Algebra and Discrete Mathematics ADM

Bc. Xiaolu Hou, PhD.

FIIT, STU xiaolu.hou @ stuba.sk

Course Outline

- Vectors and matrices
- System of linear equations
- Matrix inverse and determinants
- Vector spaces and matrix transformations
- Fundamental spaces and decompositions
- Eulerian tours
- Hamiltonian cycles
- Midterm
- Paths and spanning trees
- Trees and networks
- Matching

Recommended reading

- Saoub, K. R. (2017). A tour through graph theory. Chapman and Hall/CRC.
 - Sections 4.3, 4.4, 7.4, 7.5
 - Free copy online

Lecture outline

Shortest networks

• Metric Traveling Salesman Problem

• Flow and capacity

Rooted trees

Trees and networks

Shortest networks

- Metric Traveling Salesman Problem
- Flow and capacity

Rooted trees

Shortest network

- Network: a connected graph
- Shortest network: least total weight

MST

- Edge lengths are drawn to scale since the angle created by the edges will play a large role in determining where to place shortcuts
- Minimum spanning tree: two edges of length 10.3 of T_1 , any two edges of T_2
- Could we do better than a Minimum Spanning Tree?

Fermat point

- A similar question was posed by the 17th century French mathematician Pierre de Fermat in a letter to Evangelista Torricelli, an Italian physicist and mathematician
- In his letter, Fermat challenged Torricelli to find a point that minimizes the distance to each of the vertices in a triangle

Definition

A Fermat point for a triangle is the point p so that the total distance from p to the vertices of the triangle is minimized. Each of the three angles formed by these segments measures 120° .

Shortest network for a triangle

Theorem

Given three points and a triangle T formed by these points, the Shortest Network connecting the three points will either be

- the two shortest sides of T provided T has one angle of at least 120°
- \bullet the three segments connecting the Fermat point for T to the original three vertices of T

Torricelli's Construction

- Input: Triangle $T=\triangle abc$ where all angles measure less than 120°
- Steps
 - 1. Along edge ab of T construct an equilateral triangle using that edge and a new point x that is on the opposite side of the edge as c
 - 2. Repeat step 1 for the other two edges of T, introducing new points y and z across from b and a, respectively
 - 3. Join x and c, y and b, and z and a by a line segment
 - 4. The point of concurrency (intersection point of three lines) is the Fermat point p for T
 - 5. The shortest network is the line segments joining each of the original vertices, $a,b,\,\,$ and $c,\,\,$ with p
- Output: Fermat point p and shortest network connecting a, b, and c

Torricelli's Construction – tools

Note

Can be done using a ruler and a compass (or a protractor)

Example

ullet Step 1. form an equilateral triangle off edge ab with new point x on the opposite side of ab as c

Example

ullet Step 2. repeat the same for edge ac and bc

Example

ullet Step 3. join x and c, y and b, and z and a

Example

- Step 4. find the Fermat point p
- ullet Step 5. highlight the edges from p to each of the original vertices

Example

ullet Output: the shortest network consists of the edges from p back to each of the original vertices

Torricelli's Construction – length of the shortest network

Law of cosines

$$a^{2} = b^{2} + c^{2} - 2bc\cos(\angle uwv)$$

$$c^{2} = a^{2} + b^{2} - 2ab\cos(\angle wuv)$$

$$b^{2} = a^{2} + c^{2} - 2ac\cos(\angle wvu)$$

- Solve for the angles
- Assign coordinates to vertices
- Solve for length x, y, z

Torricelli's Construction – length of the shortest network

• If ℓ denotes the length of the shortest network connecting vertices of a triangle having angles that measure less than 120° each and sides of lengths a,b,c

$$\ell = x + y + z = \sqrt{\frac{a^2 + b^2 + c^2}{2} + \frac{\sqrt{3}}{2}\sqrt{2a^2b^2 + 2a^2c^2 + 2b^2c^2 - (a^4 + b^4 + c^4)}}$$

