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Course Outline

Vectors and matrices

System of linear equations

Matrix inverse and determinants

Vector spaces and matrix transformations
Fundamental spaces and decompositions
Eulerian tours

Hamiltonian cycles

Midterm

Paths and spanning trees

Trees and networks

Matching
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Recommended reading

® Anton, Howard, and Chris Rorres. Elementary linear algebra: applications version.
John Wiley & Sons, 2013.

® Sections 1.5, 1.6, 2.1,2.2, 2.3
® Free copy online
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https://thuvienso.hoasen.edu.vn/bitstream/handle/123456789/8937/Contents.pdf?sequence=3

Lecture outline

e Elementary row operations and elementary matrices
e Compute matrix inverse

e Linear systems and invertible matrices

e Determinants

e Evaluating determinants by row reduction

e Properties of determinants

e Cramer’s rule
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Matrix inverse and determinants

e Elementary row operations and elementary matrices
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Elementary row operations

Recall elementary row operations

e Multiply a row by a nonzero constant .

® Interchange two rows.

® Add a constant § times one row to another.
If we obtain B from A by one of the operations, then A can be recovered from B by
one of the following

e Multiply the same row by 1/5.

® Interchange the same two rows.

® |f B resulted by adding 3 times row ¢ of A to row j, then add —f times row i to

row j.

If B is obtained from A by performing a sequence of elementary row operations, then
there is a second sequence of elementary row operations, which when applied to B
recovers A
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Row equivalence and elementary matrices

Definition
Matrices A and B are said to be row equivalent if either can be obtained from the
other by a sequence of elementary row operations.

Definition

A matrix E is called an elementary matrix if it can be obtained from an identity matrix
by performing a single elementary row operation.
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Elementary matrices — example

Example

1
1 0 0
0 -3)7 10

0

o o O

The elementary operations:

R3s——3R.
o [, fsr=3hs,

° ]4
° ]3
° ]3

Ro+rRy
—_—

R1—R1+3R3
—_—

Rl—)lRl
R

o= O O

O O = O

O O =

o = O

_ o W

S O =

S = &

= O O

S O =

oS = O

— o O
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Row operations by matrix multiplication

Theorem 1

Suppose the elementary matrix E results from performing a certain row operation on
L. Take any A € M,,,«xn, then EA is the matrix that results when this same row
operation is performed on A.

Example

R, R3+3R
Note that I3 273, B and
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Inverse operation

® . an elementary matrix that results from performing an elementary row
operation on an identity matrix

® There is another elementary row operation when applied to E produces 1

® We call them inverse operation of each other
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Row operations and inverse row operations — example

We first apply an elementary row operation on I, to get an elementary matrix and
then apply the inverse row operation to get I

1 0 Ro—TR> 1 0 RQH%RZ 1 0
01 07 01

1 0 R1 <—>R2 0 1 R1 <—>R2 1 0
01 1 0 0 1
1 0 R1—R1+5Ro 1 5 R1—R1—-5R> 1 0
0 1 01 0 1
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Inverse of an elementary matrix

Theorem 2

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Let £ be any elementary matrix. By definition, E is obtained from I by performing
some row operation. Let Fy be the matrix that results when the inverse of this
operation is performed on I. By Theorem 1 and the fact that inverse row operations
cancel the effect of each other

EoE=1 and FEEy=1.

Ey is the inverse of E.
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Equivalent statements
Theorem 3

For any A € M,,xn, the following statements are equivalent.
(a) A is invertible

(b) Ax = 0 has only the trivial solution
(c) The reduced row echelon form of A is I,
(d)

d) A is expressible as a product of elementary matrices

/) (=)
We will prove \

(@) = (1) = () = (@) = (a) @ »

\/
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Equivalent statements — proof

(a) A s invertible
(b) Az = 0 has only the trivial solution

(a) = (b) Suppose A is invertible and let @y be a solution of Az = 0. Multiplying
both sides by A~!

