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Course Outline

• Vectors and matrices
• System of linear equations
• Matrix inverse and determinants
• Vector spaces and matrix transformations
• Fundamental spaces and decompositions
• Eulerian tours
• Hamiltonian cycles
• Midterm
• Paths and spanning trees
• Trees and networks
• Matching
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Recommended reading

• Anton, Howard, and Chris Rorres. Elementary linear algebra: applications version.
John Wiley & Sons, 2013.

• Sections 1.8, 4.1 – 4.6, 4.9, 4.10
• Free copy online
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https://thuvienso.hoasen.edu.vn/bitstream/handle/123456789/8937/Contents.pdf?sequence=3


Lecture outline

• Real Vector Space

• Subspaces

• Linear independence

• Coordinates and basis

• Dimension

• Change of basis

• Matrix operators
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Vector spaces and matrix transformations

• Real Vector Space

• Subspaces

• Linear independence

• Coordinates and basis

• Dimension

• Change of basis

• Matrix operators
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Definition
Definition
Let V be a nonempty set on which two operations are defined:

• Addition: V × V → V , v + u is called the sum of v and u

• Scalar multiplication: R× V → V , αv is called the scalar multiple of v by α

V , (together with the associated addition and scalar multiplication), is called a vector
space (over R) if ∀v,u,w ∈ V (vectors) and ∀α, β ∈ R (scalars):

1. u+ v = v + u

2. u+ (v +w) = (u+ v) +w

3. ∃0 ∈ V , called zero vector or additive identity, s.t. 0+ u = u

4. ∃ − u ∈ V , called negative or additive inverse of u s.t. u+ (−u) = 0

5. α(u+ v) = αu+ αv

6. (α+ β)u = αu+ βu

7. α(βu) = (αβ)u

8. 1u = u 6 / 121



Show that a set with two operations is a vector space

• Identify the set V and elements of V that will become vectors
• Identify the addition and and scalar multiplication operations on V

• Verify that v + u ∈ V (closure under addition and αu V (closure under scalar
multiplication) for all v.u ∈ V , α ∈ R

• Verify that all axioms are satisfied

Remark
Any kind of object can be a vector, and the operations of addition and scalar
multiplication need not have any relationship to those on Rn.
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Vector space – example

Example (The zero vector space)
Let V = {0}, define

0+ 0 = 0, α0 = 0, α ∈ R

It is easy to check all axioms are satisfied and V together with the addition and scalar
multiplication defined above, (V,+, ·), is a vector space.
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Vector space – example

Example
Consider Rn with the usual operations of addition and scalar multiplication

u+ v = (u1, u2, . . . , un) + (v1, v2, . . . , vn) = (u1 + v1, u2 + v2, . . . , un + vn)

αu = (αu1, αu2, . . . , αun)

zero vector
0 = (0, 0, . . . , 0)

(Rn,+, ·) is a vector space.

9 / 121



Vector space – example

Example
Let V consist of objects of the form

u = (u1, u2, . . . ),

where u1, u2, . . . is an infinite sequence of real numbers.
We define two infinite sequences to be equal if their corresponding components are
equal and we define addition and scalar multiplication component-wise by

u+ v = (u1, u2, . . . ) + (v1, v2, . . . ) = (u1 + v1, u2 + v2, . . . )

αu = (ku1, ku2, . . . )

(V,+, ·) is a vector space, denoted by R∞
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Vector space – example

Example (The vector space of 2× 2 matrices)
Consider M2×2 together with matrix addition and multiplication by a scalar

u+ v =

(
u11 u12
u21 u22

)
+

(
v11 v12
v21 v22

)
, αu = α

(
u11 u12
u21 u22

)
=

(
αu11 αu12
αu21 αu22

)
M2×2 is closed under addition and scalar multiplication. The additive identity is(
0 0
0 0

)
(
0 0
0 0

)
+

(
u11 u12
u21 u22

)
=

(
u11 u12
u21 u22

)
Additive inverse of u (

−u11 −u12
−u21 −u22

)
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Vector space – example

Example (The vector space of 2× 2 matrices)
Consider M2×2 together with matrix addition and multiplication by a scalar

u+ v =

(
u11 u12
u21 u22

)
+

(
v11 v12
v21 v22

)
, αu = α

(
u11 u12
u21 u22

)
=

(
αu11 αu12
αu21 αu22

)
(
−u11 −u12
−u21 −u22

)
+

(
u11 u12
u21 u22

)
=

(
0 0
0 0

)
1u =

(
u11 u12
u21 u22

)
(M2×2,+, ·) is a vector space
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Vector space – example

Example (The vector space of m× n matrices)
• Consider Mm×n with matrix addition and scalar multiplication.
• Similar to M2×2, we can show that (Mm×n,+, ·) is also a vector space.
• The additive inverse is the zero matrix.
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Vector space – example
Example (The vector space of real-valued functions)

• Let F(R,R) = { f | f : R → R } be the set of real-valued functions that are
defined at each x ∈ R

• Define addition and scalar multiplication as follows: for any f, g ∈ F(R,R), and
any α ∈ R,

(f + g)(x) = f(x) + g(x), (αf)(x) = α(f(x))

• It is easy to see that f + g and αf are real-valued functions defined at each x ∈ R
- closure under addition and scalar multiplication

• Additive identity: the function 0 that outputs 0 for every x ∈ R
• Additive inverse: the additive inverse of f is the function defined by

−f : R → R
x 7→ −f(x)
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Vector space – example
Example (The vector space of real-valued functions)

• F(R,R) = { f | f : R → R }
• Validity of the axioms follow from the properties of real numbers
• For example, Axiom 1

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x)

x

y

f

g

f + g

x

y

f

αf

x

y

f

−f

0
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Vector space – example

Example (Not a vector space)
• Consider R2 with addition and scalar multiplication defined as follows:
• For any u =

(
u1, u2

)
v =

(
v1, v2

)
∈ R2, α ∈ R

u+ v =
(
u1 + v1, u2 + v2

)
, α⊗ u =

(
u1, 0

)
.

