
Algebra and Discrete Mathematics
ADM

Bc. Xiaolu Hou, PhD.

FIIT, STU
xiaolu.hou @ stuba.sk

1 / 82

Course Outline

• Vectors and matrices
• System of linear equations
• Matrix inverse and determinants
• Vector spaces and matrix transformations
• Fundamental spaces and decompositions
• Eulerian tours
• Hamiltonian cycles
• Midterm
• Paths and spanning trees
• Trees and networks
• Matching

2 / 82

Recommended reading

• Saoub, K. R. (2017). A tour through graph theory. Chapman and Hall/CRC.
• Sections 4.3, 4.4, 7.4, 7.5
• Free copy online

3 / 82

https://api.pageplace.de/preview/DT0400.9781138197817_A36383051/preview-9781138197817_A36383051.pdf

Lecture outline

• Shortest networks

• Metric Traveling Salesman Problem

• Flow and capacity

• Rooted trees

4 / 82

Trees and networks

• Shortest networks

• Metric Traveling Salesman Problem

• Flow and capacity

• Rooted trees

5 / 82

Shortest network

• Network: a connected graph
• Shortest network: least total weight

6 / 82

MST

b

a

c

10.3 10.3

20

T1

e

d

f

10 10

10

T2

• Edge lengths are drawn to scale since the angle created by the edges will play a
large role in determining where to place shortcuts

• Minimum spanning tree: two edges of length 10.3 of T1, any two edges of T2

• Could we do better than a Minimum Spanning Tree?

7 / 82

Fermat point

• A similar question was posed by the 17th century French mathematician Pierre de
Fermat in a letter to Evangelista Torricelli, an Italian physicist and mathematician

• In his letter, Fermat challenged Torricelli to find a point that minimizes the
distance to each of the vertices in a triangle

Definition
A Fermat point for a triangle is the point p so that the total distance from p to the
vertices of the triangle is minimized. Each of the three angles formed by these
segments measures 120◦.

8 / 82

Shortest network for a triangle

Theorem
Given three points and a triangle T formed by these points, the Shortest Network
connecting the three points will either be

• the two shortest sides of T provided T has one angle of at least 120◦
• the three segments connecting the Fermat point for T to the original three

vertices of T

9 / 82

Torricelli’s Construction

• Input: Triangle T = △abc where all angles measure less than 120◦

• Steps
1. Along edge ab of T construct an equilateral triangle using that edge and a new point

x that is on the opposite side of the edge as c
2. Repeat step 1 for the other two edges of T , introducing new points y and z across

from b and a, respectively
3. Join x and c, y and b, and z and a by a line segment
4. The point of concurrency (intersection point of three lines) is the Fermat point p for

T
5. The shortest network is the line segments joining each of the original vertices, a, b,

and c, with p

• Output: Fermat point p and shortest network connecting a, b, and c

10 / 82

Torricelli’s Construction – tools

Note
Can be done using a ruler and a compass (or a protractor)

11 / 82

Torricelli’s Construction – example

Example

ba

c

10.6

10 7.9

12 / 82

Torricelli’s Construction – example
Example

ba

c

10.6

10 7.9

x

• Step 1. form an equilateral triangle off edge ab with new point x on the opposite
side of ab as c

13 / 82

Torricelli’s Construction – example
Example

ba

c

10.6

10 7.9

x

y

z

• Step 2. repeat the same for edge ac and bc
14 / 82

Torricelli’s Construction – example
Example

ba

c

x

y

z

• Step 3. join x and c, y and b, and z and a
15 / 82

Torricelli’s Construction – example
Example

ba

c

x

y

z

p

• Step 4. find the Fermat point p
• Step 5. highlight the edges from p to each of the original vertices

16 / 82

Torricelli’s Construction – example

Example

ba

c

p

• Output: the shortest network consists of the edges from p back to each of the
original vertices

17 / 82

Torricelli’s Construction – length of the shortest network

• Law of cosines

a2 = b2 + c2 − 2bc cos(∠uwv)
c2 = a2 + b2 − 2ab cos(∠wuv)
b2 = a2 + c2 − 2ac cos(∠wvu)