A_I(Amo) =0= (A_IA)CCO =0=—=Ixg=0—x3=0
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Equivalent statements — proof

(b) Az = 0 has only the trivial solution

(c) The reduced row echelon form of A is I,

(b) = (c) Let the linear system corresponding to Az = 0 be

a11r1 + apre + - 4+ awpr, = 0
a21T1 + agers + -+ 4+ agr, = 0
Gn1T1 + aGpara + - 4+ apprp, = 0

Since the linear system has only the trivial solution, the reduced row echelon form of
its augmented matrix would represent
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Equivalent statements — proof

(b) Az = 0 has only the trivial solution

(c) The reduced row echelon form of A is I,

(b) = (c) Since the linear system has only the trivial solution, the reduced row echelon
form of its augmented matrix would represent

i _ 10 0 0 0

! - 010 00

L2 = 0 augmented matrix 0 1 0 0
E— :

on =9 00 0 10
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Equivalent statements — proof

(c) The reduced row echelon form of A is I,

(d) A is expressible as a product of elementary matrices

(¢) = (d) Suppose the reduced row echelon form of A is I,,, then A can be reduced to
I, by a finite sequence of elementary row operations. By Theorem 1, each of these
operations can be accomplished by multiplying on the left by an appropriate
elementary matrix. Thus, 3 E1, Es, ..., Ej s.t.

Ep-- EyE1A =1,

By Theorem 2, F1, s, ..., E} are invertible and their inverses are also elementary

matrices.
—1 -1 -1
A=E]"E; Ek .

17/96



Equivalent statements — proof

(a) A s invertible

(d) A is expressible as a product of elementary matrices

(d) = (a) Suppose
A=EE" . E,

then
1 -1 —1 -1
A" =E_ - -Ey E;".
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Matrix inverse and determinants

e Compute matrix inverse
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Inverse of a matrix and reduced row echelon form

® We will develop a procedure to determine if a matrix is invertible, if yes, find the
inverse

® Suppose A € M, «n is invertible, then its reduced row echelon form is I,
By -EoFE1A=1,.
Multiply both sides on the right by A1
A'=E---EyEq I,

i.e. the same sequence of row operations that reduces A to I,, will transform I,
to A1
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Inversion algorithm

To find the inverse of an invertible matrix A € M,,xn
® Find a sequence of elementary row operations that reduces A to I,
® Perform the same sequence of operations on I, to find A1
® We adjoin I,, to the right side of A

(4] 1)
and apply elementary row operations to get

(5 | A71)
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Inversion algorithm — example

Example

™M N 0
a0 O

— O —

)

0
-2 10
5 |—-1 0 1

-3

2
1
=%

1
0
0

Ro—Ro—2R;
R3—R3s—R:1

I

|

1 2 3{1 0 0

25 3010
1 03[0 01
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Inversion algorithm — example

Example
12 311 0 o0 12 0]-14 6 3
01 —3|—2 1 o | Bzt 1y 9 9] 13 —5 —3
00 1|5 —2 —1) B3t g g 1] 5 _92 _1
1 0 0]—40 16 9
fam2RetRi (g1 o] 13 -5 -3
0015 -2 -1
—40 16 9
A= 13 -5 -3
5 —2 —1

Exercise
Verity that AA=! = I, find E3, Ej,... and verity that [ = E1FyE5... A
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Show that a matrix is not invertible — example

0 0 1 6 4 1 00
1 0 m 9|1 =2 1 0
0 1) ot | 01

foofetfs, (o -8 —9| -2

0 0 0 ]-1

Since the left side has a row of zeros, A is not invertible.

-8
8
1 6 41 00
1
1
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Analyzing homogeneous systems — example

Example
(a) (b)
1+ 2x9+3x3 = 0 1+ 629 +4x3 = 0
2x1 +5x90+3x3 = 0 201 +4xo —x3 =
r1+8x3 = 0 —x1 + 229+ 523 =

® From Theorem 3, a homogeneous linear system has only the trivial solution iff its
coefficient matrix is invertible

® From the previous example, we know that (a) has only the trivial solution and (b)
has nontrivial solutions
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Matrix inverse and determinants

e Linear systems and invertible matrices
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Solution of linear systems

Theorem
A system of linear equations has either zero, one, or infinitely many solutions.

Az = b has either (a) no solutions, (b) has exactly one solution, or (c) more than one
solution. It suffices to show if the system has more than one solution, it has infinitely
many solutions.

Assume two distinct solutions @1, 2, let £y = &1 — ®3. Then xy # 0, and

Aa:o:A(wl—wg) :Awl—A:BQIb—bZO.
For any 8 € R,
A(xy + fxy) = Azxy + A(Bxo) = b+ B(Axzg) =b+0=0,

showing that @1 + S is a solution. Since @y # 0 and there are infinitely many 3, the

system has infinitely many solutions. 27 /9



Solving linear systems

Theorem 4

Given A € My, «n, b € R™, if A is invertible, then the system of equations Ax = b has
a unique solution x = A™'b.

