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Course Outline
• Vectors and matrices
• System of linear equations
• Matrix inverse and determinants
• Vector spaces and matrix transformations
• Fundamental spaces and decompositions
• Eulerian tours
• Hamiltonian cycles
• Midterm
• Paths and spanning trees
• Trees and networks
• Matching
• Tutorial 12
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Recommended reading

• Saoub, K. R. (2017). A tour through graph theory. Chapman and Hall/CRC.
• Sections 5.1, 5.2, 5.3
• Free copy online
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https://api.pageplace.de/preview/DT0400.9781138197817_A36383051/preview-9781138197817_A36383051.pdf


Lecture outline

• Bipartite graphs

• Matching terminology and strategies

• Augmenting paths and vertex covers

• Stable marriages

• Unacceptable partners
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Matching

• Bipartite graphs

• Matching terminology and strategies

• Augmenting paths and vertex covers

• Stable marriages

• Unacceptable partners
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Bipartite graphs
Definition
A graph G = (V,E) is bipartite if the vertices can be partitioned into two sets, V1 and
V2, so that

V1 ∩ V2 = ∅, V = V1 ∪ V2,

and every edge has exactly one endpoint in V1 and the other endpoint in V2.

Example

• X = {a, b, c}
• Y = {d, e, f}

a b c
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Different drawing

• The drawing of a graph can vary
• It may not be easy to see if the graph is bipartite
• But, if you are traveling along a path or cycle in a graph, the vertices will need to

alternate between the two parts of the vertex set, such as a vertex from X, then
Y , then X, etc

• So if a cycle exists in the graph, it must have even length since otherwise two
vertices along the cycle would come from the same part
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Determine if a graph is bipartite

Theorem
A graph G is bipartite iff there are no odd cycles in G.

Note
• In practice, we usually search for odd cycles within a graph and if we cannot find

any, we try to redraw the graph to emphasize that it is bipartite
• A bipartite graph can have multi-edges (and so need not be simple) but cannot

have loops (since these are odd cycles of length 1)
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Determine if a graph is bipartite – example

Example

• The graph is bipartite
• X = {a, c, e, g, i, k},

Y = {b, d, f, h, j,m}

a c e g i k

b d f jh m

a b c d

j
k m

e

i h g f
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Determine if a graph is bipartite – example
Example

• Not bipartite since there are odd
cycles, such as the 5−cycle aefgha

c

ba

h

g

f e

d

c

ba

h

g

f e

d
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Complete bipartite graph
Definition
A simple bipartite graph G = (V1 ∪ V2, E) is a complete bipartite graph if every vertex
in V1 is adjacent to every vertex in V2. If |V1| = m, |V2| = n, we write Km,n

Example
K6,6

a c e g i k

b d f jh m
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Matching

• Bipartite graphs

• Matching terminology and strategies

• Augmenting paths and vertex covers

• Stable marriages

• Unacceptable partners
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Definitions
Definition
Given a graph G = (V,E)

• Two edges that do not share an endpoint are called independent edges
• A matching M is a subset of independent edges of G
• The size of a matching, denoted |M |, is the number of edges in the matching

Applications
• Marriages
• Assign tasks to employees

• None of the tasks rely on each other but no person has enough time to complete
more than one task.

• In addition, most employees are only qualified to complete some of the tasks

Remark
Matching problems often (though not always) make use of bipartite graphs since the
items being matched are usually of two distinct types
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Matching – example

Example
• Each employee is shown along with the jobs for which he or she is qualified
• Model using a bipartite graph where X consists of the employees and Y consists

of the tasks

Employee Task
Dan Making Cookies Bottling Syrup
Jeff Labeling Packages Bottling Syrup
Kate Making Candy Making Cookies
Lilah Labeling Packages
Tori Labeling Packages Bottling Syrup
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Matching – example
Example

• X consists of the employees and Y consists of the tasks
• We draw an edge between two vertices a and b if employee a is capable of

completing the task b

Dan Jeff Kate Lilah Tori

Making
Cookies

Bottling
Syrup

Labeling
Packages

Making
Candy
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Matching – example

Example
• One possible matching

Dan Jeff Kate Lilah Tori

Making
Cookies

Bottling
Syrup

Labeling
Packages

Making
Candy
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Matching problem

• What is the important criteria for a solution and how does that translate to a
matching

• Is it more important for each employee to have a task or for every task to be
completed
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Saturated vertices
Definition
A vertex saturated by a matching M if it is incident to an edge of the matching;
otherwise, it is unsaturated.