• Solve for the angles
• Assign coordinates to vertices
• Solve for length x, y, z

vu

w

a

b c
p

x y

z

120◦

18 / 82

Torricelli’s Construction – length of the shortest network

vu

w

a

b c
p

x y

z

120◦

• If ℓ denotes the length of the shortest network connecting vertices of a triangle
having angles that measure less than 120◦ each and sides of lengths a, b, c

ℓ = x+ y + z =

√
a2 + b2 + c2

2
+

√
3

2

√
2a2b2 + 2a2c2 + 2b2c2 − (a4 + b4 + c4)

19 / 82

Torricelli’s Construction – length of the shortest network

Example
• Continuing from the previous example

a = 7.9, b = 10, c = 10.6

• With the formula we get the length of the network obtained

ℓ =

√
274.77

2
+

√
3

2

√
48978.7752− 26519.7777 ≈ 16.345

• In comparison, the MST has a total length of 17.9
• The shortest network saves 1.555, or 8.69%

20 / 82

Trees and networks

• Shortest networks

• Metric Traveling Salesman Problem

• Flow and capacity

• Rooted trees

21 / 82

Traveling Salesman Problem

• How should a delivery service plan its route through a city to ensure each
customer is reached?

• A traveling salesman has customers in numerous cities. He must visit each of
them and return home, but wishes to do this with the least total cost

• Traveling Salesman Problem: shortest cycle that visits every city in a country →
shortest Hamiltonian cycle (contains every vertex) of a weighted complete graph

22 / 82

Metric Traveling Salesman Problem

• In short mTSP
• Only considers the scenarios where the weights satisfy the triangle inequality
• For a weighted complete graph K = (V,E, ω), given any three vertices x, y, z

ω (xy) + ω (yz) ≥ ω (xz)

23 / 82

mTSP Algorithm

• mTSP Algorithm combines three ideas we have studied so far – Eulerian circuits,
Hamiltonian cycles and MST

• A minimum spanning tree is modified by duplicating every edge, ensuring all
vertices have even degree and allowing an Eulerian circuit to be obtained

• This circuit is then modified to create a Hamiltonian cycle
• Note that this procedure is guaranteed to work only when the underlying graph is

complete
• It may still find a proper Hamiltonian cycle when the graph is not complete, but

cannot be guaranteed to do so.

24 / 82

mTSP Algorithm

• Input: weighted complete graph Kn, where the weight function ω satisfies the
triangle inequality

• Steps:
1. Find a MST T for Kn

2. Duplicate all the edges of T to obtain T ∗

3. Find an Eulerian circuit for T ∗

4. Convert the Eulerian circuit into a Hamiltonian cycle by skipping any previously
visited vertex (except for the starting and ending vertex)

5. Calculate the total weight
• Output: Hamiltonian cycle for Kn

25 / 82

mTSP Algorithm – example

Example
Alice must visit six cities and needs to minimize the total distance

Boston Charlotte Memphis New York Philadelphia D.C.
Boston . 840 1316 216 310 440
Charlotte 840 . 619 628 540 400
Memphis 1316 619 . 1096 1016 876
New York City 216 628 1096 . 97 228
Philadelphia 310 540 1016 97 . 140
Washington, D.C. 440 400 876 228 140 .