Since A(A71b) = b, £ = A~ b is a solution. If g is any solution of Az = b, then

mutiply by A~1
e 4

A:BO =b A_lA:IBO = A_lb — Ty = A_lb
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Solution of a linear system using matrix inverse

Example

r1 4+ 2x3+ 33 =
2x1 + dx2 + 3x3 =

1 +8x3 = 17
In matrix form, the system can be written as Ax = b, where
1 2 3 T 5
A — 2 5 3 s €r = xo R b — 3
1 0 8 r3 17
We already calculated:
—40 16 9

Al=113 -5 -3
5 -2 —1
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Solution of a linear system using matrix inverse

Example
1+ 223+ 33 =
2x1 4+ dxo + 3x3 =
1 +8x3 = 17
1 2 3 1 5 —40 16 9
A=12 5 3|, =[2]|, b=3], At=|13 -5 -3
1 0 8 T3 17 5 =2 -1
The solution is given by
—40 16 9 5 1
z=A"=|13 -5 -3|[3]=|[-1
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Linear systems with a common coefficient matrix

® Frequently, one is concerned with solving a sequence of systems
A:I):b1, Am:bg, ey A$:bk

each of which has the same square coefficient matrix A.

e |f A is invertible, then the solutions
=A"1b =A"'b =A"'b
T = 1 Iy = 2 ceey T = k

can be obtained with one matrix inversion and k£ matrix multiplications.
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Linear systems with a common coefficient matrix — example

Example

(a) (b)

1+ 229 +3x3 = 4 T, + 229 + 33 =
2x1 +5x0 4+ 323 = 2x1 4+ bxo 4+ 33 =
r1+8x3 = 9 1 +8x3 =

The two solutions are given by

—-40 16 9 4 1

13 -5 -3 5 =10

5 -2 -1 9 1
—-40 16 9 1

13 -5 -3 6 | =11

SRS RN = o



Matrix inverse

Lemma 1

Given A, B € My xn
e fBA=1,then B= A1
® fAB =1, then B= A""

Assume BA = I. If A is invertible,
BAA ' =JA'—= BI=JA"'— B=A"".

By Theorem 3, to show A is invertible, it suffices to show that the system Ax = 0 has
only the trivial solution. Let g be any solution.

BAxy= B0 — Ixg =0 — xy = 0.

33/96



Equivalent statements

Theorem 5

For any A € M,,xn, the following statements are equivalent.
) A is invertible
x = 0 has only the trivial solution

c) The reduced row echelon form of A is I,

(a
(b) A
(c)
(d) A is expressible as a product of elementary matrices
(e) Ax = b is consistent Vb € R"

(f) Ax = b has exactly one solution Vb € R™

It is sufficient to prove (a)=(f)=(e)==(a).
Theorem 4 proves (a)=(f)
(f)==(e) is trivial.

We have shown the equivalence of (a)-(d) in Theorem 3.
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Equivalent statements — proof

(a) A is invertible
(e) Az = b is consistent Vb € R"

We will now show (e)==(a). Assume (e) is true. Let &1, ®2,...,x, be the solutions
for each of the following linear systems:

1 0 0
0 1 0
A.’L‘: O 5 Aw: 0 5 coo o Aw: 0
0 0 1
Let
C’—(ml‘wg‘...‘wn)
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Equivalent statements — proof

(a) A is invertible
(e) Az = b is consistent Vb € R"

Then (discussion of matrix multiplication from the last lecture)

10 --- 0
01 --- 0

AC:(Aml‘Amg‘...‘Amn): S =1l
0 0 1

By Lemma 1, C'is the inverse of A.
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Invertible matrices and their product

Theorem 6

For any A, B € M,,«n, if AB is invertible, then A and B are also invertible.

