Algebra and Discrete Mathematics ADM Bc. Xiaolu Hou, PhD. FIIT, STU xiaolu.hou @ stuba.sk #### Course Outline - Vectors and matrices - System of linear equations - Matrix inverse and determinants - Vector spaces and matrix transformations - Fundamental spaces and decompositions - Eulerian tours - Hamiltonian cycles - Midterm - Paths and spanning trees - Trees and networks - Matching - Tutorial 12 # Recommended reading - Saoub, K. R. (2017). A tour through graph theory. Chapman and Hall/CRC. - Sections 5.1, 5.2, 5.3 - Free copy online #### Lecture outline - Bipartite graphs - Matching terminology and strategies - Augmenting paths and vertex covers - Stable marriages - Unacceptable partners # Matching - Bipartite graphs - Matching terminology and strategies - Augmenting paths and vertex covers - Stable marriages - Unacceptable partners ### Bipartite graphs #### Definition A graph G = (V, E) is bipartite if the vertices can be partitioned into two sets, V_1 and V_2 , so that $$V_1 \cap V_2 = \emptyset, \quad V = V_1 \cup V_2,$$ and every edge has exactly one endpoint in V_1 and the other endpoint in V_2 . - $X = \{a, b, c\}$ - $Y = \{d, e, f\}$ # Different drawing - The drawing of a graph can vary - It may not be easy to see if the graph is bipartite - But, if you are traveling along a path or cycle in a graph, the vertices will need to alternate between the two parts of the vertex set, such as a vertex from X, then Y, then X, etc - So if a cycle exists in the graph, it must have even length since otherwise two vertices along the cycle would come from the same part # Determine if a graph is bipartite #### Theorem A graph G is bipartite iff there are no odd cycles in G. #### Note - In practice, we usually search for odd cycles within a graph and if we cannot find any, we try to redraw the graph to emphasize that it is bipartite - A bipartite graph can have multi-edges (and so need not be simple) but cannot have loops (since these are odd cycles of length 1) # Determine if a graph is bipartite – example - The graph is bipartite - $X = \{a, c, e, g, i, k\},\ Y = \{b, d, f, h, j, m\}$ # Determine if a graph is bipartite – example #### Example \bullet Not bipartite since there are odd cycles, such as the $5-{\rm cycle}~aefgha$ ### Complete bipartite graph #### Definition A simple bipartite graph $G=(V_1\cup V_2,E)$ is a complete bipartite graph if every vertex in V_1 is adjacent to every vertex in V_2 . If $|V_1|=m$, $|V_2|=n$, we write $K_{m,n}$ #### Example $K_{6,6}$ # Matching - Bipartite graphs - Matching terminology and strategies - Augmenting paths and vertex covers - Stable marriages - Unacceptable partners #### **Definitions** #### Definition Given a graph G = (V, E) - Two edges that do not share an endpoint are called *independent* edges - ullet A matching M is a subset of independent edges of G - ullet The size of a matching, denoted |M|, is the number of edges in the matching #### **Applications** - Marriages - Assign tasks to employees - None of the tasks rely on each other but no person has enough time to complete more than one task. - In addition, most employees are only qualified to complete some of the tasks #### Remark Matching problems often (though not always) make use of bipartite graphs since the items being matched are usually of two distinct types # Matching – example - Each employee is shown along with the jobs for which he or she is qualified - ullet Model using a bipartite graph where X consists of the employees and Y consists of the tasks | Employee | Task | | |---------------|-------------------------------------|----------------------------------| | Dan
Jeff | Making Cookies
Labeling Packages | Bottling Syrup
Bottling Syrup | | Kate | Making Candy | Making Cookies | | Lilah