• For example(
2, 4

)
+
(
−3, 5

)
=

(
−1, 9

)
, 7⊗

(
2, 4

)
=

(
14, 0

)
• Not a vector space because for u =

(
u1, u2

)
with u2 6= 0

1⊗ u =
(
u1, 0

)
6= u.
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Vector space – example
Example (A special vector space)

• Consider R>0, the set of positive real numbers
• Define addition and scalar multiplication as follows: for any u, v ∈ R>0 and any

α ∈ R
u⊕ v = uv, α⊗ u = uα

• The additive identity is the number 1

u⊕ 1 = u1 = u

• The additive inverse of an element u is its reciprocal

u⊕ 1

u
= u

1

u
= 1

because u > 0, 1
u > 0 is an element of R>0
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Vector space – example

Example (A special vector space)
• Consider R>0, the set of positive real numbers
• Define addition and scalar multiplication as follows: for any u, v ∈ R>0 and any

α ∈ R
u⊕ v = uv, α⊗ u = uα

• Other axioms are also satisfied
• For example, Axiom 6

(α+ β)⊗ u = uα+β = uαuβ = α⊗ u+ β ⊗ u

• (R>0,⊕,⊗) is a vector space
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Some properties of vectors
Theorem 1
Let V be a vector space, for any u ∈ V and α ∈ R
(a) 0u = 0

(b) α0 = 0

(c) (−1)u = −u

(d) If αu = 0, then α = 0 or u = 0

Proof.
We will show the proof of part (c)

u+ (−1)u = 1u+ (−1)u (Axiom 8)
= (1 + (−1))u (Axiom 6)
= 0u (property of real numbers)
= 0 (part (a))
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Remark

• Whenever we discover a new theorem about general vector spaces, we will at the
same time be discovering a theorem about Rn, matrices, etc.

• For example, consider the vector space R>0 with the two operations defined in the
previous example

0u = 0

translates to for u ∈ R>0

u0 = 1
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Vector spaces and matrix transformations

• Real Vector Space

• Subspaces

• Linear independence

• Coordinates and basis

• Dimension

• Change of basis

• Matrix operators
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Subspace – definition

Definition
A subset W of a vector space V is called a subspace of V if W is a vector space under
the addition and scalar multiplication defined on V .

• To show W is a vector space, certain properties are “inherited” from V

• e.g. u+ v = v + u

• It remains to show
• Closure of W under addition
• Closure of W under scalar multiplication
• Additive identity ∈ W
• Existence of additive inverse
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Subspace

Theorem
Let V be a vector space, a nonempty set W ⊆ V is a subspace of V iff for any
u,v ∈ W , α ∈ R

1. u+ v ∈ W

2. αu ∈ W

Proof.
=⇒ by definition.
⇐= By the previous discussion, we just need to prove the existence of additive identity
and additive inverse. By Axiom 2 and Theorem 1 (a), (c)

0u = 0 ∈ W, −u ∈ W
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Subspace – example

Example
• Let V be any vector space and let W = {0}
• W is closed under addition and scalar multiplication

0+ 0 = 0, α0 = 0

• W is called the zero subspace of V
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Subspace – example
Example (Lines through the origin are subsapces of R2 and R3)

• W = a line through the origin of either R2 or R3

• Adding two vectors on the line or multiplying a vector on the line by scalar gives
another vector on the line - closed under addition and scalar multiplication

W

u

v
u+ v

W

u

αu
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Subspace – example
Example (Planes through the origin are subsapces of R3)

• W = a plane through the origin
of R3

• Adding two vectors on the line or
multiplying a vector on the line by
scalar gives another vector in the
same plane - closed under
addition and scalar multiplication

u

v

u+ v

ku

W

26 / 121



Subspaces of R2 and R3

Summary of what we have discussed

Subspaces pf R2 Subspaces of R3

{0} {0}
Lines through the origin Lines through the origin

R2 Planes through the origin
R3
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Subspace – example

Example (S subset of R2 that is not a subspace)

• Let

W = { (x, y) | x ≥ 0, y ≥ 0 } ⊆ R2

• W is not a subspace of R2

• W is not closed under scalar
multiplication

(−1)
(
1, 1

)
=

(
−1, −1

)
6∈ W

x

y
(1, 1)

(−1, −1)

W
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Linear combination

Definition
u ∈ V is a linear combination of vectors v1, v2, · · · , vr ∈ V if

u = α1v1 + α2v2 + · · ·+ αrvr,

where α1, α2 . . . , αr ∈ R are called the coefficients of the linear combination.
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Linear combinations – example
Example

• Consider u = (1, 2,−1), v = (6, 4, 2) from R3

• w = (9, 2, 7) is a linear combination of u and v:
Suppose

w = α1u+ α2v(
9, 2, 7

)
=

(
α1 + 6α2, 2α1 + 4α2, −α1 + 2α2

)
gives

α1 + 6α2 = 9

2α1 + 4α2 = 2

−α1 + 2α2 = 7

Solving the linear system gives α1 = −3, α2 = 2

w = −3u+ 2v. 30 / 121



Linear combinations – example
Example

• Consider u = (1, 2,−1), v = (6, 4, 2) from R3

• w′ = (4,−1, 8) is not a linear combination of u and v:
Suppose

w′ = α1u+ α2v(
4, −1, 8

)
=

(
α1 + 6α2, 2α1 + 4α2, −α1 + 2α2

)
gives

α1 + 6α2 = 4

2α1 + 4α2 = −1

−α1 + 2α2 = 8

The linear system is inconsistent
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Subspace from a set of vectors
Theorem
Let S = { v1, v2, · · · , vr } ⊆ V , let W be the set of all possible linear combinations
of vectors in S. Then

• W is a subspace of V
• W is the “smallest” subspace of V that contain S – any other subsapce of V

containing S contains W

Proof.
For any u = α1v1 + α2v2 + · · ·+ αrvr, w = β1v1 + β2v2 + · · ·+ βrvr ∈ W

u+w = (α1 + β1)v1 + (α2 + β2)v2 + · · ·+ (αr + βr)vr ∈ W

γu = (γα1)v1 + (γα2)v2 + · · ·+ (γαr)vr ∈ W

W is closed under vector addition and scalar multiplication
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Subspace from a set of vectors

Theorem
Let S = { v1, v2, · · · , vr } ⊆ V , let W be the set of all possible linear combinations
of vectors in S. Then

• W is a subspace of V
• W is the “smallest” subspace of V that contain S – any other subsapce of V

containing S contains W

Proof.
Let W ′ be any subspace of V containing S. Since W ′ is closed under vector addition
and scalar multiplication, it contains all linear combinations of vectors in S and hence
contains W .

