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Course Outline

• Vectors and matrices

• System of linear equations

• TBD

• TBD

• TBD

• TBD

• TBD

• TBD

• TBD

• TBD

• TBD

• TBD
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Recommended reading

• Anton, Howard, and Chris Rorres. Elementary linear algebra: applications version.
John Wiley & Sons, 2013.

• Sections 1.1, 1.2, 1.3, 1.4
• Free copy online
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https://thuvienso.hoasen.edu.vn/bitstream/handle/123456789/8937/Contents.pdf?sequence=3


Lecture Outline

• Introduction

• Augmented matrices and echelon forms

• Elimination methods

• Homogeneous linear system

• Matrices and their inverses
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System of linear equations

• Introduction

• Augmented matrices and echelon forms

• Elimination methods

• Homogeneous linear system

• Matrices and their inverses
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Linear equations

• In two dimensions, a line in a rectangular xy−coordinate system can be
represented by an equation of the form

ax+ by = c,

where a, b, c ∈ R and a, b are not both 0.

• In three dimensions, a plane in a rectangular xyz−coordinate system can be
represented by an equation of the form

ax+ by + cz = d,

where a, b, c, d ∈ R and a, b, c are note all 0.

• These are examples of “linear equations,” - a linear equation in the variables x
and y, and in the variables x, y and z

6 / 90



Linear equations
• A linear equation in the n variables x1, x2, . . . , xn is an equation in the form

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, a2, . . . , an, b ∈ R, not all ai are 0
• When b = 0

a1x1 + a2x2 + · · ·+ anxn = 0

is called a homogeneous linear equation in the variables x1, x2, . . . , xn.

Example

x+ 3y = 7 x1 − 2x2 − 3x3 + x4 = 0
1

2
x− y + 3z = −1 x1 + x2 + · · ·+ xn = 1

Not linear equations:
x+ 3y2 = 4 3x+ 2y − xy = 5

sinx+ y = 0
√
x1 + 2x2 + x3 = 1
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System of linear equations
• A system of linear equations or a linear system: finite set of linear equations

• The variables are called unknowns

• A linear system of m equations in the n unknowns x1, x2, . . . , xn is of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm

• ai’s are called coefficients, bj ’s are constants

• A solution of a linear system in n unknowns x1, x2, . . . , xn is a sequence of n real
numbers s1, s2, . . . , sn for which the substitution

x1 = s1, x2 = s2, . . . , xn = sn

makes each equation hold
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System of linear equations – example

Example

The linear system
5x+ y = 3, 2x− y = 4

has the solution
x = 1, y = −2

The linear system

4x1 − x2 + 3x3 = −1, 3x1 + x2 + 9x3 = −4

has the solution
x1 = 1, x2 = 2, x3 = −1

These solutions can be written as

(1,−2) and (1, 2,−1)
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Solution to a linear system

• A solution
x1 = s1, x2 = s2, . . . , xn = sn

of a linear system in n unknowns can be written as

(s1, s2, . . . , sn)

which is called an ordered n−tuple

• With this notation it is understood that all variables appear in the same order in
each equation
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Linear system in two unknowns

• Consider the linear system

a1x+ b1y = c1

a2x+ b2y = c2

• The graphs of the equations are lines in the xy−plane

• Each solution of this system corresponds to a point of intersection of the lines
• There are three possibilities

• Lines parallel and distinct - no solution
• Lines intersect at only one point - one solution
• Lines coincide - infinitely many solutions
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Linear system of two equations in two unknowns

x

y

No solution

x

y

One solution

x

y

Infinitely many solutions

1. The lines may be parallel and distinct, in which case there is no intersection and
consequently no solution.

2. The lines may intersect at only one point, in which case the system has exactly
one solution.

3. The lines may coincide, in which case there are infinitely many points of
intersection (the points on the common line) and consequently infinitely many
solutions. 12 / 90



Solution of a linear system

• We say a linear system is consistent if it has at least one solution and inconsistent
if it has no solutions

• In particular, a consistent linear system of two equations in two unknowns has
either one solution or infinitely many solutions – there are no other possibilities.