Let xy be any solution of Bx = 0, then

By Theorem 5, since AB is invertible, g = 0. Applying Theorem 5 again, B is
invertible. We have
(AB)B™! = A(BB™') = Al = A,

implying A is invertible.
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Matrix inverse and determinants

e Determinants
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Determinant of 2 x 2 matrices

We have discussed in the previous lecture that the 2 x 2 matrix A = (CCL Z)

invertible iff ad — bc # 0 and the expression ad — be is the determinant of A
For consistency, we will denote

We write
ail a2
det(A) = ar1a22 — ar2a91, = a11a22 — 12021
a1 a2
ail a2
or det = a11a92 — Q12021
az1 a2

The inverse of A

AL = 1 a2  —a12
det(A) \—a21 an

IS
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Determinant of 1 x 1 matrices

For
A= (a11)7
we define
det(A) = a1l

Then we can write

a a

M2 = a [ags| — |aro]]agi ]
a1 Qg
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Minors and cofactors

Definition
Given A = (a;;) € Myxn, the minor of entry a;;, denoted by M;;, is the determinant
of the supmatrix obtained from A by deleting the ith row and the jth column.

Cij = (=1)"™H My

is called the cofactor of entry a;;.

Example
31 —4 -
A=1(2 5 6 |, Mjy= =16, Cp = (—1)>M;; =16
1 4 8 48
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Minors and cofactors — example

Example
3 1 —4 —
A=12 5 6 |, M32_‘ ‘:26, Csp = (—1)*" M3y = —26
1 4 8 26
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Minors and cofactors

® M;; and C;; are related by (_1)i+j
° (—1)i+j is either +1 or —1 in accordance with the pattern in the “checkerboard”
array

® For example
Ci =My, Co=—-My, Cyp=DMy
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Minors and cofactors - 2 x 2 matrices
A= <a11 a12> (—i— —)
az1 a22 - +

Ci1 = M1 = ag, Ci2=—My = —ag

Minors and cofactors

Co1 = —Mo1 = —ag1, Ca2 = Mo = an

We can verify that

det(A) = ar1a2 — a12a21 = a11C11 + a12C12
= 21021 + a22022
= a11Cn1 + a21C91

= a12C12 + a22C2
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Cofactor expansion

Theorem

Given A = (a;j) € My,xn, regardless of which row or column of A is chosen, the
number obtained by multiplying the entries in that row or column by the corresponding
cofactors and adding the resulting products is always the same. For all

1 <u1,12,71,J2 <,

n n n n
> aikCik =Y aiskCisk = Y akj, Chjy = Y aij,Chyy
k=1 k=1 k=1 k=1
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Determinant

Definition
Given A = (a;j) € Myxn, the determinant of A, denoted det(A) is given by

n
det(A) = Y akjCk; = a1;C1; + aziCa; + -+ + anjCoj
k=1

for some 1 < i < n (cofactor expansion along the jth column). Or equivalently,
n
det(A) = Z a;xCik = anCi1 + a2Ci2 + - - + ainCin
k=1

for some 1 < j < n (cofactor expansion along the ith row).
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Determinant — example

Example
3 1 0
A=|-2 -4 3
5 4 =2
Cofactor expansion along the first row
-4 3 -2 3 -2 -4
det(A)—?)’ 4 _2‘—1‘ 5 _2'—1-0' 54 ‘ =3x(—4)—1x(-11)+0=-1

Cofactor expansion along the first column

1 0
—4 3

-4 3

det(A):3‘4 _2‘—(—2)’4 9

‘+5' ’:3><(—4)—(—2)><(—2)+5><3:—1
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Determinant — example

Example

N = W
O = O
[\]

0 0

A smart choice of row/column - more zeros
Cofactor expansion along the second column

1 0 -1
det(A) =11 -2 1 —1><(—2)‘
2 0 1
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Determinant of a lower traingular matrix

Example

ail 0 0 0

ago 0 0
az az 00 aiy lazz azz 0
azr azz azz O

a41 QA42 Qa43 Q44

G42 Q43 Q44

azgz O
= a11022

a43 Q44
= 011022033044
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Determinant of a triangular matrix

Theorem

If A € My, xy, is a triangular matrix (upper triangular, lower triangular, diagonal), then
det(A) is the product of the entries on the main diagonal of A

det(A) = 411022 " * Apn-
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Determinants of 2 x 2 and 3 x 3 matrices

aiz|
= a11a22 — G12021
a1 a2
Sarrus’ rule
ail ai2 a3
. az2 Q23 az1 az1 a2
ag1 G22 23| = a11 — a2 + a2
a32 Aass asi as;  as2

azz2 asz2 ass
= a11(ag2a33 — agzaszz) — a12(ag1asz — azrazsz) + a13(ag1as2 — asrazz)

= a11a22033 + a12a23a31 + a13a21032 — 13022031 — 120214033 — 11023032
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Determinants of 2 x 2 and 3 X 3 matrices — example

Example

7 -8 9
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Matrix inverse and determinants

e Evaluating determinants by row reduction
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Special case

Theorem
For any A € My, xn, if A has a row (or column) of zeros, then det(A) = 0.