33 / 121



Subspace generated by S

Definition
Let S = { v1, v2, · · · , vr } ⊆ V , the subspace W of V that consists of all linear
combinations of the vectors in S is called the subspace of V generated by S, and we
say the vectors v1, v2, · · · , vr span W . We write

W = span{v1, v2, · · · , vr}, W = span(S), W = 〈S〉.
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Subspace generated by S – example
Example (The standard unit vectors span Rn)

• The unit vectors

e1 := (1, 0, 0, · · · , 0), e2 := (0, 1, 0, · · · , 0), . . . , en := (0, 0, 0, · · · , 1)

are called the standard unit vectors of Rn.
• Any v =

(
v1, v2, . . . , vn

)
∈ Rn can be expressed as

v = v1e1 + v2e2 + · · ·+ vnen

• Rn = span{e1, e2, · · · , en}
• For example,

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)

span R3

• e.g. v = (2, 3,−2)
v = 2v1 + 3v2 + (−2)e3 35 / 121



Test for spanning
Example

• Determine if the vectors v1, v2, v3 span R3

v1 =
(
1, 1, 2

)
, v2 =

(
1, 0, 1

)
, v3 =

(
2, 1, 3

)
• We need to show every vector u ∈ R3 can be expressed as a linear combination of
v1, v2, v3 (

u1, u2, u3
)
= α1v1 + α2v2 + α3v3(

u1, u2, u3
)
=

(
α1 + α2 + 2α3, α1 + α3, 2α1 + α2 + 3α3

)
or

α1 + α2 + 2α3 = u1

α1 + α3 = u2

2α1 + α2 + 3α3 = u3

36 / 121



Test for spanning
Example

α1 + α2 + 2α3 = u1

α1 + α3 = u2

2α1 + α2 + 3α3 = u3

• We need to show the linear system is consistent for all values of u1, u2, u3, which
is true iff the coefficient matrix is invertible

A =

1 1 2
1 0 1
2 1 3

 , det(A) = 0

• The vectors v1, v2, v3 do not span R3
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Test for spanning – Rn

From the previous examples, we have the following result for a special case
Theorem

S = {v1,v2, . . . , vn} spans Rn iff the determinant

∣∣∣∣∣∣∣∣∣
v1

v2
...
vn

∣∣∣∣∣∣∣∣∣ 6= 0.

Proof.
S spans Rn iff the following equation has solutions for α1, α2, . . . , αn

α1v1 + α2v2 + · · ·+ αnvn = u.

for any vector u ∈ Rn. This equation corresponds to a linear system in the unknowns
αi’s with coefficient matrix A, whose columns are vj ’s. Consequently, the equation has
solutions for all u iff det(A) 6= 0. The result follows from that det(A) = det(A⊤).
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Solution spaces of homogeneous systems
Theorem
The solution set of a homogeneous linear system Ax = 0 of m equations in n
unknowns is a subspace of Rn.

Proof.
• Let W be the solution set
• 0 ∈ W , W is not empty
• For any x1,x2 ∈ W

A(x1 + x2) = Ax1 +Ax2 = 0 =⇒ x1 + x2 ∈ W

A(αx1) = α1(Ax1) = 0 =⇒ αx1 ∈ W

Definition
W is called the solution space of the system. 39 / 121



Solution space – example

Example 1 −2 3
2 −4 6
3 −6 9

x
y
z

 =

0
0
0


General solution

x = 2s− 3t, y = s, z = t

it follows that
x− 2y + 2z = 0

Corresponds to a plane through the origin.
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Solution space – example

Example 
1 −2 3
−3 7 −8
−2 4
−6


x
y
z

 =

0
0
0


General solution

x = −35t, y = −t, z = t

Corresponds to a line through the origin. The parametric equation for the line is

x = −35t, y = −t, z = t, t ∈ R.
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Solution space – example

Example 
1 −2 3
−3 7 −8
4 1
2


x
y
z

 =

0
0
0


Has a unique solution 0, corresponding to the zero subspace of R3
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Solution space – example

Example 0 0 0
0 0 0
0 0 0

x
y
z

 =

0
0
0


The solution space = R3
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Vector spaces and matrix transformations

• Real Vector Space

• Subspaces

• Linear independence

• Coordinates and basis

• Dimension

• Change of basis

• Matrix operators
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Linearly independent vectors

Definition
S = {v1, v2, . . . , vr} ⊆ V is said to be linearly independent if

α1v1 + α2v2 + · · ·+ αrvr = 0 =⇒ α1 = 0, α2 = 0, · · · , αr = 0

Otherwise, S is said to be linearly dependent.
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Linearly independent vectors – Rn

Theorem

S = {v1,v2, . . . , vn} ⊆ Rn is linearly independent iff the determinant

∣∣∣∣∣∣∣∣∣
v1

v2
...
vn

∣∣∣∣∣∣∣∣∣ 6= 0.

Proof.
S is linearly independent iff the linear system

α1v1 + α2v2 + · · ·+ αrvr = 0

has only the trivial solution. The coefficient matrix A has columns given by v⊤
i .

det(A) = det(A⊤)

46 / 121



Linearly independent vectors – example
Example

v1 =
(
1, −2, 3

)
, v2 =

(
5, 6, −1

)
, v3 =

(
3, 2, 1

)
α1

(
1, −2, 3

)
+ α2

(
5, 6, −1

)
+ α3

(
3, 2, 1

)
=

(
0, 0, 0

)
α1 + 5α2 + 3α3 = 0

−2α1 + 6α2 + 2α3 = 0

3α1 − α2 + α3 = 0

The determinant of the coefficient matrix∣∣∣∣∣∣
1 5 3
−2 6 2
3 −1 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 −2 3
5 6 −1
3 2 1

∣∣∣∣∣∣ = 0 =⇒ linearly dependent

Solution set is
{(

−1

2
t, −1

2
t, t

) ∣∣∣∣ t ∈ R
}
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Linearly independent vectors – example