• The same is true for a linear system of three equations in three unknowns

a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2

a3x+ b3y + c3z = d3

The solutions of the system, if any, correspond to points where all three planes
intersect, so again we see that there are only three possibilities – no solutions, one
solution, or infinitely many solutions
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Linear system of three equations in three unknowns

No solutions (three parallel
planes; no common intersec-
tion)

No solutions (two parallel
planes; third intersects both)

No solutions (no common in-
tersection)

No solutions (two coincident
planes parallel to the third;
no common intersection)

One solution (intersection is
a point)

Infinitely many solutions (in-
tersection is a line)

Infinitely many solutions
(planes are all coincident;
intersection is a plane)

Infinitely many solutions
(two coincident planes;
intersection is a line)

Three possibilities – no solutions, one solution, or infinitely many solutions
14 / 90



Solution of a linear system – example

Example (A linear system with one solution)

x− y = 1

2x+ y = 6

Add those two equations, we get

3x = 7 =⇒ x =
7

3
,

then

y = x− 1 =
4

3
.

Geometrically, this means that the lines represented by the equations in the system

intersect at the single point

(
7

3
,
4

3

)
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Solution of a linear system – example

Example (A linear system with no solution)

x+ y = 4

3x+ 3y = 6

Add −3× the first equation to the second one, we get

0 = 6,

a contradiction.
Geometrically, this means that the lines corresponding to the equations in the original
system are parallel and distinct.
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Solution of a linear system – example

Example (A linear system with infinitely many solutions)

4x− 2y = 1

16x− 8y = 4

Add −4× the first equation to the second one, we get

0 = 0,

which is always true. Thus the solutions are those values of x and y that satisfy the
equation

4x− 2y = 1.

Geometrically, the lines corresponding to the two equations in the original system
coincide.
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Solution of a linear system – example

Example (A linear system with infinitely many solutions)

4x− 2y = 1

16x− 8y = 4

The solutions are those values of x and y that satisfy the equation

4x− 2y = 1.

We can describe the solution as follows: for any t ∈ R ( parameter), the solution is
given by (parametric equations)

x =
1

4
+

1

2
t, y = t.

We can obtain specific numerical solutions from these equations by substituting
numerical values for the parameter t, e.g. t = 0 gives solution

(
1
4 , 0

)
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Solution of a linear system – example

Example (A linear system with infinitely many solutions)

4x− 2y = 1

16x− 8y = 4

We can describe the solution as follows: for any t ∈ R ( parameter), the general
solution is given by

x =
1

4
+

1

2
t, y = t

Or the (complete) solution set is equal to{(
1

4
+

1

2
t, t

) ∣∣∣∣ t ∈ R
}
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System of linear equations

• Introduction

• Augmented matrices and echelon forms

• Elimination methods

• Homogeneous linear system

• Matrices and their inverses
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Augmented matrices

• As the number of equations and unknowns in a linear system increases, so does
the complexity of the algebra involved in finding solutions.

• By mentally keeping track of the location of the +’s, the x’s, and the =’s in the
linear system, we can abbreviate the system using the augmented matrix

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

. . .
...

...
am1x1 + am2x2 + · · · + amnxn = bm

−→


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


• Or, recall our discussions about matrices from last week
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Matrix form of a linear system

Consider a system of m linear equations in n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

. . .
...

...
am1x1 + am2x2 + · · · + amnxn = bm

Two matrices of the same size are equal iff their corresponding entries are equal, we
can write 

a11x1 + a12x2 + · · · + a1nxn
a21x1 + a22x2 + · · · + a2nxn

...
...

. . .
...

am1x1 + am2x2 + · · · + amnxn

 =


b1
b2
...
bm
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Matrix form of a linear system
a11x1 + a12x2 + · · · + a1nxn
a21x1 + a22x2 + · · · + a2nxn

...
...

. . .
...

am1x1 + am2x2 + · · · + amnxn

 =


b1
b2
...
bm


The m× 1 matrix on the left side can be written as a product

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



x1
x2
...
xn

 =


b1
b2
...
bm


Represent these matrices by A, x, b, then we can replace the original system of m
equations in n unknowns by the single matrix equation

Ax = b
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Matrix form of a linear system

Ax = b

• A is called the coefficient matrix of the system

• The augmented matrix is given by adjoining b to A as the last column

[A|b] =


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
. . .