26 / 82

mTSP Algorithm – example
Example

b c

mw

p n

• Step 1. MST 27 / 82

mTSP Algorithm – example
Example

b c

mw

p n

• Step 2. Duplicate all edges of the MST 28 / 82

mTSP Algorithm – example
Example

b c

mw

p n1

2
3

4

5

6
7

8

9

10

• Step 3. Find an Eulerian circuit pnbnpwcmcwp 29 / 82

mTSP Algorithm – example
Example

Step 4
• Follow the Eulerian circuit

until we reach vertex b.
• Since we are looking for a

Hamiltonian cycle, we cannot
repeat vertices, so we cannot
return to n

• The next vertex along the
circuit that has not been
previously visited is w

b c

mw

p n1

2
3

4

5

6
7

8

9

10

1

2

30 / 82

mTSP Algorithm – example
Example

Step 4
• Add the edge from b to w

b c

mw

p n1

2
3

4

5

6
7

8

9

10

1

2

31 / 82

mTSP Algorithm – example
Example

Step 4
• We follow the circuit again

until m is reached
• Again, we cannot return to c

and at this point we must
return to p since all other
vertices have been visited

b c

mw

p n1

2
3

4

5

6
7

8

9

10

32 / 82

mTSP Algorithm – example
Example

b c

mw

p n1

2
3

4

5

6
7

8

9

10

b c

mw

p n1

2

3
4

5

6

33 / 82

mTSP Algorithm – example

Example
• Total weight of the MST: 1472 – the worst possible Hamiltonian cycle that can

arise from it will have weight at most two times that 2944, due to the doubling f
the edges

• Total weight of the Hamiltonian cycle: 2788

• Actual optimal cycle: 2781

• Our Hamiltonian cycle is off by a relative error of 0.25%

34 / 82

Trees and networks

• Shortest networks

• Metric Traveling Salesman Problem

• Flow and capacity

• Rooted trees

35 / 82

A different notion of a network

Definition
• A network is a connected digraph where each arc e has an associated nonnegative

integer c(e), called a capacity.
• The network has a designated starting vertex s called the source and a designated

ending vertex t called the sink
• A flow f is a function that assigns a value f(e) to each arc of the network

36 / 82

Network – example
Example

s

a

b

c

d

e

g

h
t

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1)

(2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

• Each arc is given a two-part label, (f(e), c(e))
• The first component is the flow along the arc
• The second component is the capacity

37 / 82

Network

• Source, sink: reminiscent of a system of pipes with water coming from the source,
traveling through some configuration of the piping to arrive at the sink

• Using this analogy further, flow should travel in the indicated direction of the arcs,
no arc can carry more than its capacity, and the amount entering a junction point
(a vertex) should equal the amount leaving.

38 / 82

Feasible flow
Definition
For a vertex v, let f−(v) represent the total flow entering v and f+(v) represent the
total flow exiting v. A flow is feasible if it satisfies the following conditions

• f(e) ≥ 0 for all edges e

• c(e) ≥ f(e) for all edges e

• f+(v) = f−(v) for all vertices other than s and t

• f−(s) = f+(t) = 0

• The notation for in-flow and out-flow mirrors that for in-degree and out- degree of
a vertex, though here we are adding the flow value for the arcs entering or exiting
a vertex

• The requirement that a flow is non-negative indicates the flow must travel in the
direction of the arc, as a negative flow would indicate items going in the reverse
direction

• The final condition is not necessary in theory, but more logical in practice and
simplifies our analysis of flow problems 39 / 82

Network – example
Example

s

a

b

c

d

e

g

h
t

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1)

(2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

• f+(s) = 0 + 2 + 1 = 3, f−(t) = 1 + 2 = 3

• c(ad) = 5, f(ad) = 0, c(ad) > f(ad)

• f+(b) = f−(b) = 2

40 / 82

Maximum flow

Definition
• The value of a flow is defined as

|f | = f+(s) = f−(t),

i.e. the amount exiting the source which must also equal the flow entering the sink
• A maximum flow is a feasible flow of largest value

• In practice, we use integer values for the capacity and flow, though this is not
required.

• In fact, given integer capacities there is no need for fractional flows.
• How to find the maximum flow?

41 / 82

Network – example
Example

s

a

b

c

d

e

g

h
t

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1)

(2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

• Feasible flow, Value 3

• Finding maximum flow is not as simple as putting every arc at capacity – e.g. if
we had a flow of 5 along arc ad, flow along dt would be 6, more than its capacity

42 / 82

Slack
Definition
Let f be a flow along a network. The slack k of an arc is the difference between its
capacity and flow

k(e) = c(e)− f(e).