Example
• Determine whether v1, v2, v3 ∈ R3 are linearly independent

v1 =
(
1, −2, 3

)
, v2 =

(
5, 6, −1

)
, v3 =

(
3, 2, 1

)
∣∣∣∣∣∣
1 −2 3
5 6 −1
3 2 1

∣∣∣∣∣∣ = 0

• In fact, v3 −
1

2
v1 −

1

2
v2 = 0
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Linearly independent vectors – example

Example
• Determine whether v1, v2, v3 ∈ R4 are linearly independent

v1 =
(
1, 2, 2, −1

)
, v2 =

(
4, 9, 9, −4

)
, v3 =

(
5, 8, 9, −5

)
α1

(
1, 2, 2, −1

)
+α2

(
4, 9, 9, −4

)
+α3

(
5, 8, 9, −5

)
=

(
0, 0, 0, 0

)
α1 + 4α2 + 5α3 = 0

2α1 + 9α2 + 8α3 = 0

2α1 + 9α2 + 9α3 = 0

−α1 − 4α2 − 5α3 = 0

• The system has only the trivial solution =⇒ the vectors are linearly independent
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Linearly independent vectors
Theorem
S = {v1, v2, . . . , vr} ⊆ V , S is linearly independent iff no vector in S can be
expressed as a linear combination of the others.

Proof.
We will prove S is linearly dependent iff at least one vector in S can be expressed as a
linear combination of the others.
=⇒ Consider the equation

α1v1 + α2v2 + · · ·+ αrvr = 0

If S is linearly dependent, then WLOG, suppose α1 6= 0, and

v1 =

(
−α2

α1

)
v2 + · · ·+

(
−αr

α1

)
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Linearly independent vectors
Theorem
S = {v1, v2, . . . , vr} ⊆ V , r ≥ 2, S is linearly independent iff no vector in S can be
expressed as a linear combination of the others.

Proof.
We will prove S is linearly dependent iff at least one vector in S can be expressed as a
linear combination of the others.
⇐= Suppose v1 = β2v2 + · · ·+ β2vr, then

−v1 + β2v2 + · · ·+ β2vr = 0.

Example
• S = {

(
2, 3

)
,
(
1, 0

)
,
(
0, 1

)
}, linearly dependent

• S = {
(
1, 0

)
,
(
0, 1

)
}, linearly independent
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Special cases

Theorem
• A finite set that contains 0 is linearly dependent
• A set with exactly one vector is linearly independent iff that vector is not 0
• A set with exactly two vectors is linearly independent iff neither vector is a scalar

multiple of the other

Proof.
We prove the first part. Let S = {v1,v2, . . . , vr,0}

0v1 + 0v2 + · · ·+ 0vr + 10 = 0
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Linearly dependent vectors in Rn

Theorem
S = {v1, v2, . . . , vr} ⊆ Rn. If r > n, then S is linearly dependent.

Proof.
α1v1 + α2v2 + · · ·+ αrvr = 0

corresponds to the homogeneous system

v11α1 + v21α2 + · · · + vr1αr = 0
v12α1 + v22α2 + · · · + vr2αr = 0

... ... . . . ... ...
v1nα1 + v2nα2+ · · ·+ vrnαr = 0

which has more equations than unknowns
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Vector spaces and matrix transformations

• Real Vector Space

• Subspaces

• Linear independence

• Coordinates and basis

• Dimension

• Change of basis

• Matrix operators
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Rectangular coordinate systems
• It is common to use rectangular coordinate systems to create a one-to-one

correspondence between points in 2−D space and ordered pairs of real numbers
and between points in 3−D space and ordered tiples of real numbers

x

y

P = (a, b)

O a

b

x

y

z

P = (a, b, c)

a

b

c
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Non-rectangular coordinate system
• Although rectangular coordinate systems are common, they are not essential.

x

y

O

•P = (a, b)

a

b
x

y

z

•P = (a, b, c)

a

b

c
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Coordinate systems
• We can specify a coordinate system using vectors rather than coordinate axes
• Here, we have re-created the coordinate system from the previous slide by using

unit vectors to identify the positive directions and then attaching coordinates to a
point P using the scalar coefficients in the equations

#    »

OP = au1 + bu2,
#    »

OP = au1 + bu2 + cu3

#    »
OP = (a, b)

au1

bu2

u1

u2

O

#    »
OP = (a, b, c)

au1

bu2

cu3

u3

u1

u2

O
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Units of measurement

• Units of measurement are essential ingredients of any coordinate system
• In geometry problems one tries to use the same unit of measurement on all axes

to avoid distorting the shapes of figures.
• This is less important in applications where coordinates represent physical

quantities with diverse units (for example, time in seconds on one axis and
temperature in degrees Celsius on another axis).

• To allow for this level of generality, we will relax the requirement that unit vectors
be used to identify the positive directions and require only that those vectors be
linearly independent.

• We will refer to these as the “basis vectors” for the coordinate system.
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Units of measurement

x

y

Equal spacing
Perpendicular axes

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

x

y

Unequal spacing
Perpendicular axes

-5 -3 -1 1 3 5

-3

-2

-1

1

2

3

x

y

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Equal spacing
Skew axes

x

y

-5 -3 -1 1 3 5

-3

-2

-1

1

2

3

Unequal spacing
Skew axes

The directions of the basis vectors establish the positive directions, the lengths of the
basis vectors establish the spacing between the integer points on the axes
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Dimension of vector space

• We will now extend the concept of “basis vectors” and “coordinate systems” to
general vector spaces

• A vector space V is said to be finite-dimensional if there is a finite set of vectors
in V that spans V and is said to be infinite-dimensional if no such set exists
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Basis

Definition
If S = {v1,v2, . . . , vn} is a set of vectors in a finite-dimensional vector space V , then
S is called a basis for V if
(a) S spans V

(b) S is linearly independent
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Basis – example

Example
• We have discussed that the standard unit vectors of Rn

e1 := (1, 0, 0, · · · , 0), e2 := (0, 1, 0, · · · , 0), . . . , en := (0, 0, 0, · · · , 1)

span Rn

• They are also linearly independent: the matrix
(
e⊤1 e⊤2 · · · e⊤n

)
= In

• Thus, they form a basis for Rn – standard basis for Rn.
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Basis for Rn

Theorem

S = {v1,v2, . . . , vn} is a basis for Rn iff the determinant

∣∣∣∣∣∣∣∣∣
v1

v2
...
vn

∣∣∣∣∣∣∣∣∣ 6= 0.