...
...

am1 am2 . . . amn bm
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Augmented matrices – example

Example

The augmented matrix for the system of equations

x1 + x2 + 2x3 = 9

2x1 + 4x2 − 3x3 = 1

3x1 + 6x2 − 5x3 = 0

is 1 1 2 9
2 4 −3 1
3 6 −5 0
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Operations on the linear system

• To solve a linear system, we will perform algebraic operations on the system

• Those operations do not alter the solution set and produce simpler systems

• Until one point when we are certain whether the system is consistent (has at least
one solution), if yes, what are the solutions

• Typical algebraic operations are
• Multiply an equation by a nonzero constant
• Interchange two equations
• Add a constant times one equation to another

26 / 90



Elementary row operations

Typical algebraic operations on linear systems are

• Multiply an equation by a nonzero constant

• Interchange two equations

• Add a constant times one equation to another

These correspond to the following elementary row operations on the augmented matrix

• Multiply a row by a nonzero constant

• Interchange two rows

• Add a constant times one row to another
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Elementary row operations – example

Example

x+ y + 2z = 9
1 1 2 9
2 4 −3 1
3 6 −5 0

2x+ 4y − 3z = 1
3x+ 6y − 5z = 0

Add −2× the first equation to the second Add −2R1 to R2

x+ y + 2z = 9
1 1 2 9
0 2 −7 −17
3 6 −5 0

2y − 7z = −17
3x+ 6y − 5z = 0

Add −3× the first equation to the third Add −3R1 to R3

x+ y + 2z = 9
1 1 2 9
0 2 −7 −17
0 3 −11 −27

2y − 7z = −17
3y − 11z = −27
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Elementary row operations – example

Example

x+ y + 2z = 9
1 1 2 9
0 2 −7 −17
0 3 −11 −27

2y − 7z = −17
3y − 11z = −27

1

2
× the second equation

1

2
R2

x+ y + 2z = 9

1 1 2 9

0 1 −7

2
−17

2

0 3 −11 −27

y − 7

2
z = −17

2
3y − 11z = −27

Add −3× the second equation to the third Add −3R2 to R3

x+ y + 2z = 9

1 1 2 9

0 1 −7

2
−17

2

0 0 −1

2
−3

2

y − 7

2
z = −17

2

−1

2
z = −3
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Elementary row operations – example

Example

x+ y + 2z = 9

1 1 2 9

0 1 −7

2
−17

2

0 0 −1

2
−3

2

y − 7

2
z = −17

2

−1

2
z = −3

2
−2× the third equation −2R3

x+ y + 2z = 9

1 1 2 9

0 1 −7

2
−17

2

0 0 1 3

y − 7

2
z = −17

2
z = −3

30 / 90



Elementary row operations – example

Example

x+ y + 2z = 9

1 1 2 9

0 1 −7

2
−17

2

0 0 1 3

y − 7

2
z = −17

2
z = −3

Add −1× the second equation to the first Add −1R2 to R1

x+ 11
2 z =

35

2


1 0

11

2

35

2

0 1 −7

2
−17

2
0 0 1 3

y − 7

2
z = −17

2
z = 3
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Elementary row operations – example

Example

x+ 11
2 z =

35

2


1 0

11

2

35

2

0 1 −7

2
−17

2

0 0 1 3

y − 7

2
z = −17

2
z = 3

Add −11

2
× the third equation to the first Add −11

2
R2 to R1

Add
7

2
× the third equation to the second Add

7

2
R3 to R2

x = 1
1 0 0 1
0 1 0 2
0 0 1 3

y = 2
z = 3
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Echelon forms

1 0 0 1
0 1 0 2
0 0 1 3


The matrix we have arrived at is in reduced row echelon form.

• If a row does not consist entirely of zeros, then the first nonzero number in the
row is a 1 - leading 1/pivot position

• If there are any rows that consist entirely of zeros, then they are grouped together
at the bottom of the matrix.

• In any two successive rows that do not consist entirely of zeros, the leading 1 in
the lower row occurs farther to the right than the leading 1 in the higher row.

• Each column that contains a leading 1 has zeros everywhere else in that column.

With only the first three properties - row echlon form
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Echelon forms – example

Example

row echelon form1 4 −3 7
0 1 6 2
0 0 1 5

 ,

1 1 0
0 1 0
0 0 0

 ,

0 1 2 6 0
0 0 1 −1 0
0 0 0 0 1


reduced row echelon form1 0 0 4

0 1 0 7
0 0 1 −1

 ,

1 0 0
0 1 0
0 0 1

 ,


0 1 −2 0 1
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0

 ,

[
0 0
0 0

]
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Echelon forms – example

Example

row echelon form
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

 ,


1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 0

 ,


1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0

 ,


0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 1 ∗


reduced row echelon form

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 0

 ,


1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0

 ,


0 1 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 0 ∗ ∗ 0 ∗
0 0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗
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Reduced row echelon form and solution