Tori | Labeling Packages Labeling Packages | Bottling Syrup | # Matching – example - X consists of the employees and Y consists of the tasks - ullet We draw an edge between two vertices a and b if employee a is capable of completing the task b # Matching – example #### Example • One possible matching ### Matching problem - What is the important criteria for a solution and how does that translate to a matching - Is it more important for each employee to have a task or for every task to be completed #### Saturated vertices #### Definition A vertex saturated by a matching M if it is incident to an edge of the matching; otherwise, it is unsaturated. - Saturated vertices: Dan, Jeff, Kate, Making Cookies, Bottling Syrup, and Labeling Packages - Unsaturated vertices: Making candy, Lilah, and Tori # Different kinds of matchings #### Definition Given a matching M on a graph G, M is - ullet maximal if M cannot be enlarged by adding an edge - ullet maximum if M is of the largest size among all possible matchings - perfect if M saturates every vertex of G - ullet an X-matching if it saturates every vertex from the collection of vertices X #### Note - A perfect matching is automatically maximum and a maximum matching is automatically maximal, though the reverse need not be true - There can be several matchings of equal size # Maximal and maximum matching - example - Maximal: no other edges in the graph can be added since the remaining edges require the use of a saturated vertex (either a or d) - \bullet Maximum: There is no way for a matching to contain three edges otherwise a would have two edges incident to it - Matching on the right is an X-matching for $X = \{a, b\}$ - Neither matching is perfect since not every vertex is saturated # Find a matching – example - We need the tasks to be completed but do not need every employee to be assigned a task - We need an X-matching, where X consists of the vertices representing the tasks ### Find a matching – example - One possible matching - All tasks are assigned to an employee, but not all employees have a task # Hall's Marriage Theorem ### Theorem (Hall's Marriage Theorem) Given a bipartite graph $G=(X\cup Y,E)$, there exists an X- matching iff any $S\subseteq X$ satisfies $|S|\leq |N(S)|$ - The neighbor set of a set of vertices $S,\,N(S),$ consists of all vertices incident to at least one vertex from S - Hall's Marriage Theorem does not give a definitive answer about the size of a maximum matching but rather gives us the tools to reason why an X-matching does not exist # Hall's Marriage Theorem – example - Let $X = \{a, b, c, d, e\}$, $S = \{f, i, j\}$ - $N(S) = \{d\}$ - By Hall's Marriage Theorem, there is no X-matching. - Since at most one of the vertices from S can be paired with d, we know the maximum matching can contain at most 3 edges - The above matching is maximum # Find a maximum matching Next, we use a specific type of path and a collection of vertices as a way to determine the answer to the optimization question - how do we find a maximum matching? # Matching - Bipartite graphs - Matching terminology and strategies - Augmenting paths and vertex covers - Stable marriages - Unacceptable partners # Alternating and augmenting paths #### Definition Given a matching M of a graph G, a path is called - M- alternating if the edges in the path alternate between edges that are in M and edges that are not in M - M-augmenting if it is M-alternating and both endpoints of the path are unsaturated by M, implying both the starting and ending edges of the path are not in M # Alternating and augmenting paths – example - cadb is alternating and augmenting (both c and b are unsaturated) - If we switch the edges along this path we get a larger matching - This switching procedure removes the matched edges and adds the previously unmatched edges along an augmenting path - Since the path is augmenting, the matching increases in size by one edge # Alternating and augmenting paths – example - This switching procedure removes the matched edges and adds the previously unmatched edges along an augmenting path - Since the path is augmenting, the matching increases in size by one edge - cadb is still alternating, but not augmenting # Berge's Theorem ### Theorem (Berge's Theorem) A matching M of a graph G is maximum iff G does not contain any M-augmenting paths. #### Note Unlike Hall's Theorem, Berge's Theorem holds for both bipartite graphs and non-bipartite graphs. # Augmenting Path Algorithm - Input: Bipartite graph $G = (X \cup Y, E)$ - Output: Maximum matching for G ### Augmenting Path Algorithm – steps - 1. Find an arbitrary matching M - 2. U = set of unsaturated vertices in X - 3. If $U = \emptyset$, M is a maximum matching; otherwise, select a vertex $x \in U$ - 4. Consider $y \in N(x)$, if y is unsaturated, go to step 5, otherwise, step 6 - 5. Add the edge xy to M to obtain a larger matching M^\prime . Return to step 2 and recomputed U. - 6. Find a maximal M-alternating path from x using xy as the first edge - a. If this path is M-augmenting, then switch edges