Proof.
We have proved that

Theorem
S = {v1,v2, . . . , vn} ⊆ Rn is linearly independent iff the determinant 6= 0

Theorem
S = {v1,v2, . . . , vn} spans Rn iff the determinant 6= 0
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Basis – example

Example (Another basis for R3)
v1 =

(
1, 2, 1

)
, v2 =

(
2, 9, 0

)
, v3 =

(
3, 3, 4

)
The determinant∣∣∣∣∣∣

1 2 1
2 9 0
3 3 4

∣∣∣∣∣∣ = −1 6= 0

Thus {v1,v2,v3} is a basis for R3.
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Uniqueness of basis representation

Theorem
If S = {v1,v2, . . . , vn} is a basis for a vector space V , then every vector v ∈ V has a
unique representation as a linear combination of vectors in S:

v = α1v1 + α2v2 + · · ·+ αvvn.

Proof.
Suppose

v = α1v1 + α2v2 + · · ·+ αnvn = β1v1 + β2v2 + · · ·+ βnvn,

then
(α1 − β1)v1 + (α2 − β2)v2 + · · ·+ (αn − βn)vn = 0

S is linearly independent =⇒ α1 − β1 = 0, α2 − β2 = 0, . . ., αn − βn = 0
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Coordinates
Definition
Let S = {v1,v2, . . . , vn} be a basis for V . Suppose v ∈ V

v = α1v1 + α2v2 + · · ·+ αvvn,

then α1, α2, . . . , αn are called the coordinates of v relative to the basis S. The vector(
α1, α2, · · · , αn

)⊤ is called the coordinate vector of v relative to S, denoted by

[v]S =


α1

α2
...
αn

 .

Remark
The order of vectors matters for coordinate vectors – we assume the underlying basis is
ordered without saying so explicitly
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Coordinates – example

Example
• Let S be the standard basis for Rn

• The coordinate vector [v]S and the vector v are the same
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Coordinates – example

Example
• We have discussed that v1 =

(
1, 2, 1

)
, v2 =

(
2, 9, 0

)
, v3 =

(
3, 3, 4

)
form a basis for R3

• v =
(
5, −1, 9

)
• Solve for α1, α2, α3

v = α1v1 + α2v2 + α3v3

we get
α1 = 1, α2 = −1, α3 = 2

• Then

[v]S =

 1
−1
2


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Vector spaces and matrix transformations

• Real Vector Space

• Subspaces

• Linear independence

• Coordinates and basis

• Dimension

• Change of basis

• Matrix operators
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Bases
Lemma
Let S1, S2 be subsets of V . If V = span(S1) and vectors in S2 are linearly
independent, then |S1| ≥ |S2|.

Proof.
Suppose S1 = { v1,v2, . . . , vr1 } and S2 = {w1,w2, . . . ,wr2 }. Since V = span(S1),

w1 =

r1∑
j=1

αjvj

At least one of aj 6= 0 as vectors in S2 are linearly independent – 0 6∈ S2. WLOG,
assume a1 6= 0, then

v1 = −
r1∑
j=2

aj
a1

vj +
1

a1
w1 =⇒ V = span({w1,v2, . . . , vr1 })
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Bases
Lemma
Let S1, S2 be subsets of V . If V = span(S1) and vectors in S2 are linearly
independent, then |S1| ≥ |S2|.

Proof.
V = span({w1,v2, . . . , vr1 }), then, we can write

w2 = β1w1 +

r1∑
j=2

βjvj ,

at least one of βj 6= 0 for 2 ≤ j ≤ r1, otherwise w2 is a linear combination of w1.
Suppose β2 6= 0, We have

v2 = −β1
β2

w1 −
r1∑
j=3

βj
β2

vj +
1

β2
w2 =⇒ V = span({w1,w2,v3, . . . , vr1 })
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Bases

Lemma
Let S1, S2 be subsets of V . If V = span(S1) and vectors in S2 are linearly
independent, then |S1| ≥ |S2|.

Proof.
We can continue in this manner, if r1 < r2, we will deduce that {w1,w2 . . . ,wr1 }
spans V and wr1+1 can be written as a linear combination of {w1,w2 . . . ,wr1 }, a
contradiction.
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Bases

Theorem
If B1, B2 are bases of V , then |B1| = |B2|

Proof.
By the previous lemma,

|B1| ≥ |B2|, |B2| ≥ |B1| =⇒ |B1| = |B2|.
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Dimension

Definition
The dimension of a vector space V , denoted dim(V ), is given by the cardinality of B,
|B|, where B is a basis of V . The zero vector space is defined to have dimension zero.

Example
• dim(Rn) = n - the standard basis has n vectors
• S = {v1,v2, . . . , vr}, linearly independent, then span(S) has dimension r
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Dimension – example
Example (Dimension of a solution space)

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

Solution is of the form(
x1, x2, x3, x4, x5, x6

)
=

(
−3r − 4s− 2t, r − 2s, s, t, 0

)
= r

(
−3, 1, 0, 0, 0, 0

)
+ s

(
−4, 0, −2, 1, 0, 0

)
+ t

(
−2, 0, 0, 0, 1, 0

)
=⇒ the vectors(
−3, 1, 0, 0, 0, 0

)
,
(
−4, 0, −2, 1, 0, 0

)
,
(
−2, 0, 0, 0, 1, 0

)
span the solution space. They are also linearly independent (verify), thus the solution
space has dimension 3. 75 / 121



Remark

• It can be shown that for any homogeneous linear system, the method of the last
example always produces a basis for the solution space of the system.

• We omit the formal proof.
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Vector spaces and matrix transformations

• Real Vector Space

• Subspaces

• Linear independence

• Coordinates and basis

• Dimension

• Change of basis

• Matrix operators
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The change-of-basis problem

The change-of-basis problem
v ∈ V , dim(V ) < ∞. Let B1 and B2 be two bases for V . What is the relation
between [v]B1 and [v]B2?