• If, by a sequence of elementary row operations, the augmented matrix for a
system of linear equations is put in reduced row echelon form, then the solution
set can be obtained either by inspection or by converting certain linear equations
to parametric form

Example 
1 0 0 0 3
0 1 0 0 −1
0 0 1 0 0
0 0 0 1 5


x1 = 3

x2 = −1
x3 = 0

x4 = 5
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Reduced row echelon form and solution

Example

Suppose by elementary row operations, the augmented matrix for a linear system in
the unknowns x, y, z has been reduced to the given reduced row echelon form

(a)

1 0 0 0
0 1 2 0
0 0 0 1

 , (b)

1 0 3 −1
0 1 −4 2
0 0 0 0

 , (c)

1 −5 1 4
0 0 0 0
0 0 0 0


(a) 0x+ 0y + 0z = 1, a contradiction. No solution

(b) Last row: 0x+ 0y + 0z = 0, no restrictions on x, y, z, can be omitted. We have

x+ 3z = −1

y − 4z = 2
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Reduced row echelon form and solution

Example

(b)

1 0 3 −1
0 1 −4 2
0 0 0 0

 =⇒ x + 3z = −1
y − 4z = 2

• x and y correspond to the leading 1’s in the augmented matrix: leading variables.

• The remaining variables (in this case z) are called free variables.

• Solving for the leading variables in terms of the free variables gives

x = −1− 3z, y = 2 + 4z

• z can be treated as a parameter and when assigned an arbitrary value t,
determines values for x and y

solution set = { (−1− 3t, 2 + 4t, t) | t ∈ R } .
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Reduced row echelon form and solution

Example

(c)

1 −5 1 4
0 0 0 0
0 0 0 0

 =⇒ x− 5y + z = 4

• The solution is a plane in the three-dimensional space

• Leading variable: x, free variables: y, z

• The solutions are given by

{ (4 + 5s− t, s, t) | s, t ∈ R } .
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System of linear equations

• Introduction

• Augmented matrices and echelon forms

• Elimination methods

• Homogeneous linear system

• Matrices and their inverses
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Elimination methods
We will illustrate the step-by-step elimination procedure to reduce any matrix to
reduced row echelon form using an example0 0 −2 0 7 12

2 4 −10 6 12 28
2 4 −5 6 −5 −1


Step 1. Locate the leftmost column that does not consist entirely of zeros.0 0 −2 0 7 12

2 4 −10 6 12 28
2 4 −5 6 −5 −1


Step 2. Interchange the top row with another row, if necessary, to bring a nonzero
entry to the top of the column found in Step 1.2 4 −10 6 12 28

0 0 −2 0 7 12
2 4 −5 6 −5 −1
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Elimination methods2 4 −10 6 12 28
0 0 −2 0 7 12
2 4 −5 6 −5 −1


Step 3. If the entry that is now at the top of the column found in Step 1 is a,
multiply the first row by 1/a in order to introduce a leading 1.1 2 −5 3 6 14

0 0 −2 0 7 12
2 4 −5 6 −5 −1


Step 4. Add suitable multiples of the top row to the rows below so that all entries
below the leading 1 become zeros.1 2 −5 3 6 14

0 0 −2 0 7 12
0 0 5 0 −17 −29
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Elimination methods1 2 −5 3 6 14
0 0 −2 0 7 12
0 0 5 0 −17 −29


Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to
the submatrix that remains. Continue in this way until the entire matrix is in row
echelon form.
find leftmost nonzero column1 2 −5 3 6 14

0 0 −2 0 7 12
0 0 5 0 −17 −29


make leading 1 in R1 1 2 −5 3 6 14

0 0 1 0 −7

2
−6

0 0 5 0 −17 −29


43 / 90



Elimination methods1 2 −5 3 6 14

0 0 1 0 −7

2
−6

0 0 5 0 −17 −29


0 below the leading 1 

1 2 −5 3 6 14

0 0 1 0 −7

2
−6

0 0 0 0
1

2
1


return to step 1, find the leftmost nonzero column

1 2 −5 3 6 14

0 0 1 0 −7

2
−6

0 0 0 0
1

2
1
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Elimination methods


1 2 −5 3 6 14

0 0 1 0 −7

2
−6

0 0 0 0
1

2
1


leading 1 in R1 1 2 −5 3 6 14

0 0 1 0 −7

2
−6

0 0 0 0 1 2
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Elimination methods

