_2$
- $\ell_{31} = 4$: Step 3 $R_3 \to -4R_1 + R_3$
- $\ell_{32=-3}$: Step 4 $R_3 \to 3R_2 + R_3$

Find LU-decomposition

- ullet Each position along the main diagonal of L: reciprocal of the multiplier that introduced the leading 1 in that position in U
- ullet Each position below the main diagonal of L: the negative of the multiplier used to introduce the zero in that position in U

Find LU-decomposition – example

Example

$$A = \begin{pmatrix} 6 & -2 & 0 \\ 9 & -1 & 1 \\ 3 & 7 & 5 \end{pmatrix}$$

$$\frac{R_1 \to \frac{1}{6}R_1}{\longrightarrow} \begin{pmatrix} 1 & -\frac{1}{3} & 0 \\ 9 & -1 & 1 \\ 3 & 7 & 5 \end{pmatrix} \qquad \text{multiplier } \frac{1}{6}, \text{ first row} \qquad \begin{pmatrix} 6 & 0 & 0 \\ * & * & 0 \\ * & * & * \end{pmatrix}$$

$$\frac{R_2 \to -9R_1 + R_2}{R_3 - 3R_1} \begin{pmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 2 & 1 \\ 0 & 8 & 5 \end{pmatrix} \qquad \text{multiplier } -9, \text{ position } (2, 1), \qquad \begin{pmatrix} 6 & 0 & 0 \\ 9 & * & 0 \\ 3 & * & * \end{pmatrix}$$

$$\text{multiplier } -3, \text{ position } (3, 1) \qquad \begin{pmatrix} 6 & 0 & 0 \\ 9 & * & 0 \\ 3 & * & * \end{pmatrix}$$

multiplier
$$\frac{1}{6}$$
, first row

$$\begin{array}{ll} \text{multiplier} & -9 \text{, position } (2,1) \text{,} \\ \text{multiplier} & -3 \text{, position } (3,1) \end{array}$$

$$\begin{pmatrix} 6 & 0 & 0 \\ 9 & * & 0 \\ 3 & * & * \end{pmatrix}$$

Find LU-decomposition – example

Example

$$\frac{R_2 \to -\frac{1}{2}R_2}{0 \quad 1 \quad \frac{1}{2}} \begin{pmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 8 & 5 \end{pmatrix} \qquad \text{multiplier } \frac{1}{2}, \text{ second row} \qquad \begin{pmatrix} 6 & 0 & 0 \\ 9 & 2 & 0 \\ 3 & * & * \end{pmatrix}$$

$$\frac{R_3 \to -8R_2 + R_3}{0 \quad 1} \begin{pmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix} \qquad \text{multiplier } -8, \text{ position } (3, 2) \qquad \begin{pmatrix} 6 & 0 & 0 \\ 9 & 2 & 0 \\ 3 & 8 & * \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix} \qquad \text{multiplier } 1, \text{ third row} \qquad L = \begin{pmatrix} 6 & 0 & 0 \\ 9 & 2 & 0 \\ 3 & 8 & 1 \end{pmatrix}$$

$$\begin{bmatrix} \overline{3} & 0 \\ 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$$

multiplier
$$1$$
, third

$$\begin{pmatrix} 6 & 0 & 0 \\ 9 & 2 & 0 \\ 3 & * & * \end{pmatrix}$$

$$\begin{pmatrix} 6 & 0 & 0 \\ 9 & 2 & 0 \\ 3 & 8 & * \end{pmatrix}$$

$$L = \begin{pmatrix} 6 & 0 & 0 \\ 9 & 2 & 0 \\ 3 & 8 & 1 \end{pmatrix}$$

Another sufficient condition

Definition

 $A = (a_{ij}) \in \mathcal{M}_{n \times n}$, the leading principal minors of A are $\det(A_1), \det(A_2), \ldots, \det(A_n)$, where A_k is the top-left $k \times k$ submatrix of A

$$A_k = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{pmatrix}$$

Theorem

Let $A = (a_{ij}) \in \mathcal{M}_{n \times n}$, if the leading principal minors of A are all nonzero, then there exists an LU-decomposition A = LU.