Slack edge: k(e) > 0

Example

• k(sa) = 3, k(sc) = 3, k(sb) = 0

• We may want to increase flow along
sa and sc but not sb

s

a

b

c

d

e

g

h
t

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1)

(2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

43 / 82

Chain
Definition
A chain K is a path in a digraph where the direction of the arcs are ignored

Example

s

a

b

c

d

e

g

h
t

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1)

(2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

• Both sadt and sadeht are chains
• sadeht is not a directed path

44 / 82

Augmenting Flow Algorithm (Ford-Fulkerson Algorithm)

• Similar to Dijkstra’s Algorithm which found the shortest path in a graph (or
digraph)

• Vertices will be assigned two-part labels that aid in the creation of a chain on
which the flow can be increased

• The label consists of two parts, the second component is denoted by σ(v)

• Input: Network G = (V,E, c), where each arc is given a capacity c, and a
designated source s and sink t

• Output: Maximum flow f

45 / 82

Augmenting Flow Algorithm – steps

1. Label s with (−,∞), set σ(v) = ∞ for other vertices
2. Choose a labeled vertex x

a. For any arc yx, if f(yx) > 0 and y is unlabeled, then label y with (x−, σ(y)), where
σ(y) = min{σ(x), f(yx)}

b. For any arc xy, if k(xy) > 0 and y is unlabeled, then label y with (x+, σ(y)), where
σ(y) = min{σ(x), k(xy)}

3. If t has been labeled, go to Step 4. Otherwise, choose a different labeled vertex
that has not been scanned and go to Step 2. If all labeled vertices haven been
scanned, then f is a maximum flow.

4. Find an s− t chain K of slack edges by backtracking from t to s. Along the
edges of K, increase the flow by σ(t) units if they are in the forward direction and
decrease by σ(t) units in they are in the backward direction. Remove all vertex
labels except that of s and return to Step 2

46 / 82

Augmenting Flow Algorithm – example

Example
a

b

c

d

e

g

h
ts(−,∞)

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1)

(2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

• Step 1. Label s as (−,∞)

47 / 82

Augmenting Flow Algorithm – example
Example

b

d

e

g

h
ts(−,∞)

a(s+,3)

c(s+,3)

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1)

(2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

Step 2.
• There are no arcs to s.
• Arcs out of s: sa, sb, sc, with slack 3, 0, 3

• Label a with (s+, 3), c with (s+, 3). Leave b unlabeled since sb has slack 0
48 / 82

Augmenting Flow Algorithm – example
Example

b

d

e

g

h
ts(−,∞)

a(s+,3)

c(s+,3)

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1)

(2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

Step 3.
• As t is not labeled, we will choose a different labeled vertex that has not been

scanned– a or c
• Choose c.

49 / 82

Augmenting Flow Algorithm – example
Example

b

d

e h
ts(−,∞)

a(s+,3)

c(s+,3) g(c+,1)

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1)

(2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

Step 2.
• The only arc going into c is from a labeled vertex
• Consider the edges out of c – there is only cg with slack of 1
• Label g as (c+, 1), where σ(g) = min{σ(c), k(cg)} = min{3, 1} = 1

50 / 82

Augmenting Flow Algorithm – example
Example

b

d

e h
ts(−,∞)

a(s+,3)

c(s+,3) g(c+,1)

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1)

(2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

Step 3.
• t is not labeled
• We can scan either a or g
• Choose g

51 / 82

Augmenting Flow Algorithm – example
Example

b

d

e
ts(−,∞)

a(s+,3)

c(s+,3) g(c+,1)

h(g+,1)

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1) (2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

Step 2.
• The only arc going into g is from a labeled vertex
• The only arc out of g is gh

• Label h as (g+, 1), where σ(h) = min{σ(g), k(gh)} = min{1, 2} = 1
52 / 82

Augmenting Flow Algorithm – example
Example

b

d

e
ts(−,∞)

a(s+,3)

c(s+,3) g(c+,1)

h(g+,1)

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1) (2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