Torricelli's Construction – length of the shortest network

Example

Continuing from the previous example

$$a = 7.9, \quad b = 10, \quad c = 10.6$$

• With the formula we get the length of the network obtained

$$\ell = \sqrt{\frac{274.77}{2} + \frac{\sqrt{3}}{2}}\sqrt{48978.7752 - 26519.7777} \approx 16.345$$

- In comparison, the MST has a total length of 17.9
- The shortest network saves 1.555, or 8.69%

Trees and networks

Shortest networks

- Metric Traveling Salesman Problem
- Flow and capacity
- Rooted trees

Traveling Salesman Problem

- How should a delivery service plan its route through a city to ensure each customer is reached?
- A traveling salesman has customers in numerous cities. He must visit each of them and return home, but wishes to do this with the least total cost
- Traveling Salesman Problem: shortest cycle that visits every city in a country \rightarrow shortest Hamiltonian cycle (contains every vertex) of a weighted complete graph

Metric Traveling Salesman Problem

- In short mTSP
- Only considers the scenarios where the weights satisfy the triangle inequality
- For a weighted complete graph $K=(V,E,\omega)$, given any three vertices x,y,z

$$\omega(xy) + \omega(yz) \ge \omega(xz)$$

mTSP Algorithm

- mTSP Algorithm combines three ideas we have studied so far Eulerian circuits, Hamiltonian cycles and MST
- A minimum spanning tree is modified by duplicating every edge, ensuring all vertices have even degree and allowing an Eulerian circuit to be obtained
- This circuit is then modified to create a Hamiltonian cycle
- Note that this procedure is guaranteed to work only when the underlying graph is complete
- It may still find a proper Hamiltonian cycle when the graph is not complete, but cannot be guaranteed to do so.

mTSP Algorithm

- Input: weighted complete graph K_n , where the weight function ω satisfies the triangle inequality
- Steps:
 - 1. Find a MST T for K_n
 - 2. Duplicate all the edges of T to obtain T^*
 - 3. Find an Eulerian circuit for T^*
 - 4. Convert the Eulerian circuit into a Hamiltonian cycle by skipping any previously visited vertex (except for the starting and ending vertex)
 - 5. Calculate the total weight
- Output: Hamiltonian cycle for K_n

Example

Alice must visit six cities and needs to minimize the total distance

	Boston	Charlotte	Memphis	New York	Philadelphia	D.C.
Boston		840	1316	216	310	440
Charlotte	840		619	628	540	400
Memphis	1316	619		1096	1016	876
New York City	216	628	1096		97	228
Philadelphia	310	540	1016	97		140
Washington, D.C.	440	400	876	228	140	

Example

Example

• Step 2. Duplicate all edges of the MST

Example

ullet Step 3. Find an Eulerian circuit pnbnpwcmcwp

Example

Step 4

- Follow the Eulerian circuit until we reach vertex *b*.
- Since we are looking for a Hamiltonian cycle, we cannot repeat vertices, so we cannot return to n.
- The next vertex along the circuit that has not been previously visited is w

Example

Step 4

ullet Add the edge from b to w

Example

Step 4

- We follow the circuit again until m is reached
- Again, we cannot return to c and at this point we must return to p since all other vertices have been visited

${\sf mTSP\ Algorithm-example}$

Example

- ullet Total weight of the MST: 1472- the worst possible Hamiltonian cycle that can arise from it will have weight at most two times that 2944, due to the doubling f the edges
- Total weight of the Hamiltonian cycle: 2788
- Actual optimal cycle: 2781
- ullet Our Hamiltonian cycle is off by a relative error of 0.25%

Trees and networks

Shortest networks

• Metric Traveling Salesman Problem

• Flow and capacity

Rooted trees

A different notion of a network

Definition

- A *network* is a connected digraph where each arc e has an associated nonnegative integer c(e), called a *capacity*.
- \bullet The network has a designated starting vertex s called the <code>source</code> and a designated ending vertex t called the \emph{sink}
- A flow f is a function that assigns a value f(e) to each arc of the network

Network – example

- ullet Each arc is given a two-part label, (f(e),c(e))
- The first component is the flow along the arc
- The second component is the capacity

Network

- Source, sink: reminiscent of a system of pipes with water coming from the source, traveling through some configuration of the piping to arrive at the sink
- Using this analogy further, flow should travel in the indicated direction of the arcs, no arc can carry more than its capacity, and the amount entering a junction point (a vertex) should equal the amount leaving.