Let Cy, Cy,..., C), denote the cofactors of A along the row (or column) of zeros, we
have

det(A) =0C, +0Cy + --- 4+ 0C,, = 0.
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Determinant of transpose

Theorem
For any A € M xn, det(A) = det(AT)

Since transposing a matrix changes its columns to rows and its rows to columns, the
cofactor expansion of A along any row is the same as the cofactor expansion of A"
along the corresponding column.
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Row operations and determinants

A Ri—pBR; B
ailr a1z a13 Bair Parz  Pais
az1 a2 a3 | — | a2 a2 a3
as1 as2 ass asi asz  asg

The two matrices only differ in the first row, consider cofactor expansion along the first
row, the cofactors C11,C12,C13 are the same

det(A) = anCi1 + a12C12 + a13C13

det(B) = fa11C11 + Ba12C12 + Ba13Ciz = B(a11C11 + a12C12 + a13C13) = B det(A)
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Row operations and determinants

JIRELSEIEN
<a11 Cl12> N (6@1 a22>
as1 a2 ail a2
det(A) = a11a22 — aiza91, det(B) = as1a12 — ajiage
—det(A) = det(B)

For 2 x 2 matrices, swapping rows changes the sign of the determinant
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Row operations and determinants

A Ri1+R2 B
ail a2 ai13 a1 a2 a23
az1 a2 a3 | — | a1 a2 ai3
asy az2 ass asir as2 asg

det(A) = a31Cs1 + az2Css + a33Cs3

We have just observed that for 2 x 2 matrices, swapping rows changes the sign of the
determinant. Hence

det(B) = a31(—031) + CL32<—C32) + a33(—033) = — det(A)

Similar arguments hold for R; <+ R3, Ro <> R3
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Row operations and determinants

Suppose for (n — 1) x (n — 1) matrix A, swapping two rows changes the sign of the

R
determinant. Consider n X n matrix A

aip a2 -+ Glp
aiy 1 @342 0 Gign
Qjg1  Gjp2 - Qiyn
asyp a3z2 -+ a3p

i1 HRZQ

B

ail

Aj51

Qiq1

a3

a12

Q52

Qjq2

a32

ain

Aijon

Ajin

a3n

det(A) = a11Cy1 + a12C12 + - - - + a1,C1p,

det(B) = a11(—C1) + a12(=C12) + - - - + a1n(—C1p) = — det(A)
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Remark

Note
If A has two identical rows R;,, R;,

Then
det(B) = det(A) = —det(B) = det(A) =0
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A

R1—R1+BR2
_—

det(B)

B

ai
a21
asi

Row operations and determinants

a2 a3 a1l + Bar a1z + PBaz a3z + Pass
az2 a23 | — a1 a2 az3
asy ass asy as2 ass

(@11 + Baz1)Cii + (a12 + Baz)Crz + (a13 + Bazs)Cis
(@11C11 + a12C12 + a13C13) + B(a21Ch1 + a22C12 + a23Ci3)

a1 azz a3
det(A) + B lao1 a2 a3

aszy a32 a33
det(A) + 0 = det(A)
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Row operations and determinants

Operation Relationship
Ry BR Bair  Paiz  Baisz a1 a2 a3
1 1
A B ag1 a9 ags | = ﬁ 21 Q22 0423 det(B) = 5det(A)
a3y a32 a33 a31 asz 433
RioR a21 Q22 a23 ailp a2 ais
A 1—2) B ai; Qai2 ai13| = —|a21 Aa22 a23 det(B) = — det(A)
az1 azz ass3 az1 asz as3
a1 + Bagy  aiz + Pazy a3+ Bass aix aiz2 ais
Ri—R1+BR2
A—— "5 B a1 a2 a93 as1 Q29 G923 det(B) = det(A)
a31 a32 as3 azy1 azz ass
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Row/Column operations and determinants

Theorem
Let A € My xn.