• B1 old basis
• B2 new basis
• Our objective is to find a relationship between the old and new coordinates of a

fixed vector v ∈ V
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Two dimensional vector spaces
• Suppose dim(V ) = 2 B1 = {u1,u2}, B2 = {w1,w2} and

[w1]B1 =

(
a
b

)
, [w2]B2 =

(
c
d

)
i.e. w1 = au1 + bu2, w2 = cu1 + du2

• Suppose [v]B2 =

(
k1
k2

)
, so

v = k1w1+k2w2 = k1(au1+bu2)+k2(cu1+du2) = (k1a+k2c)u1+(k1b+k2d)u2

[v]B1 =

(
k1a+ k2c
k1b+ k2d

)
=

(
a c
b d

)(
k1
k2

)
=

(
a c
b d

)
[v]B2

P :=

(
a c
b d

)
=

(
[w1]B1 [w2]B1

)
79 / 121



Change of basis and transition matrices
• v ∈ V , B1 = {u1,u2, . . . ,un}, B2 = {w1,w2, . . . ,wn} basis for V
• Then

[v]B1 = P [v]B2

where
P =

(
[w1]B1 [w2]B1 · · · [wn]B1

)
• P : transition matrix from B2 to B1, denoted PB2→B1

PB2→B1 =
(
[w1]B1 [w2]B1 · · · [wn]B1

)
PB1→B2 =

(
[u1]B2 [u2]B2 · · · [un]B2

)
• The coordinate vector

[v]B1 = PB2→B1 [v]B2 , [v]B2 = PB1→B2 [v]B1
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Change of basis and transition matrices – example
Example

• B1 = {u1,u2}, B2 = {w1,w2}, basis for R2

u1 =
(
1, 0

)
, u2 =

(
0, 1

)
, w1 =

(
1, 1

)
, w2 =

(
2, 1

)
• Transition matrix PB2→B1

[w1]B1 =

(
1
1

)
, [w2]B1 =

(
2
1

)
=⇒ PB2→B1 =

(
1 2
1 1

)
• Transition matrix PB1→B2

[u1]B2 =

(
−1
1

)
, [u2]B2 =

(
2
−1

)
=⇒ PB1→B2 =

(
−1 2
1 −1

)

• Suppose [v]B2 =

(
−3
5

)
, [v]B1 = PB2→B1 [v]B2 =

(
1 2
1 1

)(
−3
5

)
=

(
7
2

)
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Invertibility of transition matrices

PB2→B1PB1→B2 = PB1→B1 = I

Using the previous example

PB2→B1PB1→B2 =

(
1 2
1 1

)(
−1 2
1 −1

)
=

(
1 0
0 1

)

Theorem
The transition matrix PB1→B2 is invertible and P−1

B1→B2
= PB2→B1 .
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Vector spaces and matrix transformations

• Real Vector Space

• Subspaces

• Linear independence

• Coordinates and basis

• Dimension

• Change of basis

• Matrix operators
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Matrix transformations
• Consider the linear system Ax = w

• We can view it as a transformation that maps a vector x ∈ Rn into the vector
w ∈ Rm

• We call this a matrix transformation (or matrix operator when m = n), denoted

TA : Rn → Rm

x 7→ w

• We call the transformation TA multiplication by A

Example
• Zero transformation:

TO(x) = Ox = 0

• Identity operator:
TI(x) = Ix = x
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Properties of matrix transformations

Theorem
For any A ∈ Mm×n, α ∈ R, u,v ∈ Rn, TA : Rn → Rm satisfies

• TA(0) = 0

• TA(αu) = αTA(u) (Homogeneity property)
• TA(u+ v) = TA(u) + TA(v) (Additivity property)
• TA(u− v) = TA(u)− TA(v)

Remark
When we deal with matrix transformations, vectors are assumed to be column vectors
unless explicitly stated otherwise.
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Standard matrix
Theorem
TA : Rn → Rm, TB : Rn → Rm. If TA(x) = TB(x) for all x ∈ Rn, then A = B.

Proof.
Consider standard basis e1, e2, . . . , en

Aej = Bej , j = 1, 2, . . . , n

Aej (resp. Bej) is the jth column of A (resp. B)

Note
• Every A ∈ Mm×n produces exactly one matrix transformation (multiplication by
A)

• Every matrix transformation from Rn to Rm arises from exactly one A ∈ Mm×n –
standard matrix for the transformation
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Find standard matrix

• The standard matrix for T : Rn → Rm is given by

A =
(
T (e1) T (e2) · · · T (en)

)
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Operators on R2 and R3

• There are many ways to transform the vector spaces R2 and R3

• Some can be accomplished by using a matrix operator TA, A ∈ M2×2 or M3×3

• e.g. rotations about the origin, reflections about lines and planes through the
origin, and projections onto lines and planes through the origin

• Reflection operators: map each point into its symmetric image about a fixed line
or a fixed plane that contains the origin
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Reflection operators on R2 – reflection about the x−axis

• T

(
x
y

)
=

(
x
−y

)
• Images of e1 and e2

T (e1) = T

(
1
0

)
=

(
1
0

)
T (e2) = T

(
0
1

)
=

(
0
−1

)

• Standard matrix
(
1 0
0 −1

)
x

y

(x, y)

(x,−y)

x

T (x)
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Reflection operators on R2 – reflection about the y−axis

• T

(
x
y

)
=

(
−x
y

)
• Images of e1 and e2

T (e1) = T

(
−1
0

)
=

(
1
0

)
T (e2) = T

(
0
1

)
=

(
0
1

)

• Standard matrix
(
−1 0
0 1

)
x

y

(x, y)(−x, y)

xT (x)
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Reflection operators on R2 – reflection about the line y = x

• T

(
x
y

)
=

(
y
x

)
• Images of e1 and e2

T (e1) = T

(
1
0

)
=

(
0
1

)
T (e2) = T

(
0
1

)
=

(
1
0

)

• Standard matrix
(
0 1
1 0

) x

y

(x, y)

(y, x)

y = x

x

T(x)
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Reflection operators on R3

Reflection about the xy−plane, xz−plane and yz−plane

T

x
y
z

 =

 x
y
−z

 T (e1) =

1
0
0

 , T (e2) =

0
1
0

 , T (e3) =

 0
0
−1

 1 0 0
0 1 0
0 0 −1


T

x
y
z

 =

 x
−y
z

 T (e1) =

1
0
0

 , T (e2) =

 0
−1
0

 , T (e3) =

0
0
1

 1 0 0
0 −1 0
0 0 1


T

x
y
z

 =

−x
y
z

 T (e1) =

−1
0
0

 , T (e2) =

0
1
0

 , T (e3) =

0
0
1

 −1 0 0
0 1 0
0 0 1


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Projection operators

• Projection operators/orthogonal projection operators: Map each point into its
orthogonal projection onto a fixed line or plane through the origin
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Projection operators on R2