Step 3.
• t is not labeled, we can choose a or h
• Choose h

53 / 82

Augmenting Flow Algorithm – example
Example

b

d

s(−,∞)

a(s+,3)

c(s+,3) g(c+,1)

h(g+,1)
e(h−,1)

t(h+,1)

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1) (2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

Step 2.
• There is one unlabeled vertex with an arc going into h, namely e, label e with

(h−, 1) since σ(e) = min{σ(h), f(he)} = min{1, 1} = 1

• Label t as (h+, 1), where σ(t) = min{σ(h), k(ht)} = min{1, 3} = 1

54 / 82

Augmenting Flow Algorithm – example

Example

b

d

s(−,∞)

a(s+,3)

c(s+,3) g(c+,1)

h(g+,1)
e(h−,1)

t(h+,1)

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1) (2, 5)

(1, 4)

(1, 2)

(1,
3)

(1
, 4
)

• Step 3. t is labeled, go to Step 4
• Step 4. we find an s− t chain K of slack edges. Backtracking from t to s gives

the chain scght

55 / 82

Augmenting Flow Algorithm – example
Example

s(−,∞)

a

b

c

d

e

g

h
t

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1) (3, 5)

(2, 4)

(2, 2)

(2,
3)

(1
, 4
)

• Step 4. we find an s− t chain K of slack edges. Backtracking from t to s gives
the chain scght

• Increase the flow by σ(t) = 1 units along each of these edges since all are in the
forward direction.

• Update the network flow and remove all labels except for s

56 / 82

Augmenting Flow Algorithm – example

Example

s(−,∞)
b

d

e

g

h
t

a(s+,3)

c(s+,2)

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1) (3, 5)

(2, 4)

(2, 2)

(2,
3)

(1
, 4
)

• Step 2. Label a with (s+, 3) and c with (s+, 2)

• Step 3. Choose c to scan

57 / 82

Augmenting Flow Algorithm – example

Example

s(−,∞)
b

d

e

g

h
t

a(s+,3)

c(s+,2)

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1) (3, 5)

(2, 4)

(2, 2)

(2,
3)

(1
, 4
)

• Step 2. No vertex to label, k(cg) = 0

• Step 3. Choose a to scan

58 / 82

Augmenting Flow Algorithm – example

Example

s(−,∞)
b

e

g

h
t

a(s+,3)

c(s+,2)

d(a+,3)

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1) (3, 5)

(2, 4)

(2, 2)

(2,
3)

(1
, 4
)

• Step 2. Label d with (a+, 3), where σ(d) = min{σ(a), k(ad)} = min{3, 3} = 3

• Step 3. Only unscanned labeled vertex is d

59 / 82

Augmenting Flow Algorithm – example
Example

s(−,∞)
b

g

h

a(s+,3)

c(s+,2)

d(a+,3)

e(d−,1)

t(d+,2)

(0
, 3
)

(0, 5)

(1, 3)

(2, 2) (2, 4) (1, 1) (3, 5)

(2, 4)

(2, 2)

(2,
3)

(1
, 4
)

• Step 2. Label e with (d−, 1), where σ(e) = min{σ(d), f(ed)} = min{3, 1} = 1.
Label t with (d+, 2), σ(t) = min{σ(d), k(dt)} = min{3, 2} = 2

• Step 3. t is labeled, go to step 4
• Step 4. Find chain sadt

60 / 82

Augmenting Flow Algorithm – example
Example

s(−,∞)

a

b

c

d

e

g

h
t

(2
, 3
)

(2, 5)

(3, 3)

(2, 2) (2, 4) (1, 1) (3, 5)

(2, 4)

(2, 2)

(2,
3)

(1
, 4
)

Step 4.
• Find chain sadt, increase the flow by σ(t) = 2 units along each of these edges

since all are in the forward direction
• Update the network flow and remove all labels except for s

61 / 82

Augmenting Flow Algorithm – example
Example

s(−,∞)
b

e

g

h
t

a(s+,1)

c(s+,2)

d(a+,1)

(2
, 3
)

(2, 5)