® |f B is the matrix that results when a single row or single column of A is
multiplied by a scalar 3, then det(B) = 3 det(A)

® |f B is the matrix that results when two rows or two columns of A are
interchanged, then det(B) = — det(A)

® |f B is the matrix that results when a multiple of one row of A is added to another
or when a multiple of one column is added to another, then det(B) = det(A)
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Determinants of elementary matrices

Theorem 7

Let E € M, «,, be an elementary matrix
e |f E results from multiplying a row of I,, by a nonzero scalar /3, then det(E) =
e |f E results from interchanging two rows of I, then det(E) = —1
e |f E results from adding a multiple of one row of I,, to another, then det(E) =1

Example
1 0 0 O 0O 0 0 1 1 0 0 7
0300 _, [0o100__, Jo1o0o0_,
0010 ™ |00 1 0 0 01 0
0 0 0 1 1 0 0 0 0 0 0 1
1-4 R2—>3R27 1-4 R1<—>R47 I4 R1—TR4+R1
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Determinants of elementary matrices

Theorem

Let E € M, «,, be an elementary matrix
e |f E results from multiplying a row of I,, by a nonzero scalar /3, then det(E) =
¢ |f E results from interchanging two rows of I, then det(F) = —1
® If E results from adding a multiple of one row of I,, to another, then det(E) = 1

Remark
det(E) #0
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Row operations and determinant

® Reduce the given matrix to upper triangular form by elementary row operations
e Compute the determinant of the upper triangular matrix (an easy computation)

® Relate that determinant to that of the original matrix
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Row operations and determinant — example

Example
0 1 5
A=[3 -6 9
2 6 1
3 -6 9, ., |1 -2 3 1 -2 3
det(A) 2™ _Jo 1 5 2T 3l 1 5| WTERTE _39 1 5
2 6 1 2 6 1 0 10 -5
1 1 —2 . 1 -2 3
Rs=ltls g1 =57 (3) x (=55)|0 1 5| =3x55=165
0 0 -55 0 0 1
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Column operations and determinant — example

Example
1 0 0 3
2 7 0 6
A= 0 6 3 0
7 3 1 =5
Add —3x the first column to the fourth
1 0 0 0O
2 70 0
det(A) = 063 o0l— —546
7 3 1 —-26
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Row operations and cofactor expansion — example

Example
3 5 —2 6
1 2 -1 1
A=l2 4 1 5
3 7 5 3

By adding suitable multiples of the second row to the remaining rows

0 -1 1 3 1
1 2 —1 1| cofactor expasion first column
det(A) = 0 0 3 3 = — 3
0 1 8 O 18
-1 1 3 ,
R3—>};1+R3 “lo 3 3 cofactor expasgn first column _(_1) ‘3 3
0 9 3 93

w

—-1s
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Matrix inverse and determinants

e Properties of determinants
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Determinant of SA

Let A € M,,x,. Since a common factor of any row of a matrix can be moved through
the determinant sign, and since each of the n rows in SA has a common factor of 3,

we have
det(BA) = g™ det(A)
Example
Bair Baiz Paiz ail ai2 ais aii ai2 ais
Baz1 Baze Pazz| = [|Bazr Baze Bass 252 az1 a2 a23
Baz1 Bazz Bass Baz1 Bazz Bass Bas1 Bazz Pass

a1l aiz2 ais

3
= [7la21 a2 a3
az1 asz ass
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Determinant of A + B

Example (det(A + B) # det(A) + det(B))
A:@ §> B=(3 11 3), A+B:<§ Z)

det(A) =1, det(B)=38, det(A+ B)=23

We have
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Adding just one row

A— <a11 a12>’ B <a11 a12>
a1 a2 ba1 b2

det(A) + det(B) = (a11a22 — a21a21) + (a11b22 — a12b21)
= a1(ag2 + ba2) — ara(azr + bay)
ail a2

a1 + ba1  ago + b2

73/96



Adding just one row

Theorem

Suppose A, B,C € My, «yn, differ only in a single row, say the rth row, and assume that
the rth row of C' can be obtained by adding the corresponding rows of A and B. Then

det(C) = det(A) + det(B)

The same result holds for columns

Example
1 7 5 1 7 5 1 7 5
2 0 31=12 0 3/+1(2 0 3
1 5 6 1 4 7 0 1 -1
Remark

A useful trick for computing determinants
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Determinant and multiplication by an elementary matrix
Lemma 2

Given B, E € My, «n, where E is an elementary matrix, then

det(EB) = det(F) det(B).