along that path to obtain a larger matching M'. Return to step 2 and recomputed U. - b. If the path is not M-augmenting, return to step 4, choose a new vertex from N(x) - 7. Repeat steps 2 4 until all vertices from U have been considered - Step 1. arbitrary matching - Step 2. $U = \{c, d, e\}$ - Step 3. select vertex $c \in U$ - Step 4. only neighbor of c is h, which is saturated - Step 6. form an M-alternating path starting with edge ch, cha - Step 6. cha is not augmenting, go to step 4 - Step 4. no other neighbor to choose, go to step 3 - $U = \{c, d, e\}$ - Step 3. select vertex $d \in U$ - Step 4. $N(d) = \{h, i, j\}$, consider h - ullet Step 6. dha is not M-augmenting, go to step 4 - Step 4. $N(d) = \{h, i, j\}$, consider i - Step 6. dib is not M-augmenting, go to step 4 - Step 4. $N(d) = \{h, i, j\}$, consider j - Step 2. $U = \{c, e\}$ - Step 3. select $c \in U$ - Step 4. only neighbor of c is h, which is saturated, go to step 6 - Step 6. cha is not M-augmenting - $U = \{c, e\}$ - Step 3. select $e \in U$ - Step 4. neighbors of e: i, j, consider i - Step 6. *eib* - Step 6. eib is not M-augmenting - Step 4. neighbors of e: i, j, consider j - Step 6. ejdha, ejdib - Step 6. ejdha, ejdib, neither is M-augmenting - ullet No M-augmenting path exists, we have obtained a maximum matching #### Vertex cover #### Definition A vertex cover Q for a graph G is a subset of vertices so that every edge of G has at least one endpoint in G. - ullet Every graph has a vertex cover, e.g. take Q to be the set of all vertices - But, we would like to optimize the vertex cover, i.e. find a minimum vertex cover # König-Egnerváry Theorem #### Theorem For a bipartite graph G, the size of a maximum matching of G equals the size of a minimum vertex cover for G. • Given any vertex in the cover, at most one matched edge can be incident to it # König-Egnerváry Theorem - We have discussed that the matching is maximum - ullet One vertex cover with 3 vertices is $\{g,h,d\}$ #### Vertex Cover Method - 1. Let $G = (X \cup Y, E)$ be a bipartite graph - 2. Apply the Augmenting Path Algorithm and mark the vertices considered throughout its final iteration of steps 2-6 - 3. Define a vertex cover ${\cal Q}$ as the unmarked vertices from ${\cal X}$ and the marked vertices from ${\cal Y}$ - 4. Q is a minimum vertex cover for G #### Note - Step 2 includes not just the vertices in U from Augmenting Path Algorithm, but also any vertex that was reached through an alternating path that originated at a vertex from U. - Thus the unmarked vertices will be those that are never mentioned during the final step of the implementation of the Augmenting Path Algorithm # Augmenting Path Algorithm final iteration – example - Step 2. $U = \{c, e\}$ - Step 3. select $c \in U$ - Step 4. only neighbor of c is h, which is saturated, go to step 6 - Step 6. cha is not M-augmenting - Step 3. select $e \in U$ - Step 4. neighbors of e: i, j, consider i - Step 6. eib is not M-augmenting - Step 4. neighbors of e: i, j, consider j - Step 6. ejdha, ejdib are not M-augmenting - Mark vertices: c, e, h, a, i, j, b, d ### Vertex Cover Method – example - Mark vertices: c, e, h, a, i, j, b, d - Unmarked vertices in X: f, g - Marked vertices in Y:h,i,j - Size of vertex cover: 5 #### Remark - More than one minimum vertex cover may exist for the same graph, just as more than one maximum matching may exist - In the previous example, we found one such vertex cover through the matching found using the Augmenting Path Algorithm - Another minimum vertex cover #### Remark - Given a maximum matching, apply Augmenting Path Algorithm starting from step 2 gives a minimum vertex cover - If we a X-matching, treat X as Y and Y as X in the vertex cover method - ullet If perfect matching, then either X or Y gives a minimum vertex cover because size of minimum vertex cover is equal to size of maximum matching - We will see more examples in Tutorial 12 # Matching - Bipartite graphs - Matching terminology and strategies - Augmenting paths and vertex covers - Stable marriages - Unacceptable partners ### Stable Marriage Problem - Our terminology will reflect the marriage model - We start with two distinct, yet equal sized, groups of people, usually men and women, who have ranked the members of the other group - A matching is considered stable if there are no two people who would both prefer each other over their current partners. That