(3, 3)

(2, 2) (2, 4) (1, 1) (3, 5)

(2, 4)

(2, 2)

(2,
3)

(1
, 4
)

• Step 2. Label a, c
• Step 3. Choose a

• Step 2. Label d
• Step 3. Choose d

62 / 82

Augmenting Flow Algorithm – example
Example

s(−,∞)

g

h
t

a(s+,1)

c(s+,2)

d(a+,1)

e(d−,1)

b(e−,1)

(2
, 3
)

(2, 5)

(3, 3)

(2, 2) (2, 4) (1, 1) (3, 5)

(2, 4)

(2, 2)

(2,
3)

(1
, 4
)

• Step 2. Label e as (d−, 1), t is not given a label since k(dt) = 0

• Step 3. Choose e

• Step 2. Label b
• Step 3. No vertices to be labeled, we get a maximum flow

63 / 82

Augmenting Flow Algorithm

• When the Augmenting Flow Algorithm halts, a maximum flow has been achieved,
though understanding why this flow is indeed maximum requires additional
terminology and results

64 / 82

Cut

Definition
• Let P be a set of vertices and P = V − P .
• A cut (P, P) is the set of all arcs xy where x ∈ P and y ∈ P

• An s− t cut is a cute in which s ∈ P , t ∈ P

65 / 82

Cut – example
Example

s(−,∞)

g

h
t

a(s+,1)

c(s+,2)

d(a+,1)

e(d−,1)

b(e−,1)

(2
, 3
)

(2, 5)

(3, 3)

(2, 2) (2, 4) (1, 1) (3, 5)

(2, 4)

(2, 2)

(2,
3)

(1
, 4
)

• P = {s, a, e, g}, P = {b, c, d, h, t}
• (P, P) = {sb, sc, ad, ed, eh, gh}
• Note: be ̸∈ (P, P) because b ∈ P , e ∈ P

66 / 82

Capacity
Definition
The capacity of a cut, c(P, P), is defined as the sum of the capacities of the arcs that
comprise the cut.

Example

s(−,∞)

g

h
t

a(s+,1)

c(s+,2)

d(a+,1)

e(d−,1)

b(e−,1)

(2
, 3
)

(2, 5)

(3, 3)

(2, 2) (2, 4) (1, 1) (3, 5)

(2, 4)

(2, 2)

(2,
3)

(1
, 4
)

• P = {s, a, e, g}, P = {b, c, d, h, t}, (P, P) = {sb, sc, ad, ed, eh, gh},
c(P, P) = 2 + 4 + 5 + 4 + 1 + 3 = 19

• P = {s}, c(P, P) = 9
67 / 82

Max Flow-Min Cut

Theorem
In any directed network, the value of a maximum s− t flow equals the capacity of a
minimum s− t cut.

• The difficulty in using this result to prove a flow is maximum is in finding the
minimum cut

• We can use the vertex labeling procedure to obtain our minimum cut

68 / 82

Min-Cut Method

Steps
1. Let G = (V,A, c) be a network with a designated source s and sink t and each arc

is given a capacity c

2. Apply the Augmenting Flow Algorithm
3. Define an s− t cut (P, P) where P is the set of labeled vertices from the final

implementation of the algorithm
4. (P, P) is a minimum s− t cut for G

Note
In practice, we can perform the Augmenting Flow Algorithm and the Min-Cut Method
simultaneously, thus finding a maximum flow and providing a proof that it is maximum
(through the use of a minimum cut) in one complete procedure.