Example

• Saturated vertices: Dan, Jeff, Kate,
Making Cookies, Bottling Syrup, and
Labeling Packages

• Unsaturated vertices: Making candy,
Lilah, and Tori

Dan Jeff Kate Lilah Tori

Making
Cookies

Bottling
Syrup

Labeling
Packages

Making
Candy
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Different kinds of matchings

Definition
Given a matching M on a graph G, M is

• maximal if M cannot be enlarged by adding an edge
• maximum if M is of the largest size among all possible matchings
• perfect if M saturates every vertex of G
• an X−matching if it saturates every vertex from the collection of vertices X

Note
• A perfect matching is automatically maximum and a maximum matching is

automatically maximal, though the reverse need not be true
• There can be several matchings of equal size
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Maximal and maximum matching – example
Example

a b

c d e

a b

c d e

Maximal matching Maximum matching

• Maximal: no other edges in the graph can be added since the remaining edges
require the use of a saturated vertex (either a or d)

• Maximum: There is no way for a matching to contain three edges - otherwise a
would have two edges incident to it

• Matching on the right is an X−matching for X = {a, b}
• Neither matching is perfect since not every vertex is saturated 20 / 75



Find a matching – example
Example

• We need the tasks to be completed but do not need every employee to be
assigned a task

• We need an X−matching, where X consists of the vertices representing the tasks

Dan Jeff Kate Lilah Tori

Making
Cookies

Bottling
Syrup

Labeling
Packages

Making
Candy
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Find a matching – example
Example

• One possible matching
• All tasks are assigned to an employee, but not all employees have a task

Dan Jeff Kate Lilah Tori

Making
Cookies

Bottling
Syrup

Labeling
Packages

Making
Candy
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Hall’s Marriage Theorem

Theorem (Hall’s Marriage Theorem)
Given a bipartite graph G = (X ∪ Y,E), there exists an X−matching iff any S ⊆ X
satisfies |S| ≤ |N(S)|

• The neighbor set of a set of vertices S, N(S), consists of all vertices incident to
at least one vertex from S

• Hall’s Marriage Theorem does not give a definitive answer about the size of a
maximum matching but rather gives us the tools to reason why an X-matching
does not exist
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Hall’s Marriage Theorem – example
Example

• Let X = {a, b, c, d, e}, S = {f, i, j}
• N(S) = {d}
• By Hall’s Marriage Theorem, there is

no X−matching.
• Since at most one of the vertices from
S can be paired with d, we know the
maximum matching can contain at
most 3 edges

• The above matching is maximum

a b c d e

f g h i j
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Find a maximum matching

• Next, we use a specific type of path and a collection of vertices as a way to
determine the answer to the optimization question - how do we find a maximum
matching?

25 / 75



Matching

• Bipartite graphs

• Matching terminology and strategies

• Augmenting paths and vertex covers

• Stable marriages

• Unacceptable partners
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Alternating and augmenting paths

Definition
Given a matching M of a graph G, a path is called

• M−alternating if the edges in the path alternate between edges that are in M
and edges that are not in M

• M−augmenting if it is M−alternating and both endpoints of the path are
unsaturated by M , implying both the starting and ending edges of the path are
not in M
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Alternating and augmenting paths – example

Example

• cadb is alternating and augmenting (both c and b are
unsaturated)

• If we switch the edges along this path we get a larger
matching

• This switching procedure removes the matched edges
and adds the previously unmatched edges along an
augmenting path

• Since the path is augmenting, the matching increases in
size by one edge

a b

c d e
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Alternating and augmenting paths – example
Example

a b

c d e

a b

c d e

• This switching procedure removes the matched edges and adds the previously
unmatched edges along an augmenting path

• Since the path is augmenting, the matching increases in size by one edge
• cadb is still alternating, but not augmenting
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Berge’s Theorem

Theorem (Berge’s Theorem)
A matching M of a graph G is maximum iff G does not contain any M−augmenting
paths.