1 2 −5 3 6 14

0 0 1 0 −7

2
−6

0 0 0 0 1 2


The entire matrix is now in row echelon form - this procedure is called Gaussian
elimination.
Step 6. Beginning with the last nonzero row and working upward, add suitable
multiples of each row to the rows above to introduce zeros above the leading 1’s.1 2 −5 3 6 14

0 0 1 0 0 1
0 0 0 0 1 2

 ,

1 2 −5 3 0 2
0 0 1 0 0 1
0 0 0 0 1 2

 ,

1 2 0 3 0 7
0 0 1 0 0 1
0 0 0 0 1 2


The whole procedure is called Gauss–Jordan elimination
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Forward and backward phases

• Gauss–Jordan elimination consists of two parts

• forward phase: zeros are introduced below the leading 1’s - row echelon form,
Gaussian elimination

• backward phase: zeros are introduced above the leading 1’s
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Gauss–Jordan elimination – example

Example

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 −1
0 0 5 10 0 15 5
2 6 0 8 4 18 6


Add −2R1 to R2, also to R4

1 3 −2 0 2 0 0
0 0 −1 −2 0 −3 −1
0 0 5 10 0 15 5
0 0 4 8 0 18 6
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Gauss–Jordan elimination – example

Example
1 3 −2 0 2 0 0
0 0 −1 −2 0 −3 −1
0 0 5 10 0 15 5
0 0 4 8 0 18 6

 −1R2−−−→


1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 5 10 0 15 5
0 0 4 8 0 18 6



R3=R3−5R2−−−−−−−−→
R4=R4−4R2


1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 0 0
0 0 0 0 0 6 2

 R3↔R4−−−−−→


1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 6 2
0 0 0 0 0 0 0



R3=
1
6
R3−−−−−→


1 3 −2 0 2 0 0
0 0 1 2 0 3 1

0 0 0 0 0 1
1

3
0 0 0 0 0 0 0


Now we have used Gaussian elimination to reach row echelon form 49 / 90



Gauss–Jordan elimination – example

Example 
1 3 −2 0 2 0 0
0 0 1 2 0 3 1

0 0 0 0 0 1
1

3
0 0 0 0 0 0 0

 R2=R2−3R3−−−−−−−−→


1 3 −2 0 2 0 0
0 0 1 2 0 0 0

0 0 0 0 0 1
1

3
0 0 0 0 0 0 0



R1=R1+2R2−−−−−−−−→


1 3 0 4 2 0 0
0 0 1 2 0 0 0

0 0 0 0 0 1
1

3
0 0 0 0 0 0 0


The matrix is now in reduced row echelon form. The corresponding linear system is

x1 + 3x2 + 4x4 + 2x5 = 0
x3 + 2x4 = 0

x6 =
1

3
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Gauss–Jordan elimination – example

Example

x1 + 3x2 + 4x4 + 2x5 = 0
x3 + 2x4 = 0

x6 =
1

3

Solving for the leading variables

x1 = −3x2 − 4x4 − 2x5

x3 = −2x4

x6 =
1

3

We have three free variables → three parameters. The solution set is given by{(
−3r − 4s− 2t, r, −2s, s, t,

1

3

) ∣∣∣∣ r, s, t ∈ R
}
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Gaussian elimination – example

Example

Note that, with just Gaussian elimination, we have
1 3 −2 0 2 0 0
0 0 1 2 0 3 1

0 0 0 0 0 1
1

3
0 0 0 0 0 0 0


This corresponds to the following linear system:

x1 + 3x2 − 2x3 + 2x5 = 0
x3 + 2x4 + 3x6 = 1

x6 =
1

3
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Gaussian elimination – example

Example

x1 + 3x2 − 2x3 + 2x5 = 0
x3 + 2x4 + 3x6 = 1

x6 =
1

3

Solving for the leading variables

x1 = −3x2 + 2x3 − 2x5

x3 = 1− 2x4 − 3x6

x6 =
1

3

Let x2 = r, x4 = s, x5 = t, then

x3 = 1− 2s− 1 = −2s, x1 = −3r + 2(−2s)− 2t = −3r − 4r − 2t.