• Orthogonal projection onto the x−axis

T

(
x
y

)
=

(
x
0

)
• Images of e1 and e2

T (e1) = T

(
1
0

)
=

(
1
0

)
T (e2) = T

(
0
1

)
=

(
0
0

)
• Standard matrix(

1 0
0 0

)
x

y

x

T (x)

(x, y)

(x, 0)
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Projection operators on R2

• Orthogonal projection onto the y−axis

T

(
x
y

)
=

(
0
y

)
• Images of e1 and e2

T (e1) = T

(
1
0

)
=

(
0
0

)
T (e2) = T

(
0
1

)
=

(
0
1

)
• Standard matrix(

0 0
0 1

)
x

y

xT (x)

(x, y)(0, y)
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Projection operators on R3

Orthogonal projection onto the xy−plane, xz−plane and yz−plane

T

x
y
z

 =

x
y
0

 T (e1) =

1
0
0

 , T (e2) =

0
1
0

 , T (e3) =

0
0
0

 1 0 0
0 1 0
0 0 0


T

x
y
z

 =

x
0
z

 T (e1) =

1
0
0

 , T (e2) =

0
0
0

 , T (e3) =

0
0
1

 1 0 0
0 0 0
0 0 1


T

x
y
z

 =

0
y
z

 T (e1) =

0
0
0

 , T (e2) =

0
1
0

 , T (e3) =

0
0
1

 0 0 0
0 1 0
0 0 1



96 / 121



Rotation operators

• Rotation operators: move points along arcs of
circles centered at the origin

• Consider the rotation operator T : R2 → R2

that moves points counterclockwise about the
origin through a positive angle θ

T (e1) =

(
cos θ
sin θ

)
, T (e2) =

(
− sin θ
cos θ

)
• Standard matrix - rotation matrix

Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
• x =

(
x, y

)
, w = Rθx

⊤, −→

x

y

(cos θ, sin θ)(− sin θ, cos θ)

θ

θ
T

T

e1

e2

rotation equations:

w1 = x cos θ − y sin θ

w2 = x sin θ + y cos θ
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Rotation operators

• The rotation matrix for a clockwise rotation of θ, or a rotation of −θ, radians has
rotation matrix

R−θ =

(
cos θ sin θ
− sin θ cos θ

)
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Rotation operator on R2 – example

Example

Find the image of x =

(
1
1

)
under a rotation of π

6
radians (= 30◦) about the origin

Rπ
6
x =

(
cos θ − sin θ
sin θ cos θ

)(
1
1

)
=


√
3

2
−1

2

1

2

√
3

2


(
1
1

)
=


√
3− 1

2
1 +

√
3

2

 ≈
(
0.37
1.37

)
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Rotation operators on R3

• A rotation of vectors in R3 is commonly described in relation to a line through the
origin called the axis of rotation and unit vector u along that line

• Positive angle: counterclockwise looking toward the origin along the positive
coordinate axis

• right-hand-rule: cup the fingers of right hand so they curl in the direction of the
rotation, thumb points in the direction of u corresponds to positive angle

x

z

y

u

Positive rotation

x

z

y

u

Negative rotation
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Rotation operators on R3

Operator Rotation equations Standard matrix

Counterclockwise rotation about
the positive x−axis through an

angle θ

w1 = x
w2 = y cos θ − z sin θ
w3 = y sin θ + z cos θ

1 0 0
0 cos θ − sin θ
0 sin θ cos θ



Counterclockwise rotation about
the positive y−axis through an

angle θ

w1 = x cos θ + z sin θ
w2 = y
w3 = −x sin θ + z cos θ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



Counterclockwise rotation about
the positive z−axis through an

angle θ

w1 = x cos θ − y sin θ
w2 = x sin θ + y cos θ
w3 = z

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


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Dilations and contractions

• α ∈ R, α ≥ 0

• T (x) = αx on R2 or R3 has the effect of increasing or decreasing the length of
each vector by a factor of α

• Contraction with factor α: 0 ≤ α < 1

• Dilation with factor α: α > 1

• Identity operator: α = 1

102 / 121



Dilations and contractions on R2 – T

(
x
y

)
=

(
αx
αy

)
Illustration Effect on the unit square Standard matrix

x

y

T (x) (αx, αy)

(x, y)

x

(0, 1)

(1, 0)

(0, α)

(α, 0)

α 0

0 α



x

y

T (x)
(αx, αy)

(x, y)x

(0, 1)

(1, 0)

(0, α)

(α, 0)

α 0

0 α


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Dilations and contractions on R3

• Similarly, for dilation/contraction with factor α on R3

T

x
y
z

 =

αx
αy
αz


• The standard matrix is α 0 0

0 α 0
0 0 α


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Expansions and compressions

• Dilation or contraction: all coordinates are multiplied by a nonnegative factor
• Compression/expansion: only one coordinate is multiplied by α
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Expansions and compressions in the x−direction – T

(
x
y

)
=

(
αx
y

)
Illustration Effect on the unit square Standard matrix

x

y

x
T (x)

(x, y)(αx, y)
(0, 1)

(1, 0)

(0, 1)

(α, 0)

α 0

0 1



x

y

x

T (x)

(x, y) (αx, y) (0, 1)

(1, 0)

(0, 1)

(α, 0)

α 0

0 1


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Expansions and compressions in the y−direction – T

(
x
y

)
=

(
x
αy

)
Illustration Effect on the unit square Standard matrix

x

y

x

T (x)

(x, y)

(x, αy)

(0, 1)

(1, 0)

(0, α)

(1, 0)

1 0

0 α



x

y

x

T (x)
(x, y)

(x, αy)

(0, 1)

(1, 0)

(0, α)

(1, 0)

1 0

0 α


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Shears

• T

(
x
y

)
=

(
x+ αy

y

)
• Translates a point

(
x
y

)
in the xy−plane parallel to the x−axis by an amount αy

that is proportional to the y−coordinate of the point.
• Points on the x−axis are fixed (y = 0), the translation distance increases as we

progress away from the x−axis
• Shear in the x−direction by a factor α

• Similarly, T
(
x
y

)
=

(
x

y + αx

)
- Shear in the y−direction by a factor α
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Shears