Note
Unlike Hall’s Theorem, Berge’s Theorem holds for both bipartite graphs and
non-bipartite graphs.
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Augmenting Path Algorithm

• Input: Bipartite graph G = (X ∪ Y,E)

• Output: Maximum matching for G
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Augmenting Path Algorithm – steps

1. Find an arbitrary matching M

2. U = set of unsaturated vertices in X

3. If U = ∅, M is a maximum matching; otherwise, select a vertex x ∈ U

4. Consider y ∈ N(x), if y is unsaturated, go to step 5, otherwise, step 6
5. Add the edge xy to M to obtain a larger matching M ′ . Return to step 2 and

recomputed U .
6. Find a maximal M−alternating path from x using xy as the first edge

a. If this path is M−augmenting, then switch edges along that path to obtain a larger
matching M ′. Return to step 2 and recomputed U .

b. If the path is not M−augmenting, return to step 4, choose a new vertex from N(x)

7. Repeat steps 2 - 4 until all vertices from U have been considered
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Augmenting Path Algorithm – example
Example

a b c d e f g

h i j k m n

• Step 1. arbitrary matching
• Step 2. U = {c, d, e}
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Augmenting Path Algorithm – example
Example

a b c d e f g

h i j k m n

• Step 3. select vertex c ∈ U

• Step 4. only neighbor of c is h, which is saturated
• Step 6. form an M−alternating path starting with edge ch, cha
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Augmenting Path Algorithm – example

Example

a b c d e f g

h i j k m n

• Step 6. cha is not augmenting, go to step 4
• Step 4. no other neighbor to choose, go to step 3
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Augmenting Path Algorithm – example
Example

a b c d e f g

h i j k m n

• U = {c, d, e}
• Step 3. select vertex d ∈ U

• Step 4. N(d) = {h, i, j}, consider h
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Augmenting Path Algorithm – example

Example

a b c d e f g

h i j k m n

• Step 6. dha is not M−augmenting, go to step 4
• Step 4. N(d) = {h, i, j}, consider i
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Augmenting Path Algorithm – example

Example

a b c d e f g

h i j k m n

• Step 6. dib is not M−augmenting, go to step 4
• Step 4. N(d) = {h, i, j}, consider j
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Augmenting Path Algorithm – example

Example

a b c d e f g

h i j k m n

• Step 6. djfk is augmenting, form a new matching: remove fj, add dj, fk
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Augmenting Path Algorithm – example
Example

a b c d e f g

h i j k m n

• Step 2. U = {c, e}
• Step 3. select c ∈ U

• Step 4. only neighbor of c is h, which is saturated, go to step 6
• Step 6. cha is not M−augmenting
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Augmenting Path Algorithm – example
Example

a b c d e f g

h i j k m n

• U = {c, e}
• Step 3. select e ∈ U

• Step 4. neighbors of e: i, j, consider i
• Step 6. eib
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Augmenting Path Algorithm – example
Example

a b c d e f g

h i j k m n

• Step 6. eib is not M−augmenting
• Step 4. neighbors of e: i, j, consider j
• Step 6. ejdha, ejdib
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Augmenting Path Algorithm – example

Example

a b c d e f g

h i j k m n

• Step 6. ejdha, ejdib, neither is M−augmenting
• No M−augmenting path exists, we have obtained a maximum matching
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Vertex cover

Definition
A vertex cover Q for a graph G is a subset of vertices so that every edge of G has at
least one endpoint in G.

• Every graph has a vertex cover, e.g. take Q to be the set of all vertices
• But, we would like to optimize the vertex cover, i.e. find a minimum vertex cover
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König-Egnerváry Theorem

Theorem
For a bipartite graph G, the size of a maximum matching of G equals the size of a
minimum vertex cover for G.

• Given any vertex in the cover, at most one matched edge can be incident to it
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König-Egnerváry Theorem
Example

• We have discussed that the matching is
maximum

• One vertex cover with 3 vertices is {g, h, d}

a b c d e

f g h i j

a b c d e

f g h i j
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Vertex Cover Method

1. Let G = (X ∪ Y,E) be a bipartite graph
2. Apply the Augmenting Path Algorithm and mark the vertices considered

throughout its final iteration of steps 2-6
3. Define a vertex cover Q as the unmarked vertices from X and the marked vertices

from Y

4. Q is a minimum vertex cover for G

Note
• Step 2 includes not just the vertices in U from Augmenting Path Algorithm, but

also any vertex that was reached through an alternating path that originated at a
vertex from U .

