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Course Outline

• Vectors and matrices
• System of linear equations
• Matrix inverse and determinants
• Vector spaces and matrix transformations
• Fundamental spaces and decompositions
• Eulerian tours
• Hamiltonian cycles
• Midterm
• Paths and spanning trees
• Trees and networks
• Matching
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Recommended reading

• Anton, Howard, and Chris Rorres. Elementary linear algebra: applications version.
John Wiley & Sons, 2013.

• Sections 1.5, 1.6, 2.1, 2.2, 2.3
• Free copy online
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https://thuvienso.hoasen.edu.vn/bitstream/handle/123456789/8937/Contents.pdf?sequence=3


Lecture outline

• Elementary row operations and elementary matrices

• Compute matrix inverse

• Linear systems and invertible matrices

• Determinants

• Evaluating determinants by row reduction

• Properties of determinants

• Cramer’s rule
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Matrix inverse and determinants

• Elementary row operations and elementary matrices

• Compute matrix inverse

• Linear systems and invertible matrices

• Determinants

• Evaluating determinants by row reduction

• Properties of determinants

• Cramer’s rule
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Elementary row operations
Recall elementary row operations

• Multiply a row by a nonzero constant β.
• Interchange two rows.
• Add a constant β times one row to another.

If we obtain B from A by one of the operations, then A can be recovered from B by
one of the following

• Multiply the same row by 1/β.
• Interchange the same two rows.
• If B resulted by adding β times row i of A to row j, then add −β times row i to

row j.
If B is obtained from A by performing a sequence of elementary row operations, then
there is a second sequence of elementary row operations, which when applied to B
recovers A
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Row equivalence and elementary matrices

Definition
Matrices A and B are said to be row equivalent if either can be obtained from the
other by a sequence of elementary row operations.

Definition
A matrix E is called an elementary matrix if it can be obtained from an identity matrix
by performing a single elementary row operation.
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Elementary matrices – example

Example

(
1 0
0 −3

)
,


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ,

1 0 3
0 1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1


The elementary operations:

• I2
R3→−3R3−−−−−−→

• I4
R2↔R4−−−−−→

• I3
R1→R1+3R3−−−−−−−−→

• I3
R1→1R1−−−−−→
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Row operations by matrix multiplication
Theorem 1
Suppose the elementary matrix E results from performing a certain row operation on
Im. Take any A ∈ Mm×n, then EA is the matrix that results when this same row
operation is performed on A.

Example

A =

1 0 2 3
2 −1 3 6
1 4 4 0

 , E =

1 0 0
0 1 0
3 0 1


Note that I3 R3→R3+3R1−−−−−−−−→ E, and

EA =

1 0 2 3
2 −1 3 6
4 4 10 9


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Inverse operation

• E: an elementary matrix that results from performing an elementary row
operation on an identity matrix I

• There is another elementary row operation when applied to E produces I

• We call them inverse operation of each other
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Row operations and inverse row operations – example

We first apply an elementary row operation on I2 to get an elementary matrix and
then apply the inverse row operation to get I2(

1 0
0 1

)
R2→7R2−−−−−→

(
1 0
0 7

)
R2→ 1

7
R2−−−−−−→

(
1 0
0 1

)
(
1 0
0 1

)
R1↔R2−−−−−→

(
0 1
1 0

)
R1↔R2−−−−−→

(
1 0
0 1

)
(
1 0
0 1

)
R1→R1+5R2−−−−−−−−→

(
1 5
0 1

)
R1→R1−5R2−−−−−−−−→

(
1 0
0 1

)
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Inverse of an elementary matrix

Theorem 2
Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Proof.
Let E be any elementary matrix. By definition, E is obtained from I by performing
some row operation. Let E0 be the matrix that results when the inverse of this
operation is performed on I. By Theorem 1 and the fact that inverse row operations
cancel the effect of each other

E0E = I and EE0 = I.

E0 is the inverse of E.
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Equivalent statements
Theorem 3
For any A ∈ Mn×n, the following statements are equivalent.
(a) A is invertible
(b) Ax = 0 has only the trivial solution
(c) The reduced row echelon form of A is In

(d) A is expressible as a product of elementary matrices

Proof.

We will prove

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a)

(a)

(b)

(c)

(d)
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Equivalent statements – proof

(a) A is invertible
(b) Ax = 0 has only the trivial solution

Proof.
(a) ⇒ (b) Suppose A is invertible and let x0 be a solution of Ax = 0. Multiplying
both sides by A−1

A−1(Ax0) = 0 =⇒ (A−1A)x0 = 0 =⇒ Ix0 = 0 =⇒ x0 = 0
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Equivalent statements – proof

(b) Ax = 0 has only the trivial solution
(c) The reduced row echelon form of A is In

Proof.
(b) ⇒ (c) Let the linear system corresponding to Ax = 0 be

a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

... ... . . . ... ...
an1x1 + an2x2 + · · · + annxn = 0

Since the linear system has only the trivial solution, the reduced row echelon form of
its augmented matrix would represent
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Equivalent statements – proof

(b) Ax = 0 has only the trivial solution
(c) The reduced row echelon form of A is In

Proof.
(b) ⇒ (c) Since the linear system has only the trivial solution, the reduced row echelon
form of its augmented matrix would represent

x1 = 0
x2 = 0

. . . = 0
xn = 0

augmented matrix−−−−−−−−−−→


1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 1 0


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Equivalent statements – proof

(c) The reduced row echelon form of A is In

(d) A is expressible as a product of elementary matrices

Proof.
(c) ⇒ (d) Suppose the reduced row echelon form of A is In, then A can be reduced to
In by a finite sequence of elementary row operations. By Theorem 1, each of these
operations can be accomplished by multiplying on the left by an appropriate
elementary matrix. Thus, ∃ E1, E2, . . . , Ek s.t.