is, there are no mutually preferred alternatives that would rather "run away together." # Stable matching #### Definition Let $K_{n,n} = (X \cup Y, E)$ be a complete bipartite graph, where each vertex has a strict preference ordering over its neighbors. Let M be a perfect matching in G. - A pair of unmatched vertices $(x,y) \in X \times Y$ is unstable if - ullet x prefers y over their current partner, and - y prefers x over their current partner - M is stable if no unmatched pair of vertices is unstable ### Unstable matching – example - Four men and four women are being paired into marriages - Each person has ranked the members of the opposite sex ``` Anne: t > r > s > w Rob: a > b > c > d Brenda: s > w > r > t Stan: a > c > b > d Carol: w > r > s > t Ted: c > d > a > b Diana: r > s > t > w Will: c > b > a > d ``` ### Unstable matching – example #### Example Anne: t > r > s > w Brenda: s > w > r > t Carol: w > r > s > t Unstable: Will and Carol prefer each other to their current mate Rob: a > b > c > d Stan: a > c > b > d Ted: c > d > a > bWill: c > b > a > d ### Gale-Shapley Algorithm - Named after David Gale and Lloyd Shapley, the two American mathematicians and economists who published this algorithm - In addition, their work led to further studies on economic markets, one of which awarded Shapley (along with his collaborator Alvin Roth) the 2012 Nobel Prize in Economics - ullet Input: preference rankings of n women and n men - Output: stable matching ### Gale-Shapley Algorithm – steps - 1. Each man proposes to the highest ranking woman on his list - 2. If every woman receives only one proposal, this matching is stable. Otherwise move to step 3 - 3. Each woman - i. accepts a proposal if it is from the man she prefers above all other currently available men and rejects the rest (if any); or - ii. delays with a maybe to the highest ranked proposal and rejects the rest (if any) - 4. Each man now proposes to the highest ranking unmatched woman on his list who has not rejected him - 5. Repeat steps 2-4 until all people have been paired ``` Anne: t > r > s > w Rob: a > b > c > d Brenda: s > w > r > t Stan: a > c > b > d Carol: w > r > s > t Ted: c > d > a > b Diana: r > s > t > w Will: c > b > a > d ``` - Step 1. Proposals: Rob-Anne, Stan-Anne, Ted-Carol, Will-Carol - Step 3. Anne and Carol makes choices - Neither Rob nor Stan are Anne's top choice so she rejects the lower ranked one (Stan) and says maybe to the other (Rob) - Will is Carol's top choice so she accepts his proposal and rejects Ted #### Example Rob: a > b > c > dStan: a > c > b > dTed: c > d > a > bWill: c > b > a > d - Step 4. unmatched men propose to the next available woman on their preference list - Rob proposes again to Anne since she delayed in the last round - Stan proposes to Brenda; cannot propose to Anne since she rejected him previously - Ted proposes to Diana ``` Anne: t > r > s > w Rob: a > b > c > d Brenda: s > w > r > t Stan: a > c > b > d Carol: w > r > s > t Ted: c > d > a > b Diana: r > s > t > w Will: c > b > a > d ``` - Step 4. Proposals: Rob-Anne, Stan-Brenda, Ted-Diana - Step 2. Since all the proposals are different (no woman received more than one proposal), the women must all accept #### Example Anne: t > r > s > wBrenda: s > w > r > tCarol: w > r > s > tDiana: r > s > t > w Rob: a > b > c > dStan: a > c > b > dTed: c > d > a > bWill: c > b > a > d - Two men are paired with their top choice, one with his second, and one with his third - The same holds for the women (two first choices, one second, and one third) ### Gale-Shapley Algorithm - The Gale-Shapley Algorithm is asymmetric and in fact favors the group making the proposals - In the example above - Two men are paired with their top choice, one with his second, and one with his third - The same holds for the women (two first choices, one second, and one third) - If the women were the ones proposing we would likely see an improvement in their overall happiness ``` Anne: t > r > s > w Rob: a > b > c > d Brenda: s > w > r > t Stan: a > c > b > d Carol: w > r > s > t Ted: c > d > a > b Diana: r > s > t > w Will: c > b > a > d ``` - Step 1. Proposals: Anne-Ted, Brenda-Stan, Carol-Will, Diana-Rob - Step 2. Since all the proposals are different (no man received more than one proposal), the men must all accept - The women were all paired with their first choice, whereas only one man was paired with his first