• Thus the unmarked vertices will be those that are never mentioned during the
final step of the implementation of the Augmenting Path Algorithm
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Augmenting Path Algorithm final iteration – example
Example

• Step 2. U = {c, e}
• Step 3. select c ∈ U

• Step 4. only neighbor of c is h, which
is saturated, go to step 6

• Step 6. cha is not M−augmenting
• Step 3. select e ∈ U

• Step 4. neighbors of e: i, j, consider i
• Step 6. eib is not M−augmenting
• Step 4. neighbors of e: i, j, consider j
• Step 6. ejdha, ejdib are not
M−augmenting

• Mark vertices: c, e, h, a, i, j, b, d

a b c d e f g

h i j k m n
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Vertex Cover Method – example

Example

• Mark vertices: c, e, h, a, i, j, b, d

• Unmarked vertices in X: f, g

• Marked vertices in Y :h, i, j
• Size of vertex cover: 5

a b c d e f g

h i j k m n

a b c d e f g

h i j k m n
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Remark
• More than one minimum vertex cover may exist for the same graph, just as more

than one maximum matching may exist
• In the previous example, we found one such vertex cover through the matching

found using the Augmenting Path Algorithm
• Another minimum vertex cover

a b c d e f g

h i j k m n
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Remark

• Given a maximum matching, apply Augmenting Path Algorithm starting from step
2 gives a minimum vertex cover

• If we a X−matching, treat X as Y and Y as X in the vertex cover method
• If perfect matching, then either X or Y gives a minimum vertex cover because

size of minimum vertex cover is equal to size of maximum matching
• We will see more examples in Tutorial 12
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Matching

• Bipartite graphs

• Matching terminology and strategies

• Augmenting paths and vertex covers

• Stable marriages

• Unacceptable partners
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Stable Marriage Problem

• Our terminology will reflect the marriage model
• We start with two distinct, yet equal sized, groups of people, usually men and

women, who have ranked the members of the other group
• A matching is considered stable if there are no two people who would both prefer

each other over their current partners. That is, there are no mutually preferred
alternatives that would rather “run away together.”
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Stable matching

Definition
Let Kn,n = (X ∪ Y,E) be a complete bipartite graph, where each vertex has a strict
preference ordering over its neighbors. Let M be a perfect matching in G.

• A pair of unmatched vertices (x, y) ∈ X × Y is unstable if
• x prefers y over their current partner, and
• y prefers x over their current partner

• M is stable if no unmatched pair of vertices is unstable
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Unstable matching – example

Example
• Four men and four women are being paired into marriages
• Each person has ranked the members of the opposite sex

Anne: t > r > s > w Rob: a > b > c > d
Brenda: s > w > r > t Stan: a > c > b > d

Carol: w > r > s > t Ted: c > d > a > b
Diana: r > s > t > w Will: c > b > a > d
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Unstable matching – example
Example

Anne: t > r > s > w Rob: a > b > c > d
Brenda: s > w > r > t Stan: a > c > b > d

Carol: w > r > s > t Ted: c > d > a > b
Diana: r > s > t > w Will: c > b > a > d

• Unstable: Will and Carol
prefer each other to their
current mate

Anne Brenda Carol Diana

Rob Stan Ted Will 56 / 75



Gale-Shapley Algorithm

• Named after David Gale and Lloyd Shapley, the two American mathematicians
and economists who published this algorithm

• In addition, their work led to further studies on economic markets, one of which
awarded Shapley (along with his collaborator Alvin Roth) the 2012 Nobel Prize in
Economics

• Input: preference rankings of n women and n men
• Output: stable matching
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Gale-Shapley Algorithm – steps