Ek · · ·E2E1A = In.

By Theorem 2, E1, E2, . . . , Ek are invertible and their inverses are also elementary
matrices.

A = E−1
1 E−1

2 · · ·E−1
k .
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Equivalent statements – proof

(a) A is invertible
(d) A is expressible as a product of elementary matrices

Proof.
(d) ⇒ (a) Suppose

A = E1E
−1
2 · · ·Ek,

then
A−1 = E−1

k · · ·E−1
2 E−1

1 .
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Matrix inverse and determinants

• Elementary row operations and elementary matrices

• Compute matrix inverse

• Linear systems and invertible matrices

• Determinants

• Evaluating determinants by row reduction

• Properties of determinants

• Cramer’s rule
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Inverse of a matrix and reduced row echelon form

• We will develop a procedure to determine if a matrix is invertible, if yes, find the
inverse

• Suppose A ∈ Mn×n is invertible, then its reduced row echelon form is In

Ek · · ·E2E1A = In.

Multiply both sides on the right by A−1

A−1 = Ek · · ·E2E1In

i.e. the same sequence of row operations that reduces A to In will transform In
to A−1
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Inversion algorithm

To find the inverse of an invertible matrix A ∈ Mn×n

• Find a sequence of elementary row operations that reduces A to In

• Perform the same sequence of operations on In to find A−1

• We adjoin In to the right side of A (
A In

)
and apply elementary row operations to get(

In A−1
)
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Inversion algorithm – example
Example

A =

1 2 3
2 5 3
1 0 8


1 2 3 1 0 0
2 5 3 0 1 0
1 0 3 0 0 1

 R2→R2−2R1−−−−−−−−→
R3→R3−R1

1 2 3 1 0 0
0 1 −3 −2 1 0
0 −2 5 −1 0 1


R3→2R2+R3−−−−−−−−→

1 2 3 1 0 0
0 1 −3 −2 1 0
0 0 −1 −5 2 1

 R3→−R3−−−−−−→

1 2 3 1 0 0
0 1 −3 −2 1 0
0 0 1 5 −2 −1


Note

E1 =

 1 0 0
−2 1 0
0 0 1

 , E2 =

 1 0 0
0 1 0
−1 0 1

 , . . .

22 / 96



Inversion algorithm – example
Example1 2 3 1 0 0

0 1 −3 −2 1 0
0 0 1 5 −2 −1

 R1→−3R3+R1−−−−−−−−−→
R2→3R3+R2

1 2 0 −14 6 3
0 1 0 13 −5 −3
0 0 1 5 −2 −1


R1→−2R2+R1−−−−−−−−−→

1 0 0 −40 16 9
0 1 0 13 −5 −3
0 0 1 5 −2 −1


A−1 =

−40 16 9
13 −5 −3
5 −2 −1


Exercise
Verity that AA−1 = I, find E3, E4, . . . and verity that I = E1E2E3 . . . A
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Show that a matrix is not invertible – example

A =

 1 6 4
2 4 −1
−1 2 5


 1 6 4 1 0 0

2 4 −1 0 1 0
−1 2 5 0 0 1

 R3→R1+R3−−−−−−−−−→
R2→−2R1+R2

1 6 4 1 0 0
0 −8 −9 −2 1 0
0 8 9 1 0 1


R3→R2+R3−−−−−−−→

1 6 4 1 0 0
0 −8 −9 −2 1 0
0 0 0 −1 1 1


Since the left side has a row of zeros, A is not invertible.
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Analyzing homogeneous systems – example

Example
(a)

x1 + 2x2 + 3x3 = 0

2x1 + 5x2 + 3x3 = 0

x1 + 8x3 = 0

(b)

x1 + 6x2 + 4x3 = 0

2x1 + 4x2 − x3 = 0

−x1 + 2x2 + 5x3 = 0

• From Theorem 3, a homogeneous linear system has only the trivial solution iff its
coefficient matrix is invertible

• From the previous example, we know that (a) has only the trivial solution and (b)
has nontrivial solutions
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Matrix inverse and determinants

• Elementary row operations and elementary matrices

• Compute matrix inverse

• Linear systems and invertible matrices

• Determinants

• Evaluating determinants by row reduction

• Properties of determinants

• Cramer’s rule
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Solution of linear systems
Theorem
A system of linear equations has either zero, one, or infinitely many solutions.