Remark

If A is invertible, then the sufficient condition is also necessary.

Find LU-decomposition – Doolittle decomposition

Example

$$A = \begin{pmatrix} 2 & 5 & 6 \\ 4 & 13 & 19 \\ 6 & 27 & 50 \end{pmatrix} = LU, \quad L = \begin{pmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{pmatrix}, \quad U = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix}$$

First row

$$u_{11} = 2, \quad u_{12} = 5, \quad u_{13} = 6$$

$$\begin{array}{rclcrcl}
\ell_{21}u_{11} &=& 4 & & \ell_{21} &=& 2 \\
\ell_{21}u_{12} + u_{22} &=& 13 & \Longrightarrow & u_{22} &=& 12 - 2 \times 5 = 3 \\
\ell_{21}u_{13} + u_{23} &=& 19 & & u_{23} &=& 19 - 2 \times 6 = 7
\end{array}$$

Third row

$$\begin{array}{rcl}
\ell_{31}u_{11} &=& 6 & \ell_{31} &=& 3 \\
\ell_{31}u_{12} + \ell_{32}u_{22} &=& 27 & \Longrightarrow & \ell_{32} &=& \frac{27 - 3 \times 5}{3} = 4 \\
\ell_{31}u_{13} + \ell_{32}u_{23} + u_{33} &=& 50 & u_{33} &=& 50 - 3 \times 6 - 4 \times 7 = 4
\end{array}$$

Find LU-decomposition – Doolittle decomposition

$$L = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ \ell_{21} & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ \ell_{n1} & \ell_{n2} & \ell_{n3} & \cdots & 1 \end{pmatrix}, \quad U = \begin{pmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{pmatrix}.$$

For reach row i

• Computing U: for $j \geq i$:

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} \ell_{ik} u_{kj}. \tag{3}$$

• Computing L: for j < i:

$$\ell_{ij} = \frac{1}{u_{ij}} \left(a_{ij} - \sum_{k=1}^{i-1} \ell_{ik} u_{kj} \right). \tag{4}$$

Find LU-decomposition – Crout decomposition

$$L = \begin{pmatrix} \ell_{11} & 0 & 0 & \cdots & 0 \\ \ell_{21} & \ell_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \ell_{n3} & \cdots & \ell_{nn} \end{pmatrix}, \quad U = \begin{pmatrix} 1 & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & 1 & u_{23} & \cdots & u_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}.$$

For each column:

• Computing L: for i > j:

$$\ell_{ij} = a_{ij} - \sum_{k=1}^{j-1} \ell_{ik} u_{kj}. \tag{5}$$

• Computing U: for i > j:

$$u_{ij} = \frac{1}{\ell_{ij}} \left(a_{ij} - \sum_{k=1}^{j-1} \ell_{jk} u_{ki} \right). \tag{6}$$

Same result as using Gaussian elimination

LU-dcomposition is not unique

Example

- Note that Crout decomposition and Doolittle decomposition produce different matrices
- Another example: $A = \begin{pmatrix} 2 & 10 \\ 7 & 44 \end{pmatrix}$

$$L = \begin{pmatrix} 1 & 0 \\ \frac{7}{2} & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 2 & 10 \\ 0 & 9 \end{pmatrix}$$

$$L' = \begin{pmatrix} 2 & 0 \\ 7 & 3 \end{pmatrix}, \quad U' = \begin{pmatrix} 1 & 5 \\ 0 & 3 \end{pmatrix}$$

What can we do with LU-dcomposition

- Solving linear systems
- Find inverse

$$A = LU, \quad A^{-1} = U^{-1}L^{-1}$$

Compute determinant

$$\det(A) = \det(L)\det(U)$$

where $\det(L)$ and $\det(U$ are easy to compute - product of diagonal entries