1. Each man proposes to the highest ranking woman on his list
2. If every woman receives only one proposal, this matching is stable. Otherwise

move to step 3
3. Each woman

i. accepts a proposal if it is from the man she prefers above all other currently
available men and rejects the rest (if any); or

ii. delays with a maybe to the highest ranked proposal and rejects the rest (if any)
4. Each man now proposes to the highest ranking unmatched woman on his list who

has not rejected him
5. Repeat steps 2-4 until all people have been paired
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Gale-Shapley Algorithm – example

Example
Anne: t > r > s > w Rob: a > b > c > d

Brenda: s > w > r > t Stan: a > c > b > d
Carol: w > r > s > t Ted: c > d > a > b
Diana: r > s > t > w Will: c > b > a > d

• Step 1. Proposals: Rob-Anne, Stan-Anne, Ted-Carol, Will-Carol
• Step 3. Anne and Carol makes choices

• Neither Rob nor Stan are Anne’s top choice so she rejects the lower ranked one
(Stan) and says maybe to the other (Rob)

• Will is Carol’s top choice so she accepts his proposal and rejects Ted
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Gale-Shapley Algorithm – example

Example

Rob: a > b > c > d
Stan: a > c > b > d
Ted: c > d > a > b
Will: c > b > a > d

• Step 4. unmatched men propose to the
next available woman on their preference
list

• Rob proposes again to Anne since she
delayed in the last round

• Stan proposes to Brenda; cannot propose
to Anne since she rejected him previously

• Ted proposes to Diana

Anne Brenda Carol Diana

Rob Stan Ted Will
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Gale-Shapley Algorithm – example

Example
Anne: t > r > s > w Rob: a > b > c > d

Brenda: s > w > r > t Stan: a > c > b > d
Carol: w > r > s > t Ted: c > d > a > b
Diana: r > s > t > w Will: c > b > a > d

• Step 4. Proposals: Rob-Anne, Stan-Brenda, Ted-Diana
• Step 2. Since all the proposals are different (no woman received more than one

proposal), the women must all accept
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Gale-Shapley Algorithm – example
Example

Anne: t > r > s > w
Brenda: s > w > r > t

Carol: w > r > s > t
Diana: r > s > t > w

Rob: a > b > c > d
Stan: a > c > b > d
Ted: c > d > a > b
Will: c > b > a > d

• Two men are paired with their top choice,
one with his second, and one with his third

• The same holds for the women (two first
choices, one second, and one third)

Anne Brenda Carol Diana

Rob Stan Ted Will
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Gale-Shapley Algorithm

• The Gale-Shapley Algorithm is asymmetric and in fact favors the group making
the proposals

• In the example above
• Two men are paired with their top choice, one with his second, and one with his third
• The same holds for the women (two first choices, one second, and one third)

• If the women were the ones proposing we would likely see an improvement in their
overall happiness
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Gale-Shapley Algorithm – example

Example
Anne: t > r > s > w Rob: a > b > c > d

Brenda: s > w > r > t Stan: a > c > b > d
Carol: w > r > s > t Ted: c > d > a > b
Diana: r > s > t > w Will: c > b > a > d

• Step 1. Proposals: Anne-Ted, Brenda-Stan, Carol-Will, Diana-Rob
• Step 2. Since all the proposals are different (no man received more than one

proposal), the men must all accept
• The women were all paired with their first choice, whereas only one man was

paired with his first choice, two with their third choice, and one with his fourth
choice
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Remarks

• The group proposing in the Gale-Shapley Algorithm is more likely to be happy
• In the previous example, even though the second matching seem more imbalanced

than the first one, it is still a stable matching – there is no guarantee that a
unique stable matching exists

• In fact, many examples have more than one stable matching possible.
• The important concept to remember is that for a complete bipartite graph with

rankings, a stable matching will always exist.
• If we generalize this to other types of graphs, the same may not hold.
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Matching

• Bipartite graphs

• Matching terminology and strategies

• Augmenting paths and vertex covers

• Stable marriages

• Unacceptable partners
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Unacceptable partner

• By having each person rank all others of the opposite sex, we assume that all of
these potential matches are acceptable

• This is very clearly not accurate to a real world scenario – some people should
never be married if even they are the only pair left

• To adjust for this, we introduce the notion of an unacceptable partner
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Unacceptable partner – example
Example