Feasible flow

Definition

For a vertex v, let $f^-(v)$ represent the total flow entering v and $f^+(v)$ represent the total flow exiting v. A flow is *feasible* if it satisfies the following conditions

- $f(e) \ge 0$ for all edges e
- $c(e) \ge f(e)$ for all edges e
- $f^+(v) = f^-(v)$ for all vertices other than s and t
- $f^-(s) = f^+(t) = 0$
- The notation for in-flow and out-flow mirrors that for in-degree and out- degree of a vertex, though here we are adding the flow value for the arcs entering or exiting a vertex
- The requirement that a flow is non-negative indicates the flow must travel in the direction of the arc, as a negative flow would indicate items going in the reverse direction
- The final condition is not necessary in theory, but more logical in practice and simplifies our analysis of flow problems

Network – example

- $f^+(s) = 0 + 2 + 1 = 3$, $f^-(t) = 1 + 2 = 3$
- c(ad) = 5, f(ad) = 0, c(ad) > f(ad)
- $f^+(b) = f^-(b) = 2$

Maximum flow

Definition

• The value of a flow is defined as

$$|f| = f^+(s) = f^-(t),$$

i.e. the amount exiting the source which must also equal the flow entering the sink

- A maximum flow is a feasible flow of largest value
- In practice, we use integer values for the capacity and flow, though this is not required.
- In fact, given integer capacities there is no need for fractional flows.
- How to find the maximum flow?

Network – example

- Feasible flow, Value 3
- Finding maximum flow is not as simple as putting every arc at capacity e.g. if we had a flow of 5 along arc ad, flow along dt would be 6, more than its capacity

Slack

Definition

Let f be a flow along a network. The $\operatorname{\it slack}\, k$ of an arc is the difference between its capacity and flow

$$k(e) = c(e) - f(e).$$

Slack edge: k(e) > 0

- k(sa) = 3, k(sc) = 3, k(sb) = 0
- We may want to increase flow along sa and sc but not sb

Chain

Definition

A chain K is a path in a digraph where the direction of the arcs are ignored

- Both sadt and sadeht are chains
- sadeht is not a directed path

Augmenting Flow Algorithm (Ford-Fulkerson Algorithm)

- Similar to Dijkstra's Algorithm which found the shortest path in a graph (or digraph)
- Vertices will be assigned two-part labels that aid in the creation of a chain on which the flow can be increased
- The label consists of two parts, the second component is denoted by $\sigma(v)$
- Input: Network G=(V,E,c), where each arc is given a capacity c, and a designated source s and sink t
- ullet Output: Maximum flow f

Augmenting Flow Algorithm – steps

- 1. Label s with $(-,\infty)$, set $\sigma(v)=\infty$ for other vertices
- 2. Choose a labeled vertex x
 - a. For any arc yx, if f(yx)>0 and y is unlabeled, then label y with $(x^-,\sigma(y))$, where $\sigma(y)=\min\{\sigma(x),f(yx)\}$
 - b. For any arc xy, if k(xy)>0 and y is unlabeled, then label y with $(x^+,\sigma(y))$, where $\sigma(y)=\min\{\sigma(x),k(xy)\}$
- 3. If t has been labeled, go to Step 4. Otherwise, choose a different labeled vertex that has not been scanned and go to Step 2. If all labeled vertices haven been scanned, then f is a maximum flow.
- 4. Find an s-t chain K of slack edges by backtracking from t to s. Along the edges of K, increase the flow by $\sigma(t)$ units if they are in the forward direction and decrease by $\sigma(t)$ units in they are in the backward direction. Remove all vertex labels except that of s and return to Step 2

Example

Step 2.

- There are no arcs to s.
- Arcs out of s: sa, sb, sc, with slack 3, 0, 3
- Label a with $(s^+,3)$, c with $(s^+,3)$. Leave b unlabeled since sb has slack 0

Example

Step 3.

- As t is not labeled, we will choose a different labeled vertex that has not been scanned— a or c
- Choose c.