Proof.
Ax = b has either (a) no solutions, (b) has exactly one solution, or (c) more than one
solution. It suffices to show if the system has more than one solution, it has infinitely
many solutions.
Assume two distinct solutions x1,x2, let x0 = x1 − x2. Then x0 ̸= 0, and

Ax0 = A(x1 − x2) = Ax1 −Ax2 = b− b = 0.

For any β ∈ R,

A(x1 + βx0) = Ax1 +A(βx0) = b+ β(Ax0) = b+ 0 = b,

showing that x1 + βx0 is a solution. Since x0 ̸= 0 and there are infinitely many β, the
system has infinitely many solutions. 27 / 96



Solving linear systems

Theorem 4
Given A ∈ Mn×n, b ∈ Rn, if A is invertible, then the system of equations Ax = b has
a unique solution x = A−1b.

Proof.
Since A(A−1b) = b, x = A−1b is a solution. If x0 is any solution of Ax = b, then

Ax0 = b
mutiply by A−1

−−−−−−−−−→ A−1Ax0 = A−1b =⇒ x0 = A−1b
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Solution of a linear system using matrix inverse
Example

x1 + 2x3 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 17

In matrix form, the system can be written as Ax = b, where

A =

1 2 3
2 5 3
1 0 8

 , x =

x1
x2
x3

 , b =

 5
3
17


We already calculated:

A−1 =

−40 16 9
13 −5 −3
5 −2 −1


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Solution of a linear system using matrix inverse
Example

x1 + 2x3 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 17

A =

1 2 3
2 5 3
1 0 8

 , x =

x1
x2
x3

 , b =

 5
3
17

 , A−1 =

−40 16 9
13 −5 −3
5 −2 −1


The solution is given by

x = A−1b =

−40 16 9
13 −5 −3
5 −2 −1

 5
3
17

 =

 1
−1
2


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Linear systems with a common coefficient matrix

• Frequently, one is concerned with solving a sequence of systems

Ax = b1, Ax = b2, . . . , Ax = bk

each of which has the same square coefficient matrix A.
• If A is invertible, then the solutions

x1 = A−1b1, x2 = A−1b2, . . . , xk = A−1bk

can be obtained with one matrix inversion and k matrix multiplications.
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Linear systems with a common coefficient matrix – example
Example

(a)

x1 + 2x2 + 3x3 = 4

2x1 + 5x2 + 3x3 = 5

x1 + 8x3 = 9

(b)

x1 + 2x2 + 3x3 = 1

2x1 + 5x2 + 3x3 = 6

x1 + 8x3 = 6

The two solutions are given by−40 16 9
13 −5 −3
5 −2 −1

4
5
9

 =

1
0
1


−40 16 9

13 −5 −3
5 −2 −1

 1
6
−6

 =

 2
1
−1


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Matrix inverse
Lemma 1
Given A,B ∈ Mn×n

• If BA = I, then B = A−1

• If AB = I, then B = A−1

Proof.
Assume BA = I. If A is invertible,

BAA−1 = IA−1 =⇒ BI = IA−1 =⇒ B = A−1.

By Theorem 3, to show A is invertible, it suffices to show that the system Ax = 0 has
only the trivial solution. Let x0 be any solution.

BAx0 = B0 =⇒ Ix0 = 0 =⇒ x0 = 0.
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Equivalent statements
Theorem 5
For any A ∈ Mn×n, the following statements are equivalent.
(a) A is invertible
(b) Ax = 0 has only the trivial solution
(c) The reduced row echelon form of A is In

(d) A is expressible as a product of elementary matrices
(e) Ax = b is consistent ∀b ∈ Rn

(f) Ax = b has exactly one solution ∀b ∈ Rn

Proof.
• We have shown the equivalence of (a)-(d) in Theorem 3.
• It is sufficient to prove (a)=⇒(f)=⇒(e)=⇒(a).
• Theorem 4 proves (a)=⇒(f)
• (f)=⇒(e) is trivial. 34 / 96



Equivalent statements – proof
(a) A is invertible
(e) Ax = b is consistent ∀b ∈ Rn

Proof.
We will now show (e)=⇒(a). Assume (e) is true. Let x1, x2, . . . ,xn be the solutions
for each of the following linear systems:

Ax =


1
0
0
...
0

 , Ax =


0
1
0
...
0

 , · · · , Ax =


0
0
0
...
1


Let

C =
(
x1 x2 . . . xn

)
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Equivalent statements – proof

(a) A is invertible
(e) Ax = b is consistent ∀b ∈ Rn

Proof.
Then (discussion of matrix multiplication from the last lecture)

AC =
(
Ax1 Ax2 . . . Axn

)
=


1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1

 = I

By Lemma 1, C is the inverse of A.
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Invertible matrices and their product

Theorem 6
For any A,B ∈ Mn×n, if AB is invertible, then A and B are also invertible.

Proof.
Let x0 be any solution of Bx = 0, then

(AB)x0 = A(Bx0) = A0 = 0.