choice, two with their third choice, and one with his fourth choice #### Remarks - The group proposing in the Gale-Shapley Algorithm is more likely to be happy - In the previous example, even though the second matching seem more imbalanced than the first one, it is still a stable matching – there is no guarantee that a unique stable matching exists - In fact, many examples have more than one stable matching possible. - The important concept to remember is that for a complete bipartite graph with rankings, a stable matching will always exist. - If we generalize this to other types of graphs, the same may not hold. # Matching - Bipartite graphs - Matching terminology and strategies - Augmenting paths and vertex covers - Stable marriages - Unacceptable partners ### Unacceptable partner - By having each person rank all others of the opposite sex, we assume that all of these potential matches are acceptable - This is very clearly not accurate to a real world scenario some people should never be married if even they are the only pair left - To adjust for this, we introduce the notion of an unacceptable partner ## Unacceptable partner – example #### Example Anne: t > r > w Rob: a > b > c > d Brenda: w > r > t Stan: a > b Carol: w > r > s > t Ted: c > d > a > b Diana: s > r > t Will: c > b > a - If a person is missing from the ranking, then they are deemed unacceptable - Will is unacceptable to Diana and only Anne and Brenda are acceptable to Stan - We consider men proposing, so leave out edges to unacceptable partners for men only - We are still looking for a matching in a bipartite graph, only now the graph is not complete - We must adjust our notion of a stable matching, since it is possible that not all people could be matched - Under these new conditions, a matching (with unacceptable partners) is stable if no unmatched pair x and y such that x and y are both acceptable to each other, and each is either single or prefers the other to their current partner - ullet Input: preference ranking of n women and n men - Output: stable matching - 1. Each man proposes to the highest ranking woman on his list - 2. If every woman receives only one proposal from someone they deem acceptable, they all accept and this matching is stable. Otherwise move to step 3 - 3. Each woman - i. rejects a proposal if it is from an unacceptable man; - ii. accepts if the proposal is from the man she prefers above all other currently available men and rejects the rest (if any); or - iii. delays with a maybe to the highest ranked proposal and rejects the rest (if any) - 4. Each man now proposes to the highest ranking unmatched woman on their list who has not rejected him - 5. Repeat steps 2-4 until all people have been paired or until no unmatched man has any acceptable partners remaining #### Remark - Always produces a stable matching - Can be modified so that the women are proposing ``` Anne: t > r > w Rob: a > b > c > d ``` Diana: $$s > r > t$$ Will: $c > b > a$ - Step 1. The initial proposals are Rob –Anne, Stan –Anne, Ted –Carol, and Will – Carol. - Step 3. Anne and Carol makes choices - Stan is unacceptable to Anne, she rejects him and since Rob is not her top choice she says maybe - Will is Carol's top choice so she accepts his proposal and rejects Ted #### Example Anne: t > r > w Brenda: w > r > t Carol: w > r > s > t Diana: s > r > t Rob: a > b > c > d Stan: a > b Ted: c > d > a > b Will: c > b > a #### Step 4. - Remaining men propose to the next available woman on their preference list - Rob Anne - Stan Brenda - Ted Diana #### Example ``` Anne: t > r > w Rob: a > b > c > d ``` Brenda: w > r > t Stan: a > b Carol: w > r > s > t Ted: c > d > a > b Diana: s > r > t Will: c > b > a - Step 4. Rob Anne, Stan Brenda, Ted Diana - Step 3. Even though all proposals are different, Brenda rejects Stan since he is an unacceptable partner. The other two women say maybe since their proposals are not from their top choice of the available men #### Example Anne: t > r > w Brenda: w > r > t Carol: w > r > s > t Diana: s > r > t Rob: a > b > c > d Stan: a > b Ted: c > d > a > b Will: c > b > a #### Step 4. - Rob Anne - Ted Diana - Stan does not have any acceptable partners left so must remain single #### Step 2. - Both proposals are different and from acceptable partners - Both women accept In a scenario with unacceptable partners a stable matching can exist with not all people paired