Example

Step 2.

- ullet The only arc going into c is from a labeled vertex
- ullet Consider the edges out of c there is only cg with slack of 1
- Label g as $(c^+,1)$, where $\sigma(g)=\min\{\sigma(c),k(cg)\}=\min\{3,1\}=1$

Example

Step 3.

- t is not labeled
- ullet We can scan either a or g
- ullet Choose g

Example

Step 2.

- The only arc going into g is from a labeled vertex
- ullet The only arc out of g is gh
- Label h as $(g^+,1)$, where $\sigma(h)=\min\{\sigma(g),k(gh)\}=\min\{1,2\}=1$

Example

Step 3.

- ullet t is not labeled, we can choose a or h
- Choose h

Example

Step 2.

- There is one unlabeled vertex with an arc going into h, namely e, label e with $(h^-,1)$ since $\sigma(e)=\min\{\sigma(h),f(he)\}=\min\{1,1\}=1$
- Label t as $(h^+, 1)$, where $\sigma(t) = \min\{\sigma(h), k(ht)\} = \min\{1, 3\} = 1$

- Step 3. t is labeled, go to Step 4
- ullet Step 4. we find an s-t chain K of slack edges. Backtracking from t to s gives the chain scght

- \bullet Step 4. we find an s-t chain K of slack edges. Backtracking from t to s gives the chain scght
 - Increase the flow by $\sigma(t)=1$ units along each of these edges since all are in the forward direction.
 - ullet Update the network flow and remove all labels except for s

- Step 2. Label a with $(s^+,3)$ and c with $(s^+,2)$
- ullet Step 3. Choose c to scan

- Step 2. No vertex to label, k(cg) = 0
- Step 3. Choose a to scan

- Step 2. Label d with $(a^+,3)$, where $\sigma(d)=\min\{\sigma(a),k(ad)\}=\min\{3,3\}=3$
- ullet Step 3. Only unscanned labeled vertex is d

- Step 2. Label e with $(d^-,1)$, where $\sigma(e) = \min\{\sigma(d), f(ed)\} = \min\{3,1\} = 1$. Label t with $(d^+,2)$, $\sigma(t) = \min\{\sigma(d), k(dt)\} = \min\{3,2\} = 2$
- Step 3. t is labeled, go to step 4
- Step 4. Find chain sadt

Example

Step 4.

- Find chain sadt, increase the flow by $\sigma(t)=2$ units along each of these edges since all are in the forward direction
- ullet Update the network flow and remove all labels except for s

- Step 2. Label a, c
- Step 3. Choose a
- Step 2. Label d
- Step 3. Choose d

- Step 2. Label e as $(d^-, 1)$, t is not given a label since k(dt) = 0
- Step 3. Choose *e*
- Step 2. Label b
- Step 3. No vertices to be labeled, we get a maximum flow

Augmenting Flow Algorithm

 When the Augmenting Flow Algorithm halts, a maximum flow has been achieved, though understanding why this flow is indeed maximum requires additional terminology and results

Cut

Definition

- Let P be a set of vertices and $\overline{P} = V P$.
- A cut (P, \overline{P}) is the set of all arcs xy where $x \in P$ and $y \in \overline{P}$
- An s-t cut is a cute in which $s\in P$, $t\in \overline{P}$

Cut – example

- $P = \{s, a, e, g\}, \overline{P} = \{b, c, d, h, t\}$
- $(P, \overline{P}) = \{sb, sc, ad, ed, eh, gh\}$
- Note: $be \not\in (P, \overline{P})$ because $b \in \overline{P}$, $e \in P$

Capacity

Definition

The *capacity* of a cut, $c(P, \overline{P})$, is defined as the sum of the capacities of the arcs that comprise the cut.

- $P = \{s, a, e, g\}$, $\overline{P} = \{b, c, d, h, t\}$, $(P, \overline{P}) = \{sb, sc, ad, ed, eh, gh\}$, $c(P, \overline{P}) = 2 + 4 + 5 + 4 + 1 + 3 = 19$
- $P = \{s\}, c(P, \overline{P}) = 9$

Max Flow-Min Cut

Theorem

In any directed network, the value of a maximum s-t flow equals the capacity of a minimum s-t cut.