By Theorem 5, since AB is invertible, x0 = 0. Applying Theorem 5 again, B is
invertible. We have

(AB)B−1 = A(BB−1) = AI = A,

implying A is invertible.
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Matrix inverse and determinants

• Elementary row operations and elementary matrices

• Compute matrix inverse

• Linear systems and invertible matrices

• Determinants

• Evaluating determinants by row reduction

• Properties of determinants

• Cramer’s rule
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Determinant of 2× 2 matrices
• We have discussed in the previous lecture that the 2× 2 matrix A =

(
a b
c d

)
is

invertible iff ad− bc ̸= 0 and the expression ad− bc is the determinant of A
• For consistency, we will denote

A =

(
a11 a12
a21 a22

)
• We write

det(A) = a11a22 − a12a21,

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21

or det
(
a11 a12
a21 a22

)
= a11a22 − a12a21

• The inverse of A
A−1 =

1

det(A)

(
a22 −a12
−a21 a11

)
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Determinant of 1× 1 matrices

For
A = (a11),

we define
det(A) = a11

Then we can write ∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = |a11||a22| − |a12||a21|

40 / 96



Minors and cofactors

Definition
Given A = (aij) ∈ Mn×n, the minor of entry aij , denoted by Mij , is the determinant
of the supmatrix obtained from A by deleting the ith row and the jth column.

Cij := (−1)i+jMij

is called the cofactor of entry aij .

Example

A =

3 1 −4
2 5 6
1 4 8

 , M11 =

∣∣∣∣5 6
4 8

∣∣∣∣ = 16, C11 = (−1)2M11 = 16
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Minors and cofactors – example

Example

A =

3 1 −4
2 5 6
1 4 8

 , M32 =

∣∣∣∣3 −4
2 6

∣∣∣∣ = 26, C32 = (−1)3+2M32 = −26
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Minors and cofactors

• Mij and Cij are related by (−1)i+j

• (−1)i+j is either +1 or −1 in accordance with the pattern in the “checkerboard”
array + − + − + · · ·

− + − + − · · ·
... ... ... ... ... . . .


• For example

C11 = M11, C21 = −M21, C22 = M22
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Minors and cofactors - 2× 2 matrices

A =

(
a11 a12
a21 a22

) (
+ −
− +

)
Minors and cofactors

C11 = M11 = a22, C12 = −M21 = −a21

C21 = −M21 = −a21, C22 = M22 = a11

We can verify that

det(A) = a11a22 − a12a21 = a11C11 + a12C12

= a21C21 + a22C22

= a11C11 + a21C21

= a12C12 + a22C22
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Cofactor expansion

Theorem
Given A = (aij) ∈ Mn×n, regardless of which row or column of A is chosen, the
number obtained by multiplying the entries in that row or column by the corresponding
cofactors and adding the resulting products is always the same. For all
1 ≤ i1, i2, j1, j2 ≤ n,

n∑
k=1

ai1kCi1k =

n∑
k=1

ai2kCi2k =

n∑
k=1

akj1Ckj1 =

n∑
k=1

akj2Ckj2
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Determinant

Definition
Given A = (aij) ∈ Mn×n, the determinant of A, denoted det(A) is given by

det(A) =

n∑
k=1

akjCkj = a1jC1j + a2jC2j + · · ·+ anjCnj

for some 1 ≤ i ≤ n (cofactor expansion along the jth column). Or equivalently,

det(A) =

n∑
k=1

aikCik = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

for some 1 ≤ j ≤ n (cofactor expansion along the ith row).
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Determinant – example

Example

A =

 3 1 0
−2 −4 3
5 4 −2


Cofactor expansion along the first row

det(A) = 3

∣∣∣∣−4 3
4 −2

∣∣∣∣− 1

∣∣∣∣−2 3
5 −2

∣∣∣∣+ 0

∣∣∣∣−2 −4
5 4

∣∣∣∣ = 3× (−4)− 1× (−11) + 0 = −1

Cofactor expansion along the first column

det(A) = 3

∣∣∣∣−4 3
4 −2

∣∣∣∣−(−2)

∣∣∣∣1 0
4 −2

∣∣∣∣+5

∣∣∣∣ 1 0
−4 3

∣∣∣∣ = 3×(−4)−(−2)×(−2)+5×3 = −1
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Determinant – example

Example

A =


1 0 0 −1
3 1 2 2
1 0 −2 1
2 0 0 1


A smart choice of row/column - more zeros
Cofactor expansion along the second column

det(A) = 1

∣∣∣∣∣∣
1 0 −1
1 −2 1
2 0 1

∣∣∣∣∣∣ = 1× (−2)

∣∣∣∣1 −1
2 1

∣∣∣∣ = −2(1 + 2) = −6
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Determinant of a lower traingular matrix

Example
∣∣∣∣∣∣∣∣
a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44

∣∣∣∣∣∣∣∣ = a11

∣∣∣∣∣∣
a22 0 0
a32 a33 0
a42 a43 a44

∣∣∣∣∣∣
= a11a22

∣∣∣∣a33 0
a43 a44

∣∣∣∣
= a11a22a33a44
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Determinant of a triangular matrix

Theorem
If A ∈ Mn×n is a triangular matrix (upper triangular, lower triangular, diagonal), then
det(A) is the product of the entries on the main diagonal of A

det(A) = a11a22 · · · ann.
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Determinants of 2× 2 and 3× 3 matrices

a11 a12

a21 a22

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21

Sarrus’ rule∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a32 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a12