® If E results from multiplying a row of I, by 3, then by Theorem 1, EB results
from B by multiplying the corresponding row by 3 and we have

det(EB) = [ det(B)

From Theorem 7, det(E) =

® Similar arguments hold if F results from interchanging two rows of I,, or from
adding a multiple of one row to another of I,
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Determinant and multiplication by an elementary matrix

® By repeated application of Lemma 2, if A € My, and E1, Es, ..., E. € Myxn
are elementary matrices, then

det(E1Ey--- EA) = det(E71) det(Es) - - - det(E,) det(A)
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Invertible matrix and determinant

Theorem
A square matrix A is invertible iff det(A) # 0.

Let R be the reduced row echelon form of A. Let F4, Es,..., E,. be the elementary
matrices that correspond to the elementary row operations that produce R from A.
Then

R=EFE, - --EyF A.

And from what we just discussed

det(R) = det(E,) - - - det(Ey) det(Er) det(A) = det(R) = 0 iff det(A) =0
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Invertible matrix and determinant

Theorem
A square matrix A is invertible iff det(A) # 0.

Let R be the reduced row echelon form of A.
det(R) =0 <= det(A) =0

If A is invertible, by Theorem 3, R = I, which implies that det(A) # 0.
If det(A) # 0, then det(R) # 0, if R has one row of zeros, det(R) = 0, thus R = I.
Apply Theorem 3 again we can conclude A is invertible.

Recall — theorem from last lecture

If R is the reduced row echelon form of a matrix A € M,,«,,, then either R has at least
one row of zeros or R = I,,.

78/96



Equivalent statements

Theorem

For any A € M,,«, the following statements are equivalent.

(a) A is invertible
(b) Ax = 0 has only the trivial solution
(c) The reduced row echelon form of A is I,
(d) A is expressible as a product of elementary matrices
(e) Ax = b is consistent Vb € R"
(f) Ax = b has exactly one solution Yb € R"
)

(g) det(A)#0
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Determinant test for invertibility

A=

N = =
= O N
S = W

. R3—R3—2R .
Rs = 2Ry, row operation A L7872 M, Contains one row of zeros, hence det(A) =0

and A is not invertible
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Determinant of matrix product

Theorem
For any A, B € My, xp, det(AB) = det(A) det(B).

® If A is not invertible, by Theorem 6, AB is not invertible,
det(AB) = det(A) det(B) = 0.
e If A is invertible, by Theorem 5,

A=FFEy---E,— AB=FE\E>---E,B
Then

det(AB) = det(E1) det(FE2) - - - det(E,) det(B) = det(A) det(B)
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Determinant of matrix product — example

Example
3 1 -1 3 2 17
a=(1) 8=(5 ) 42=( 1)

det(A) =1, det(B)=—23, det(4AB)=—23

We have
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Determinant of inverse

Theorem

If A is invertible, then .

det(A)

det(A™1) =

AA™ = T = det(A) det(A™1) = det(I) = 1
Since A is invertible, det(A) # 0.
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Matrix inverse and determinants

e Cramer’s rule
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Cofactors

® |n a cofactor expansion we compute determinant by multiplying the entries in a
row or column by their cofactors and adding the resulting products.

® Multiply the entries in any row by the corresponding cofactors from a different
row, the sum of these products is always zero - note that this corresponds to
computing the determinant of a matrix with two identical rows

® This result also holds for columns
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Cofactors

Example
3 2 -1
A=|1 6 3
2 —4 0

We have

Cii=12 Ci2=6 Cig=-16 Co1 =4 (Cypn=2 (Cy3=16
C31 =12 (C35=-10 C33=16

Cofactor expansion of det(A) along the first row is
det(A) =3C11 + 2C12 + (—1)013 =36+12+ 16 =64
and along the first column is

det(A) =3C11+0Cy1 +2C31 =36+4+24 =064
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Cofactors

Example
3 2 -1
A=(1 6 3
2 -4 0

Ci1=12 (Ci2=6 Ciz=-16 Cop =4 Cyp=2 (Cy3=16
C31 =12 (O3 =—10 (33 =16

Multiply the entries in the first row by the corresponding cofactors from the second
row and add the resulting products