We get the same solution set. 53 / 90



Solutions for linear systems – example

Example

Linear systems with augmented matrix in reduced row echelon form
1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 0 1


The last row corresponds to

0x1 + 0x2 + 0x3 + 0x4 = 1,

a contradiction, no solution
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Solutions for linear systems – example

Example

Linear systems with augmented matrix in reduced row echelon form
1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 0 0


• The last row has no restrictions on the variables

• Three leading variables: x1, x2, x3. One free variable: x4

x4 = t, x3 = 9− 6t, x2 + 2x3 = 1 + 4t =⇒ x2 = 1 + 4t− 2(9− 6t) = −17 + 16t

x1 − 3x2 + 7x3 + 2x4 = 5 =⇒ x1 = 5− 2t− 7(9− 6t) + 3(−17 + 16t)

Infinitely many solutions
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Solutions for linear systems – example

Example

Linear systems with augmented matrix in reduced row echelon form
1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 1 0


x4 = 0, x3 = 9, x2 + 2x3 = 1 =⇒ x2 = 1− 18 = −17

x1 − 3x2 + 7x3 = 5 =⇒ x1 = 5− 7× 9 + 3× (−17) = −109

A unique solution.
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System of linear equations

• Introduction

• Augmented matrices and echelon forms

• Elimination methods

• Homogeneous linear system

• Matrices and their inverses
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Homogeneous linear system

Definition

A system of linear equations is said to be homogeneous if the constant terms are all
zero.

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

...
...

am1x1 + am2x2 + · · ·+ amnxn = 0

• Every homogeneous system of linear equations is consistent: 0 as a solution.
• 0: trivial solution
• Other solutions: nontrivial solutions
• There are only two possibilities for a homogeneous system:

• Only the trivial solution
• Infinitely many solutions, including the trivial one
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Homogeneous linear system of two equations in two unknowns

a1x+ b1y = 0 (a1, b1 not both zero)

a2x+ b2y = 0 (a2, b2 not both zero)

The graphs of the equations are lines through the origin, and the trivial solution
corresponds to the point of intersection at the origin

x

y

a1x+ b1y = 0

a2x+ b2y = 0

Only the trivial solution

x

y

a1x+ b1y = 0
a2x+ b2y = 0

Infinitely many solutions
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Homogeneous linear system – example

Example x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

• The coefficients of the unknowns in this system are the same as in the previous
example. Only constant terms differ

• The elementary row operations do not affect a column of zeros
• Multiply a row by a nonzero constant
• Interchange two rows
• Add a constant times one row to another

• Hence the reduced row echelon form is
1 3 0 4 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
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Homogeneous linear system – example

Example 
1 3 0 4 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


x1 + 3x2 + 4x4 + 2x5 = 0

x3 + 2x4 = 0

x6 =
1

3

Solving for the leading variables

x1 = −3x2 − 4x4 − 2x5

x3 = −2x4

x6 = 0
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Homogeneous linear system – example

Example

x1 = −3x2 − 4x4 − 2x5

x3 = −2x4

x6 = 0

We have three free variables → three parameters. The solutions are given by

{ (−3r − 4s− 2t, r, −2s, s, t, 0) | r, s, t ∈ R }
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Homogeneous linear system

The example shows

• Elementary row operations do not alter columns of zeros in a matrix, so the
reduced row echelon form of the augmented matrix for a homogeneous linear
system has a final column of zeros. This implies that the linear system
corresponding to the reduced row echelon form is homogeneous, just like the
original system.

• The last row is ignored because it corresponds to

0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 = 0,

which does not impose any restrictions on the unknowns. Depending on whether
or not the reduced row echelon form of the augmented matrix for a homogeneous
linear system has any rows of zero, the linear system corresponding to that
reduced row echelon form will either have the same number of equations as the
original system or it will have fewer.
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Homogeneous linear system

• Consider a homogeneous linear system with n unknowns

• Suppose the reduced row echelon form of the augmented matrix has r nonzero
rows

xk1 +
∑

() = 0
xk2 +

∑
() = 0

. . .
... = 0

xkr +
∑

() = 0

• Each nonzero row → a leading 1 → a leading variable

• Thus the system has r leading variables and n− r free variables
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Free Variable Theorem for Homogeneous Systems

Theorem (Free Variable Theorem for Homogeneous Systems)

If a homogeneous linear system has n unknowns, and if the reduced row echelon form
of its augmented matrix has r nonzero rows, then the system has n− r free variables.