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
= a11(a22a33 − a23a32)− a12(a21a33 − a31a23) + a13(a21a32 − a31a22)

= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32
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Determinants of 2× 2 and 3× 3 matrices – example

Example

3 1

4 −2

1 2 3 1 2

−4 5 6 −4 5

7 −8 9 7 −8

∣∣∣∣3 1
4 −2

∣∣∣∣ = 3× (−2)− 1× 4 = −10∣∣∣∣∣∣
1 2 3
−4 5 6
7 −8 9

∣∣∣∣∣∣ = (45 + 84 + 96)− (105− 48− 72) = 240
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Matrix inverse and determinants

• Elementary row operations and elementary matrices

• Compute matrix inverse

• Linear systems and invertible matrices

• Determinants

• Evaluating determinants by row reduction

• Properties of determinants

• Cramer’s rule
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Special case

Theorem
For any A ∈ Mn×n, if A has a row (or column) of zeros, then det(A) = 0.

Proof.
Let C1, C2, . . . , Cn denote the cofactors of A along the row (or column) of zeros, we
have

det(A) = 0C1 + 0C2 + · · ·+ 0Cn = 0.
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Determinant of transpose

Theorem
For any A ∈ Mn×n, det(A) = det(A⊤)

Proof.
Since transposing a matrix changes its columns to rows and its rows to columns, the
cofactor expansion of A along any row is the same as the cofactor expansion of A⊤

along the corresponding column.
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Row operations and determinants

A
R1→βR1−−−−−−→ B a11 a12 a13

a21 a22 a23
a31 a32 a33

 →

βa11 βa12 βa13
a21 a22 a23
a31 a32 a33


The two matrices only differ in the first row, consider cofactor expansion along the first
row, the cofactors C11, C12, C13 are the same

det(A) = a11C11 + a12C12 + a13C13

det(B) = βa11C11 + βa12C12 + βa13C13 = β(a11C11 + a12C12 + a13C13) = β det(A)
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Row operations and determinants

A
R1↔R2−−−−−→ B (

a11 a12
a21 a22

)
→

(
a21 a22
a11 a12

)
det(A) = a11a22 − a12a21, det(B) = a21a12 − a11a22

− det(A) = det(B)

For 2× 2 matrices, swapping rows changes the sign of the determinant
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Row operations and determinants

A
R1↔R2−−−−−→ B a11 a12 a13

a21 a22 a23
a31 a32 a33

 →

a21 a22 a23
a11 a12 a13
a31 a32 a33


det(A) = a31C31 + a32C32 + a33C33

We have just observed that for 2× 2 matrices, swapping rows changes the sign of the
determinant. Hence

det(B) = a31(−C31) + a32(−C32) + a33(−C33) = − det(A)

Similar arguments hold for R1 ↔ R3, R2 ↔ R3
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Row operations and determinants
Suppose for (n− 1)× (n− 1) matrix A, swapping two rows changes the sign of the
determinant. Consider n× n matrix A

Ri1
↔Ri2−−−−−−→ B

a11 a12 · · · a1n
... ... . . . ...

ai11 ai12 · · · ai1n
... ... . . . ...

ai21 ai22 · · · ai2n
... ... . . . ...

a31 a32 · · · a3n


→



a11 a12 · · · a1n
... ... . . . ...

ai21 ai22 · · · ai2n
... ... . . . ...

ai11 ai12 · · · ai1n
... ... . . . ...

a31 a32 · · · a3n


det(A) = a11C11 + a12C12 + · · ·+ a1nC1n

det(B) = a11(−C11) + a12(−C12) + · · ·+ a1n(−C1n) = − det(A)
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Remark

Note
If A has two identical rows Ri1 , Ri2

A
Ri1

↔Ri2−−−−−−→ B

Then
det(B) = det(A) = − det(B) =⇒ det(A) = 0
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Row operations and determinants

A
R1→R1+βR2−−−−−−−−→ Ba11 a12 a13

a21 a22 a23
a31 a32 a33

 →

a11 + βa21 a12 + βa22 a13 + βa23
a21 a22 a23
a31 a32 a33



det(B) = (a11 + βa21)C11 + (a12 + βa22)C12 + (a13 + βa23)C13

= (a11C11 + a12C12 + a13C13) + β(a21C11 + a22C12 + a23C13)

= det(A) + β

∣∣∣∣∣∣
a21 a22 a23
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= det(A) + 0 = det(A)
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Row operations and determinants

Operation Relationship

A
R1→βR1−−−−−−→ B

∣∣∣∣∣∣
βa11 βa12 βa13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = β

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ det(B) = β det(A)

A
R1↔R2−−−−−→ B

∣∣∣∣∣∣
a21 a22 a23
a11 a12 a13
a31 a32 a33

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ det(B) = − det(A)

A
R1→R1+βR2−−−−−−−−−→ B

∣∣∣∣∣∣
a11 + βa21 a12 + βa22 a13 + βa23

a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ det(B) = det(A)
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Row/Column operations and determinants

Theorem
Let A ∈ Mn×n.