69 / 82

Min-Cut Method – example
Example

s(−,∞)

g

h
t

a(s+,1)

c(s+,2)

d(a+,1)

e(d−,1)

b(e−,1)

(2
, 3
)

(2, 5)

(3, 3)

(2, 2) (2, 4) (1, 1) (3, 5)

(2, 4)

(2, 2)

(2,
3)

(1
, 4
)

• P = {s, a, b, c, d, e}, P = {g, h, t}
• (P, P) = {dt, eh, cg}
• c(P, P) = 3 + 1 + 2 = 6

70 / 82

Trees and networks

• Shortest networks

• Metric Traveling Salesman Problem

• Flow and capacity

• Rooted trees

71 / 82

Definition
Definition

• A rooted tree is a tree T with a special designated vertex r, called the root
• The level of any vertex in T is defined as the length of its shortest path to r

• The height of a rooted tree is the largest level for any vertex in T

Example

• root r: level 0
• a, b: level 1
• c, d, e, f : level 2
• g, h: level 3
• height of the tree: 3

r

a b

c d e f

g h
72 / 82

Terminologies

Definition
Let T be a tree with root r. Then for any vertices x and y

• y is on the unique path from x to r: x is a descendant of y; y is an ancestor of x
• x is a descendant of y and exactly one level below y: x is a child of y, y is a

parent of x
• x is a sibling of y if x and y has the same parent

Note
Analogy: family tree

73 / 82

Terminologies – example

Example

• parent of a: r

• child of a: c

• parent of e: b

• e has no children
• ancestors of g: f, b, r – unique path from g to

r is gfbr

• descendants of b: d, e, f, g, h

• siblings of d: e, f

r

a b

c d e f

g h

74 / 82

Depth-First Search Tree

• Main idea is to travel along a path as far as possible from the root of a given graph
• If this path does not encompass the entire graph, then branches are built off this

central path to create a tree
• The formal description of this algorithm relies on an ordered listing of the

neighbors of each vertex and uses this order when adding new vertices to the tree
• For simplicity, we will always use an alphabetical order when considering neighbor

lists
• Input: Simple (no multi-edges or loops) connected graph G = (V,E) and a

designated root vertex r

• Output: Depth-first search tree T

75 / 82

Depth-First Search Tree – steps

1. Initialize the DFS tree T = (V ′, E′) with V ′ = {r} and E′ = ∅. Set r as the
current vertex v.

2. Select the first unvisited neighbor x of the current vertex v. Add vertex x and
edge vx to T , and recursively repeat Step 2 with x as the new current vertex until
no unvisited neighbors remain.

3. If all vertices of G are now in T , then T is the depth-first search tree. Otherwise,
backtrack the path from the last visited vertex x to the root in T to find a vertex
v that has unvisited neighbor. Use v as the current vertex and repeat Step 2.

76 / 82

Depth-First Search Tree – example
Example

a

j

i

h

k

b

c

d

e

g

f

• Suppose a is the root
• Step 1. current vertex is a

• Step 2. add b, c, d, e, f , this stops with f since f has no further neighbors in G

77 / 82

Depth-First Search Tree – example
Example

a

j

i

h

k

b

c

d

e

g

f

• Step 3. backtracking along the path, the first vertex
with an unvisited neighbor is e

• Step 2. add edge eg and vertex g to T

a

b

c

d

e

f

78 / 82

Depth-First Search Tree – example
Example

a

j

i

h

k

b

c

d

e

g

f

• Step 3. backtracking along the path from g to a, the
first vertex with an unvisited neighbor is c

• Step 2. add h, i, j

a

b

c

d

e

f g

79 / 82

Depth-First Search Tree – example
Example

a

j

i

h

k

b

c

d

e

g

f

• Step 3. backtracking along the path from j to a, the
first vertex with an unvisited neighbor is i

• Step 2. add k

a

b

c

d

e

f g

h

i

j

80 / 82

Depth-First Search Tree – example
Example

a

j

i

h

k

b

c

d

e

g

f

• T contains all the vertices of G
• The resulting tree is the depth-first search tree
• Height 5, one vertex each at level 1 and 2, two

vertices each at levels 3 and 4, four vertices at level
5

a

b

c

d

e

f g

h

i

j k

81 / 82

Remark

• If the graph is not connected, we can slightly adjust the algorithm and get a forest
as the output

• Search for unvisited vertices when no vertex with unvisited neighbors can be found

82 / 82

	Shortest networks
	Metric Traveling Salesman Problem
	Flow and capacity
	Rooted trees