• If a homogeneous linear system has m equations in n unknowns, where m < n

• Number of nonzero rows cannot be more than m =⇒ r < n

• Thus, there will be at least one free variable =⇒ infinitely many solutions

Corollary

A homogeneous linear system with more unknowns than equations has infinitely many
solutions.
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Facts about row echelon forms

• Every matrix has a unique reduced row echelon form

• Row echelon forms are not unique - different sequences of elementary row
operations can result in different row echelon forms

• All row echelon forms of a matrix A have the same number of zero rows and the
leading 1’s always occur in the same positions (pivot positions) of A
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System of linear equations

• Introduction

• Augmented matrices and echelon forms

• Elimination methods

• Homogeneous linear system

• Matrices and their inverses
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Can we divide by a matrix

• We discussed that a linear system can be expressed as

Ax = b

• It is tempting to compute

x =
b

A

• We haven’t discussed how to divide by matrix and if it is even possible.
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Properties of zero matrices

Theorem

For any matrix A and any α ∈ R
• A+O = O +A = A

• A−O = A

• A−A = A+ (−A) = O

• 0A = O

• If αA = O, then α = 0 or A = O
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Identity matrices

Recall

Theorem

Let A ∈ Mm×n be any matrix, In ∈ Mn×n and Im ∈ Mm×m be identity matrices. We
have

AIn = ImA = A

We have

Theorem

If R is the reduced row echelon form of a matrix A ∈ Mn×n, then either R has at least
one row of zeros or R = In.
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Reduced row echelon form and identity matrix

Theorem

If R is the reduced row echelon form of a matrix A ∈ Mn×n, then either R has at least
one row of zeros or R = In.

Proof

Suppose

R =


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rn1 rn2 · · · rnn

 .

If R does not contain any row of zeros, each of the n rows has a leading 1. Since these
leading 1’s occur progressively farther to the right as we move down the matrix, each
of them must occur on the main diagonal. Furthermore, other entries in the same
column as one of these 1’s are zero, we have R = In.
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Multiplicative inverse

• Given any α ∈ R, α ̸= 0, α has a multiplicative inverse α−1 = 1/α such that

α · α−1 = α−1 · α = 1.

• How about matrices?
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Invertible matrices

Definition

Given A ∈ Mn×n, if there exists B ∈ Mn×n such that

AB = BA = In,

then A (also B is said to be invertible (or nonsingular) and B is called an inverse of
A. If no such matrix B can be found, then A is said to be singular.

Remark

If B is an inverse of A, then A is an inverse of B.

Example

An identity matrix In is invertible.
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Invertible matrices – example

Example

A =

[
2 −5
−1 3

]
, B =

[
3 5
1 2

]
Then

AB = I, BA = I

A, B are invertible they are inverses of one another.
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Singular matrices – example

Example

Let

A =

1 4 0
2 5 0
3 6 0

 .

Take any matrix B ∈ M3×3, let b
⊤
1 , b⊤2 , b⊤3 denote the columns of B.

The 3rd column of BA can be expressed as a linear combination of the columns of B
in which the coefficients in the linear combination are the entries from the 3rd column
of A:

0b⊤1 + 0b⊤2 + 0b⊤3 = 0.

Thus BA ̸= I3. And A is a singular matrix.

Remark

Similarly, it can be shown that any square matrix with a row or column of zeros is
singular.
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Uniqueness of inverse

Theorem

If B,C are both inverses of A, then B = C.

Proof

Since B is an inverse of A, we have BA = I. Multiply both sides on the right by C

BAC = IC = C.

By associative law of matrix multiplicaiton

BAC = B(AC) = BI = B.

Remark
• As a consequence, we now speak of “the” inverse of a matrix A.

• If A is invertible, we denote its inverse by A−1
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Solve linear system

If A is invertible and
Ax = b,

then
A−1Ax = A−1b =⇒ Ix = A−1b

Note that

I2

[
x1
x2

]
=

[
1 0
0 1

] [
x1
x2

]
=

[
x1
x2

]
, In


x1
x2
...
xn

 =


x1
x2
...
xn


Consequently, we get the solution for the system
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Inverse of 2× 2 matrices

Theorem

The matrix

A =

[
a b
c d

]
is invertible iff ad− bc ̸= 0, in which case the inverse is given by

A−1 =
1

ad− bc

[
d −b
−c a

]
.