• If B is the matrix that results when a single row or single column of A is
multiplied by a scalar β, then det(B) = β det(A)

• If B is the matrix that results when two rows or two columns of A are
interchanged, then det(B) = − det(A)

• If B is the matrix that results when a multiple of one row of A is added to another
or when a multiple of one column is added to another, then det(B) = det(A)

63 / 96



Determinants of elementary matrices
Theorem 7
Let E ∈ Mn×n be an elementary matrix

• If E results from multiplying a row of In by a nonzero scalar β, then det(E) = β

• If E results from interchanging two rows of In, then det(E) = −1

• If E results from adding a multiple of one row of In to another, then det(E) = 1

Example ∣∣∣∣∣∣∣∣
1 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣ = 3,

∣∣∣∣∣∣∣∣
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

∣∣∣∣∣∣∣∣ = −1,

∣∣∣∣∣∣∣∣
1 0 0 7
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣ = 1

I4
R2→3R2−−−−−→, I4

R1↔R4−−−−−→, I4
R1→7R4+R1−−−−−−−−→
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Determinants of elementary matrices

Theorem
Let E ∈ Mn×n be an elementary matrix

• If E results from multiplying a row of In by a nonzero scalar β, then det(E) = β

• If E results from interchanging two rows of In, then det(E) = −1

• If E results from adding a multiple of one row of In to another, then det(E) = 1

Remark
det(E) ̸= 0
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Row operations and determinant

• Reduce the given matrix to upper triangular form by elementary row operations
• Compute the determinant of the upper triangular matrix (an easy computation)
• Relate that determinant to that of the original matrix
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Row operations and determinant – example

Example

A =

0 1 5
3 −6 9
2 6 1



det(A)
R1↔R2= −

∣∣∣∣∣∣
3 −6 9
0 1 5
2 6 1

∣∣∣∣∣∣ R1→ 1
3
R1

= −3

∣∣∣∣∣∣
1 −2 3
0 1 5
2 6 1

∣∣∣∣∣∣ R3→−2R1+R3= −3

∣∣∣∣∣∣
1 −2 3
0 1 5
0 10 −5

∣∣∣∣∣∣
R3→10R2+R3= −3

∣∣∣∣∣∣
1 −2 3
0 1 5
0 0 −55

∣∣∣∣∣∣ R3→− 1
55

R3
= (−3)× (−55)

∣∣∣∣∣∣
1 −2 3
0 1 5
0 0 1

∣∣∣∣∣∣ = 3× 55 = 165
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Column operations and determinant – example

Example

A =


1 0 0 3
2 7 0 6
0 6 3 0
7 3 1 −5


Add −3× the first column to the fourth

det(A) =

∣∣∣∣∣∣∣∣
1 0 0 0
2 7 0 0
0 6 3 0
7 3 1 −26

∣∣∣∣∣∣∣∣ = −546

68 / 96



Row operations and cofactor expansion – example
Example

A =


3 5 −2 6
1 2 −1 1
2 4 1 5
3 7 5 3


By adding suitable multiples of the second row to the remaining rows

det(A) =

∣∣∣∣∣∣∣∣
0 −1 1 3
1 2 −1 1
0 0 3 3
0 1 8 0

∣∣∣∣∣∣∣∣
cofactor expasion first column

= −

∣∣∣∣∣∣
−1 1 3
0 3 3
1 8 0

∣∣∣∣∣∣
R3→R1+R3= −

∣∣∣∣∣∣
−1 1 3
0 3 3
0 9 3

∣∣∣∣∣∣ cofactor expasion first column
= −(−1)

∣∣∣∣3 3
9 3

∣∣∣∣ = −18
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Matrix inverse and determinants

• Elementary row operations and elementary matrices

• Compute matrix inverse

• Linear systems and invertible matrices

• Determinants

• Evaluating determinants by row reduction

• Properties of determinants

• Cramer’s rule
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Determinant of βA
Let A ∈ Mn×n. Since a common factor of any row of a matrix can be moved through
the determinant sign, and since each of the n rows in βA has a common factor of β,
we have

det(βA) = βn det(A)

Example
∣∣∣∣∣∣
βa11 βa12 βa13
βa21 βa22 βa23
βa31 βa32 βa33

∣∣∣∣∣∣ = β

∣∣∣∣∣∣
a11 a12 a13
βa21 βa22 βa23
βa31 βa32 βa33

∣∣∣∣∣∣ = β2

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
βa31 βa32 βa33

∣∣∣∣∣∣
= β3

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
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Determinant of A+B

Example (det(A+B) ̸= det(A) + det(B))

A =

(
1 2
2 5

)
, B =

(
3 1 1 3

)
, A+B =

(
4 3
3 8

)
We have

det(A) = 1, det(B) = 8, det(A+B) = 23
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Adding just one row

A =

(
a11 a12
a21 a22

)
, B =

(
a11 a12
b21 b22

)

det(A) + det(B) = (a11a22 − a21a21) + (a11b22 − a12b21)

= a11(a22 + b22)− a12(a21 + b21)

=

∣∣∣∣ a11 a12
a21 + b21 a22 + b22

∣∣∣∣
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Adding just one row
Theorem
Suppose A,B,C ∈ Mn×n differ only in a single row, say the rth row, and assume that
the rth row of C can be obtained by adding the corresponding rows of A and B. Then

det(C) = det(A) + det(B)

The same result holds for columns

Example ∣∣∣∣∣∣
1 7 5
2 0 3
1 5 6

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 7 5
2 0 3
1 4 7

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 7 5
2 0 3
0 1 −1

∣∣∣∣∣∣
Remark
A useful trick for computing determinants
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Determinant and multiplication by an elementary matrix
Lemma 2
Given B,E ∈ Mn×n, where E is an elementary matrix, then

det(EB) = det(E) det(B).