Operator Effect on the unit square Standard
matrix

T

x

y

 =

x+ αy

y


(0, 1)

(1, 0)

(α, 1)

(1, 0)

(α > 0)

(α, 1)

(1, 0)

(α < 0)

1 α

0 1



T

x

y

 =

 x

y + αx


(0, 1)

(1, 0)

(0, 1)

(1, α)

(α > 0)

(0, 1)

(1, α)
(α < 0)

1 0

α 1


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Shears – example

Example

•
(
1 2
0 1

)
: shear in the x−direction by a factor 2

•
(
1 −2
0 1

)
: shear in the x−direction by a factor −2

•
(
2 0
0 2

)
: dilation with factor 2

•
(
2 0
0 1

)
: expansion in the x−direction with factor 2
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Orthogonal projections onto lines through the origin

• Orthogonal projections onto the coordinate axes in R2 are special cases of the
operator that maps each point into its orthogonal projection onto a line L through
the origin that makes an angle θ with the positive x−axis

• Recall from tutorial 1
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Orthogonal projection on a line
• Find the orthogonal projections of the vectors
e1 =

(
1
0

)
and e2 =

(
0
1

)
on the line L that

makes an angle θ with the positive x−axis in
R2

• First we find the orthogonal projection of e1
onto a :=

(
cos θ
sin θ

)

proja e1 =
e1 · a
‖a||2

a =
cos θ + 0

1

(
cos θ
sin θ

)
=

(
cos2 θ

sin θ cos θ

)
• We note that for any other vector, u on the

line L, u = αa for some α ∈ R

proju e1 =
αe1 · a
α2‖a||2

(αa) =
e1 · a
‖a||2

a

x

y

cos θ

1

(cos θ, sin θ)

θ

e2

e1

L

sin θ

• Similarly

proju e2 =
e1 · a
‖a||2

a

=

(
sin θ cos θ

sin2 θ

)
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Orthogonal projection onto a line through the origin

• projection onto a line L through the origin that makes an angle θ with the
positive x−axis

• The images of e1 and e2 are

T (e1) =

(
cos2 θ

sin θ cos θ

)
, T (e2) =

(
sin θ cos θ

sin2 θ

)
• Standard matrix is

Pθ :=

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
=

 cos2 θ 1

2
sin 2θ

1

2
sin 2θ sin2 θ


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Orthogonal projection onto a line through the origin
Example

• Find the orthogonal projection of the vector x =

(
1
5

)
onto the line through the

origin that makes an angle of π

6
(= 30◦) with the positive x−axis

• The standard matrix is

Pπ/6 =

(
cos2(π/6) sin(π/6) cos(π/6)

sin(π/6) cos(π/6) sin2(π/6)

)
=


3

4

√
3

4
√
3

4

1

4



Pπ/6x
⊤ =


3

4

√
3

4
√
3

4

1

4


(
1
5

)
=

3 + 5
√
3

4√
3 + 5

4

 ≈
(
2.91
1.68

)
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Reflection about lines through the origin
• Hθ : R2 → R2

• Maps each point into its reflection
about a line L through the origin that
makes an angle θ with the positive
x−axis

• From the figure, we can see

Pθx−x =
1

2
(Hθx−x) =⇒ Hθx = (2Pθ−I)x

• It follows from the theorem that

Hθ = 2Pθ − I =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

) x

y

L

x

Pθx

Hθx

θ

Theorem
TA : Rn → Rm, TB : Rn → Rm. If TA(x) = TB(x) for all x ∈ Rn, then A = B.
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Reflection about lines through the origin
Example

• Find the reflection of the vector x =

(
1
5

)
about the line through the origin that

makes an angle π/6 (= 30◦) with the positive x−axis
• The standard matrix

Hπ/6 =

(
cos(π/3) sin(π/3)
sin(π/3) − cos(π/3)

)
=


1

2

√
3

2
√
3

2
−1

2



Hπ/6x
⊤ =


1

2

√
3

2
√
3

2
−1

2


(
1
5

)
=


1 + 5

√
3

2
√
3− 5

2

 ≈
(

4.83
−1.63

)
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Compositions of matrix transformations

• TA : Rn → Rk, TB : Rk → Rm

• The composition of TB and TA is a matrix transformation

TB ◦ TA : Rn → Rm

x 7→ (BA)x

• Because
TB ◦ TA(x) = TB(TA(x)) = B(Ax) = (BA)x

• Thus
TB ◦ TA = TBA
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Compositions of matrix transformations

• Consider
TA : Rn → Rk, TB : Rk → Rℓ, TC : Rℓ → Rm

• Then
TC ◦ TB ◦ TA : Rn → Rm

• and
(TC ◦ TB ◦ TA)(x) = TC(TB(TA(x))) = (CBA)x

• i.e.
TC ◦ TB ◦ TA = TCBA
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Compositions of matrix transformations

• Let us denote the standard matrix for T by [T ]

• Then
[T2 ◦ T2] = [T2][T1], [T3 ◦ T2 ◦ T1] = [T3][T2][T1]
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Composition is not commutative
Example (Composition is not commutative)

x

y y = x

x

T1(x)
T2(T1(x))

T2 ◦ T1

x

y y = x

T2(x)
x

T1(T2(x))

T1 ◦ T2

• T1: reflection about the line y = x; T2: orthogonal projection onto the y−axis

[T1 ◦ T2] = [T1][T2] =

(
0 1
1 0

)(
0 0
0 1

)
=

(
0 1
0 0

)
[T2 ◦ T1] = [T2][T1] =

(
0 0
0 1

)(
0 1
1 0

)
=

(
0 0
1 0

)
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Composition of rotations is commutative

Example
• Rotation in R2

• T1: rotate vectors about the origin through the angle θ1

• T2: rotate vectors about the origin through the angle θ2

• Standard matrix

[T1] =

(
cos θ1 − sin θ1
sin θ1 cos θ1

)
, [T2] =

(
cos θ2 − sin θ2
sin θ2 cos θ2

)
• With trigonometric identities, it can be verified that

[T2 ◦ T1] = [T1 ◦ T2] =

(
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

)
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