- The difficulty in using this result to prove a flow is maximum is in finding the minimum cut
- We can use the vertex labeling procedure to obtain our minimum cut

Min-Cut Method

Steps

- 1. Let G=(V,A,c) be a network with a designated source s and sink t and each arc is given a capacity c
- 2. Apply the Augmenting Flow Algorithm
- 3. Define an s-t cut (P,\overline{P}) where P is the set of labeled vertices from the final implementation of the algorithm
- 4. (P, \overline{P}) is a minimum s-t cut for G

Note

In practice, we can perform the Augmenting Flow Algorithm and the Min-Cut Method simultaneously, thus finding a maximum flow and providing a proof that it is maximum (through the use of a minimum cut) in one complete procedure.

Min-Cut Method – example

- $\bullet \ P = \{s,a,b,c,d,e\}, \ \overline{P} = \{g,h,t\}$
- $(P, \overline{P}) = \{dt, eh, cg\}$
- $c(P, \overline{P}) = 3 + 1 + 2 = 6$

Trees and networks

Shortest networks

• Metric Traveling Salesman Problem

Flow and capacity

Rooted trees

Definition

Definition

- A rooted tree is a tree T with a special designated vertex r, called the root
- ullet The *level* of any vertex in T is defined as the length of its shortest path to r
- ullet The *height* of a rooted tree is the largest level for any vertex in T

- root r: level 0
- *a*, *b*: level 1
- c, d, e, f: level 2
- *g*, *h*: level 3
- height of the tree: 3

Terminologies

Definition

Let T be a tree with root r. Then for any vertices x and y

- y is on the unique path from x to r: x is a descendant of y; y is an ancestor of x
- x is a descendant of y and exactly one level below y: x is a *child* of y, y is a *parent* of x
- ullet x is a sibling of y if x and y has the same parent

Note

Analogy: family tree

Terminologies – example

- parent of a: r
- child of a: c
- parent of e: b
- e has no children
- ancestors of g: f, b, r unique path from g to r is gfbr
- descendants of b: d, e, f, g, h
- siblings of d: e, f

Depth-First Search Tree

- Main idea is to travel along a path as far as possible from the root of a given graph
- If this path does not encompass the entire graph, then branches are built off this central path to create a tree
- The formal description of this algorithm relies on an ordered listing of the neighbors of each vertex and uses this order when adding new vertices to the tree
- For simplicity, we will always use an alphabetical order when considering neighbor lists
- Input: Simple (no multi-edges or loops) connected graph G=(V,E) and a designated root vertex ${\it r}$
- Output: Depth-first search tree T

Depth-First Search Tree – steps

- 1. Initialize the DFS tree T=(V',E') with $V'=\{r\}$ and $E'=\emptyset$. Set r as the current vertex v.
- 2. Select the first unvisited neighbor x of the current vertex v. Add vertex x and edge vx to T, and recursively repeat Step 2 with x as the new current vertex until no unvisited neighbors remain.
- 3. If all vertices of G are now in T, then T is the depth-first search tree. Otherwise, backtrack the path from the last visited vertex x to the root in T to find a vertex v that has unvisited neighbor. Use v as the current vertex and repeat Step 2.

- Suppose *a* is the root
- Step 1. current vertex is a
- Step 2. add b, c, d, e, f, this stops with f since f has no further neighbors in G

- Step 3. backtracking along the path, the first vertex with an unvisited neighbor is e
- Step 2. add edge eg and vertex g to T

- Step 3. backtracking along the path from g to a, the first vertex with an unvisited neighbor is c
- Step 2. add h, i, j

- Step 3. backtracking along the path from j to a, the first vertex with an unvisited neighbor is i
- Step 2. add k

- T contains all the vertices of G
- The resulting tree is the depth-first search tree
- Height 5, one vertex each at level 1 and 2, two vertices each at levels 3 and 4, four vertices at level 5

Remark

- If the graph is not connected, we can slightly adjust the algorithm and get a forest as the output
- Search for unvisited vertices when no vertex with unvisited neighbors can be found