3Co +2C% + (—1)C3=124+4—-16=0

Note that
3 2 -1
3C51 + 2Cy + (*1)023 =3 2 -1 =
2 -4 0
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Cofactors

Example
3 2 -1
A=11 6 3
2 —4 0

Ci1=12 (Ci2=6 Ciz=-16 Cop =4 Cyp=2 (Cy3=16
C31 =12 (O3 =—10 (33 =16

Multiply the entries in the first column by the corresponding cofactors from the second
column and add the resulting products

3C12 +1C5% +2C3=18+2—-20=0
Note that
3 3
3C12+1C» +2C35 =11 1 3|=0
2 2
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Adjugate

Definition
Let A = (a;j) € Myxn. Let Cj; be the cofactor of a;;, then the matrix

Cii Ci2 -+ Cip
Cop Cop -+ Oy
Cnl Cn2 e Cnn

is called the matrix of cofactors from A. The transpose of this matrix is called the
adjugate of A and is denoted by adj(A).
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Example

Cn=12 Ci2=6

Adjugate — example

3
A=11 6 3
2

2 =l

-4 0

C31 =12 (O3 =-10 (33 =16

The matrix of cofactors is

and the adjugate of A is

12
4
12

adj (4) =

6 —16
2 16
—10 16
12 4
6 2

—16 16

Cig=-16 Co1 =4 (Cypn=2 (Cy3=16

12
—10
16
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Inverse of a matrix using adjugate

Theorem
If A is an invertible matrix, then

1
det(A)

ATl = adj (A).

We show first that
Aadj(A) = det(A)I.

aip a2 - QAin
a1 azz2 - G2p Ci1 Cy - le
Aadj(4) = R
ail a2 - Gin : : it :
Cln CQn e Cjn
Gpl an2 - Gpn

Cn 1
Cn2
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Inverse of a matrix using adjugate

i, j-entry of Aadj(A) is a;1Cj1 + ai2Cja2 + - - - + ainCin
® If i = j, then the above is the cofactor expansion of det(A) along the ith row of A
o Ifi+j, itis0

det(A) 0 0
0 det(A) --- 0
Aadj(A) = : : . : = det(A)I
0 0 - det(A)

Since A is invertible, det(A) # 0, multiply by 4 t( @A 1 on the left

Torr 2 () = 4=
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Inverse of a matrix using adjugate — example

Example
With the same example
3 2 -1
A=1|1 6 3
2 —4 0

Ci1=12 Ci2=6 Ci3=-16 Cop =4 Cop=2 (Cy3=16
C31 =12 C32 =—-10 (33 =16

Cofactor expansion along the first row
det(A) = 3C11 +2C12 + (—1)C13 =36 + 12 + 16 = 64
The inverse is given by

L (12 4 1
adj(A)=—| 6 2 =10

A7l =
64
~16 16 16 056
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Cramer's rule

Theorem (Cramer's Rule)

Given Ax = b, a system of n linear equations in n unknowns. If det(A) # 0, then the
system has a unique solution given by

_ det(Ay) _ det(A2) _ det(Ay)
T det(4) T et T T det(A)

I

where A; is the matrix obtained by replacing the entries in the jth column of A by b.

Since A; differs from A only in the jth column, the cofactors of entries by, ba,..., b,
in A; are the same as the cofactors of the corresponding entries in the jth column of A

det(Aj) = blClj -+ bQCQj + -4+ ann]
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Cramer's rule

det(Aj) = blClj + bQCQj P oo qF annj

We know that the unique solution is given by

Cu Ci2 - Ciy b1
1 1 Cy1 Cy --- Cop ba

= A 1p = i(A)b =
* b det(A) adj (4)b det(A) : L :
Cnl Cn2 et Cnn bn

Then
v b101j + bQCQj g 000 IF annj - det(Aj)

J det(A) det(A)
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Cramer’s rule — exmaple

Example
r1+2x3 = 6
—3x1 + 429+ 623 = 30
—x1 —2x9+3x3 = 8
1 0 2 6 0 2 1 6 2 1 0 6
A=|-3 4 6],A4 =30 4 6],A,=-3 30 6|],A3=1-3 4 30
-1 -2 3 8 -2 3 -1 8 3 -1 -2 8
The solution is given by
det(A;) 40 —10 det(Az) T2 18

= .'EQ

T det(4) 44 11 T odet(4) 44 11’
det(A3) 152 38

T det(A) 44 11

I

z3
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