Note

The quantity ad− bc is called the determinant of A. We write

det(A) = ad− bc, or

∣∣∣∣[a b
c d

]∣∣∣∣ = ad− bc
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Inverse of 2× 2 matrices – example

Example

A =

[
6 1
5 2

]
The determinant of A is

det(A) = 6× 2− 1× 5 = 7,

and

A−1 =
1

7

[
2 −1
−5 6

]
=


2

7
−1

7

−5

7

6

7


We can verify that

AA−1 = A−1A = I2
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Inverse of 2× 2 matrices – example

Example

A =

[
−1 2
4 −6

]
A is not invertible since

det(A) = (−1)× (−6)− 2× 3 = 0
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Solution of a linear system by matrix inversion
Consider the linear system

ax+ by = u

cx+ dy = v

It can be represented as

A

[
x
y

]
=

[
u
v

]
, where, A =

[
a b
c d

]
Suppose A is invertible, we have

A−1A

[
x
y

]
=

[
u
v

]
=⇒

[
x
y

]
=

1

ad− bc

[
d −b
−c a

] [
u
v

]
The solution is given by [

du− bv

ad− bc
,

−cu+ av

ad− bc

]
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Inverse of matrix product

Theorem

Suppose A,B ∈ Mn×n are both invertible, then AB is invertible, and

(AB)−1 = B−1A−1

Proof

We have
(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

Similarly (B−1A−1)(AB) = I

Remark

It can be proven that: A product of any number of invertible matrices is invertible,and
the inverse of the product is the product of the inverses in the reverse order.
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Inverse of matrix product – example

Consider

A =

[
1 2
1 3

]
, B =

[
3 2
2 2

]
Then

AB =

[
7 6
9 8

]
, (AB)−1 =

[
4 −3

−9

2

7

2

]
And

A−1 =

[
3 −2
−1 1

]
, B−1 =

 1 −1

−1
3

2

 , B−1A−1 =

 4 −3

−9

2

7

2
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Recall – Powers of a square matrix

• Square matrices are the only matrices that can be multiplied by themselves

• A ∈ Mm×n, AA can be computed iff m = n

Definition

For A ∈ Mn×n, the (nonnegative) powers of A are given by

A0 = In, A1 = A, Ak = Ak−1A for k ≥ 2.

Example

A =

[
2 1
−4 3

]
, A2 = AA =

[
0 5

−20 5

]
, A3 = A2A =

[
−20 15
−60 −5

]
.

Note

For any nonnegative integers ArAs = Ar+s, (Ar)s = Ars
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Properties of exponents

Theorem

If A is invertible and n is a nonnegative integer, then

• A−1 is invertible and (A−1)−1 = A

• An is invertible and (An)−1 = A−n = (A−1)n

• αA is invertible for any nonzero α ∈ R, and (αA)−1 = α−1A−1

Proof

(αA)(α−1A−1) = αα−1AA−1 = I
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Properties of exponents – example

Example

A =

[
1 2
1 3

]
, A−1 =

[
3 −2
−1 1

]
Then

A−3 = (A−1)2 =

[
3 −2
−1 1

] [
3 −2
−1 1

] [
3 −2
−1 1

]
=

[
41 −30
−15 11

]
And

A3 =

[
1 2
1 3

] [
1 2
1 3

] [
1 2
1 3

]
=

[
11 30
15 41

]
As shown from the previous theorem

(A3)−1 =
1

11× 41− 30× 15

[
41 −30
−15 11

]
=

[
41 −30
−15 11

]
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Properties of exponents – example

Example

A =

[
4 8
12 16

]
, A = 4

[
1 2
3 4

]
Then inverse of A simplifies as

A−1 =
1

4
× 1

1× 4− 2× 3

[
4 −2
−3 1

]
= −1

8

[
4 −2
−3 1

]
=

−1

2

1

4
3

8
−1

8


We can verify that

A−1 =
1

4× 16− 8× 12

[
16 −8
−12 4

]
= − 1

32

[
16 −8
−12 4

]
=

−
1

2

1

4
3

8
−1

8
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Properties of exponents – example

Example

With real number arithmetic, we have a commutative law for multiplication, we can
write

(α+ β)2 = α2 + αβ + βα+ β2 = α2 + 2αβ + β2, α, β ∈ R

However, for matrices A,B

(A+B)2 = A2 +AB +BA+B2.

Only when A and B commute, we have

(A+B)2 = A2 + 2AB +B2
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Inverse of transpose

Theorem

Given an invertible matrix A, A⊤ is also invertible, and

(A⊤)−1 = (A−1)⊤.

Proof

(A⊤)(A−1)⊤ = (A−1A)⊤ = I⊤ = I

Recall:
(AB)⊤ = B⊤A⊤
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Inverse of transpose – example

Example

A =

[
a b
c d

]
, A⊤ =

[
a c
b d

]
Suppose A is invertible det(A) = ad− bc ̸= 0, we have

A−1 =
1

ad− bc

[
d −b
−c a

]
, (A⊤)−1 =

1

ad− bc

[
d −c
−b a

]
We can see that

(A⊤)−1 = (A−1)⊤
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