Proof.
• If E results from multiplying a row of In by β, then by Theorem 1, EB results

from B by multiplying the corresponding row by β and we have

det(EB) = β det(B)

From Theorem 7, det(E) = β

• Similar arguments hold if E results from interchanging two rows of In or from
adding a multiple of one row to another of In
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Determinant and multiplication by an elementary matrix

• By repeated application of Lemma 2, if A ∈ Mn×n, and E1, E2, . . . , Er ∈ Mn×n

are elementary matrices, then

det(E1E2 · · ·ErA) = det(E1) det(E2) · · · det(Er) det(A)
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Invertible matrix and determinant

Theorem
A square matrix A is invertible iff det(A) ≠ 0.

Proof.
Let R be the reduced row echelon form of A. Let E1, E2, . . . , Er be the elementary
matrices that correspond to the elementary row operations that produce R from A.
Then

R = Er · · ·E2E1A.

And from what we just discussed

det(R) = det(Er) · · · det(E2) det(E1) det(A) =⇒ det(R) = 0 iff det(A) = 0
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Invertible matrix and determinant
Theorem
A square matrix A is invertible iff det(A) ≠ 0.

Proof.
Let R be the reduced row echelon form of A.

det(R) = 0 ⇐⇒ det(A) = 0

If A is invertible, by Theorem 3, R = I, which implies that det(A) ̸= 0.
If det(A) ̸= 0, then det(R) ̸= 0, if R has one row of zeros, det(R) = 0, thus R = I.
Apply Theorem 3 again we can conclude A is invertible.

Recall – theorem from last lecture
If R is the reduced row echelon form of a matrix A ∈ Mn×n, then either R has at least
one row of zeros or R = In.
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Equivalent statements

Theorem
For any A ∈ Mn×n, the following statements are equivalent.
(a) A is invertible
(b) Ax = 0 has only the trivial solution
(c) The reduced row echelon form of A is In

(d) A is expressible as a product of elementary matrices
(e) Ax = b is consistent ∀b ∈ Rn

(f) Ax = b has exactly one solution ∀b ∈ Rn

(g) det(A) ̸= 0
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Determinant test for invertibility

A =

1 2 3
1 0 1
2 4 6


R3 = 2R1, row operation A

R3→R3−2R1−−−−−−−−→ contains one row of zeros, hence det(A) = 0
and A is not invertible
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Determinant of matrix product
Theorem
For any A,B ∈ Mn×n, det(AB) = det(A) det(B).

Proof.
• If A is not invertible, by Theorem 6, AB is not invertible,

det(AB) = det(A) det(B) = 0.
• If A is invertible, by Theorem 5,

A = E1E2 · · ·Er =⇒ AB = E1E2 · · ·ErB

Then

det(AB) = det(E1) det(E2) · · · det(Er) det(B) = det(A) det(B)
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Determinant of matrix product – example

Example

A =

(
3 1
2 1

)
, B =

(
−1 3
5 8

)
, AB =

(
2 17
3 14

)
We have

det(A) = 1, det(B) = −23, det(AB) = −23
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Determinant of inverse

Theorem
If A is invertible, then

det(A−1) =
1

det(A)

Proof.
AA−1 = I =⇒ det(A) det(A−1) = det(I) = 1

Since A is invertible, det(A) ̸= 0.
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Matrix inverse and determinants

• Elementary row operations and elementary matrices

• Compute matrix inverse

• Linear systems and invertible matrices

• Determinants

• Evaluating determinants by row reduction

• Properties of determinants

• Cramer’s rule
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Cofactors

• In a cofactor expansion we compute determinant by multiplying the entries in a
row or column by their cofactors and adding the resulting products.

• Multiply the entries in any row by the corresponding cofactors from a different
row, the sum of these products is always zero - note that this corresponds to
computing the determinant of a matrix with two identical rows

• This result also holds for columns
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Cofactors
Example

A =

3 2 −1
1 6 3
2 −4 0


We have

C11 = 12 C12 = 6 C13 = −16 C21 = 4 C22 = 2 C23 = 16
C31 = 12 C32 = −10 C33 = 16

Cofactor expansion of det(A) along the first row is

det(A) = 3C11 + 2C12 + (−1)C13 = 36 + 12 + 16 = 64

and along the first column is

det(A) = 3C11 + C21 + 2C31 = 36 + 4 + 24 = 64
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Cofactors
Example

A =

3 2 −1
1 6 3
2 −4 0


C11 = 12 C12 = 6 C13 = −16 C21 = 4 C22 = 2 C23 = 16
C31 = 12 C32 = −10 C33 = 16

Multiply the entries in the first row by the corresponding cofactors from the second
row and add the resulting products