Anne: t > r > w Rob: a > b > c > d
Brenda: w > r > t Stan: a > b

Carol: w > r > s > t Ted: c > d > a > b
Diana: s > r > t Will: c > b > a

• If a person is missing from the ranking,
then they are deemed unacceptable

• Will is unacceptable to Diana and only
Anne and Brenda are acceptable to
Stan

• We consider men proposing, so leave
out edges to unacceptable partners for
men only

Anne Brenda Carol Diana

Rob Stan Ted Will
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Gale-Shapley Algorithm (with Unacceptable Partners)

• We are still looking for a matching in a bipartite graph, only now the graph is not
complete

• We must adjust our notion of a stable matching, since it is possible that not all
people could be matched

• Under these new conditions, a matching (with unacceptable partners) is stable if
no unmatched pair x and y such that x and y are both acceptable to each other,
and each is either single or prefers the other to their current partner

• Input: preference ranking of n women and n men
• Output: stable matching
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Gale-Shapley Algorithm (with Unacceptable Partners) – steps
1. Each man proposes to the highest ranking woman on his list
2. If every woman receives only one proposal from someone they deem acceptable,

they all accept and this matching is stable. Otherwise move to step 3
3. Each woman

i. rejects a proposal if it is from an unacceptable man;
ii. accepts if the proposal is from the man she prefers above all other currently available

men and rejects the rest (if any); or
iii. delays with a maybe to the highest ranked proposal and rejects the rest (if any)

4. Each man now proposes to the highest ranking unmatched woman on their list
who has not rejected him

5. Repeat steps 2-4 until all people have been paired or until no unmatched man has
any acceptable partners remaining

Remark
• Always produces a stable matching
• Can be modified so that the women are proposing
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Gale-Shapley Algorithm (with Unacceptable Partners) – example

Example
Anne: t > r > w Rob: a > b > c > d

Brenda: w > r > t Stan: a > b
Carol: w > r > s > t Ted: c > d > a > b
Diana: s > r > t Will: c > b > a

• Step 1. The initial proposals are Rob –Anne, Stan –Anne, Ted –Carol, and Will –
Carol.

• Step 3. Anne and Carol makes choices
• Stan is unacceptable to Anne, she rejects him and since Rob is not her top choice

she says maybe
• Will is Carol’s top choice so she accepts his proposal and rejects Ted
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Gale-Shapley Algorithm (with Unacceptable Partners) – example
Example

Anne: t > r > w Rob: a > b > c > d
Brenda: w > r > t Stan: a > b

Carol: w > r > s > t Ted: c > d > a > b
Diana: s > r > t Will: c > b > a

Step 4.
• Remaining men propose to the

next available woman on their
preference list

• Rob - Anne
• Stan - Brenda
• Ted - Diana

Anne Brenda Carol Diana

Rob Stan Ted Will
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Gale-Shapley Algorithm (with Unacceptable Partners) – example

Example
Anne: t > r > w Rob: a > b > c > d

Brenda: w > r > t Stan: a > b
Carol: w > r > s > t Ted: c > d > a > b
Diana: s > r > t Will: c > b > a

• Step 4. Rob - Anne, Stan - Brenda, Ted - Diana
• Step 3. Even though all proposals are different, Brenda rejects Stan since he is an

unacceptable partner. The other two women say maybe since their proposals are
not from their top choice of the available men
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Gale-Shapley Algorithm (with Unacceptable Partners) – example
Example

Anne: t > r > w Rob: a > b > c > d
Brenda: w > r > t Stan: a > b

Carol: w > r > s > t Ted: c > d > a > b
Diana: s > r > t Will: c > b > a

Step 4.
• Rob - Anne
• Ted - Diana
• Stan does not have any acceptable

partners left so must remain single
Step 2.
• Both proposals are different and

from acceptable partners
• Both women accept

Anne Brenda Carol Diana

Rob Stan Ted Will
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Gale-Shapley Algorithm (with Unacceptable Partners) – example
Example

Anne Brenda Carol Diana

Rob Stan Ted Will

In a scenario with unacceptable partners a stable matching can exist with not all
people paired

75 / 75


	Bipartite graphs
	Matching terminology and strategies
	Augmenting paths and vertex covers
	Stable marriages
	Unacceptable partners