3C21 + 2C22 + (−1)C23 = 12 + 4− 16 = 0

Note that

3C21 + 2C22 + (−1)C23 =

∣∣∣∣∣∣
3 2 −1
3 2 −1
2 −4 0

∣∣∣∣∣∣ = 0
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Cofactors
Example

A =

3 2 −1
1 6 3
2 −4 0


C11 = 12 C12 = 6 C13 = −16 C21 = 4 C22 = 2 C23 = 16
C31 = 12 C32 = −10 C33 = 16

Multiply the entries in the first column by the corresponding cofactors from the second
column and add the resulting products

3C12 + 1C22 + 2C32 = 18 + 2− 20 = 0

Note that

3C12 + 1C22 + 2C32 =

∣∣∣∣∣∣
3 3 −1
1 1 3
2 2 0

∣∣∣∣∣∣ = 0
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Adjugate

Definition
Let A = (aij) ∈ Mn×n. Let Cij be the cofactor of aij , then the matrix

C11 C12 · · · C1n

C21 C22 · · · C2n
... ... . . . ...

Cn1 Cn2 · · · Cnn


is called the matrix of cofactors from A. The transpose of this matrix is called the
adjugate of A and is denoted by adj(A).
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Adjugate – example
Example

A =

3 2 −1
1 6 3
2 −4 0


C11 = 12 C12 = 6 C13 = −16 C21 = 4 C22 = 2 C23 = 16
C31 = 12 C32 = −10 C33 = 16

The matrix of cofactors is 12 6 −16
4 2 16
12 −10 16


and the adjugate of A is

adj (A) =

 12 4 12
6 2 −10

−16 16 16


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Inverse of a matrix using adjugate
Theorem
If A is an invertible matrix, then

A−1 =
1

det(A)
adj (A) .

Proof.
We show first that

A adj (A) = det(A)I.

A adj (A) =



a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...
ai1 ai2 · · · ain
... ... . . . ...

an1 an2 · · · ann




C11 C21 · · · Cj1 · · · Cn1

C12 C22 · · · Cj2 · · · Cn2
... ... . . . ... . . . ...

C1n C2n · · · Cjn · · · Cnn


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Inverse of a matrix using adjugate
Proof.
i, j-entry of A adj (A) is ai1Cj1 + ai2Cj2 + · · ·+ ainCjn

• If i = j, then the above is the cofactor expansion of det(A) along the ith row of A
• If i ̸= j, it is 0

A adj (A) =


det(A) 0 · · · 0

0 det(A) · · · 0
... ... . . . ...
0 0 · · · det(A)

 = det(A)I

Since A is invertible, det(A) ̸= 0, multiply by 1
det(A)A

−1 on the left

1

det(A) adj (A) = A−1
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Inverse of a matrix using adjugate – example
Example
With the same example

A =

3 2 −1
1 6 3
2 −4 0


C11 = 12 C12 = 6 C13 = −16 C21 = 4 C22 = 2 C23 = 16
C31 = 12 C32 = −10 C33 = 16

Cofactor expansion along the first row

det(A) = 3C11 + 2C12 + (−1)C13 = 36 + 12 + 16 = 64

The inverse is given by

A−1 =
1

det(A)
adj (A) =

1

64

 12 4 12
6 2 −10

−16 16 16


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Cramer’s rule

Theorem (Cramer’s Rule)
Given Ax = b, a system of n linear equations in n unknowns. If det(A) ̸= 0, then the
system has a unique solution given by

x1 =
det(A1)

det(A)
, x2 =

det(A2)

det(A)
, · · · , xn =

det(An)

det(A) ,

where Aj is the matrix obtained by replacing the entries in the jth column of A by b.

Proof.
Since Aj differs from A only in the jth column, the cofactors of entries b1, b2, . . . , bn
in Aj are the same as the cofactors of the corresponding entries in the jth column of A

det(Aj) = b1C1j + b2C2j + · · ·+ bnCnj
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Cramer’s rule

Proof.
det(Aj) = b1C1j + b2C2j + · · ·+ bnCnj

We know that the unique solution is given by

x = A−1b =
1

det(A)
adj (A) b =

1

det(A)


C11 C12 · · · C1n

C21 C22 · · · C2n
... ... . . . ...

Cn1 Cn2 · · · Cnn



b1
b2
...
bn


Then

xj =
b1C1j + b2C2j + · · ·+ bnCnj

det(A)
=

det(Aj)

det(A)
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Cramer’s rule – exmaple
Example

x1 + 2x3 = 6

−3x1 + 4x2 + 6x3 = 30

−x1 − 2x2 + 3x3 = 8

A =

 1 0 2
−3 4 6
−1 −2 3

 , A1 =

 6 0 2
30 4 6
8 −2 3

 , A2 =

 1 6 2
−3 30 6
−1 8 3

 , A3 =

 1 0 6
−3 4 30
−1 −2 8


The solution is given by

x1 =
det(A1)

det(A)
=

−40

44
=

−10

11
, x2 =

det(A2)

det(A) =
72

44
=

18

11
,

x3 =
det(A3)

det(A) =
152

44
=

38

11
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