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Recommended reading

® Andrilli, Stephen, and David Hecker. Elementary linear algebra. Academic Press,
2022. Fifth edition

® Sections 1.1, 1.2, 14,15
® Free copy online

® Anton, Howard, and Chris Rorres. Elementary linear algebra: applications version.
John Wiley & Sons, 2013.

® Sections 1.3
® Free copy online
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https://thuvienso.hoasen.edu.vn/bitstream/handle/123456789/9493/Contents.pdf?sequence=1
https://thuvienso.hoasen.edu.vn/bitstream/handle/123456789/8937/Contents.pdf?sequence=3

Lecture Outline

e Definitions

e Vectors

e Matrices
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Vectors and matrices

e Definitions
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Sets
(): empty set
|S|: cardinality of S
A set S is finite if |S| < oo
a € S: ais an element in set S
a & S: ais not an element in set S
SCT:ifse S thenseT, Sisasubset of T
S=T.:SCTandT CS
The power set of a set S, denoted by 2, is the set of all subsets of S.

Example
Let 7={0,1,2,3} and S = { 2,3}, then
e SCTand T ¢ S.
©2c5,0¢5.
o |S|=2|T| =4
e 25={0,89{2},{3}}.
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Sets

Union: AUB

Intersection: AN B

Difference: A—B={acA,a¢ B}

Complement of Ain S: A=5—-A

Cartesian product A x B ={(a,b) |a€ A,be B}
® ordered pairs

Example
e A={0,1,2}, B={2,3,4}
e AUB={0,1,2,3,4}, AnB={2}

Example
e A={246}, B={1,35}, S=AUB
e A— B=A. Complement of Ain S is B

AxB=1{(21),(23),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3),(6,5) }.
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Functions
Definition
A function/map f : S — T is a rule that assigns each element s € S a unique element
teT.
® S — domain of f; T — codomain of f.
e If f(s) =t, then t is called the image of s, s is a preimage of t.

® For any A C T, preimage of A under f is
fHA) :={seS | f(s)eA}

Example
Define

f*R — R

r —

where R is the set of real numbers. Then f has domain R and codomain R. 8/92



Functions — example

Example
Define

f*R — R

r —

where R is the set of real numbers. Then f has domain R and codomain R.

Let A={1} CR, the preimage of A under f is given by

fﬁl(A):{_Ll}'

1 is the image of —1 and —1 is a preimage of 1. 1 is another preimage of 1.

Let B={-1} CR, then f~}(B) =0.
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Composition of functions
Definition
For two functions f: T — U, g: S — T, the composition of f and g, denoted by
f og, is the function

fog:S — U

s = flg(s).
Example
What is fog?
fR —
T — 2z
g:R —
z — 3
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Composition of functions

Example

IS
I
8

S
L
1

fog:R — R
r — (%) =25
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Matrices
® RR: the set of all real numbers
Definition
A matrix with coefficients in R is a rectangular array where each entry is an element of
R.

Matrix A is said to have m rows, n columns and is of size m x n.

a1 ... ain
A asy ... aop
Am1 - Qmn
Example
The matrix L 75 6
A= [2 3 4}

has 2 rows, 3 columns and is of size 2 x 3. 12/02



Vectors

e A1 x n matrix is called a row vector.
® An n x 1 matrix is called a column vector.

Example
°®a=[1, -1, 3]isa row vector
1
® b= [—1]| is a column vector
3
Note

® By “vector,” we refer specifically to a row vector.
® R” represents the set of all vectors with n entries, also referred to as coordinates.

® When written by hand, @ is used to denote a vector.

Example
a € R3
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Vectors and scalars

® Two vectors a,b € R" are equal, written a = b, if all corresponding coordinates
are equal

° (0= [O, 0, ---, O] is the zero vector.

® An element z € R is called a scalar

Example
e 1, 0, 4] #[1, 0, —4]
® 5 c Ris a scalar
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Vectors and matrices

e Vectors
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Geometric interpretation of vectors

® A vector with two coordinates, i.e. an element
of R?, is frequently used to represent a
movement from one point to another in a
coordinate plane

® From an initial point (3,2) to a terminal point
(1,5), there is a net decrease of 2 units along
the x—axis and a net increase of 3 units along
the y—axis. A vector representing this change

would thus be [—2, 3], as indicated by the
arrow in the figure

Remark 1

® Points of a coordinate system: parentheses

® \ectors: brackets w ‘ | |
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Geometric interpretation of vectors

B = (22,12)

® |n general, a vector starting at point
A = (71,y1) and ending at B = (z2,92),
denoted AB is given by

AB = [z — 21, y2—u1]

g

AB:[HJ2—CC1, y2—y1] A= (z1,)
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Norm of a vector

® The distance between two points (x1,y1) and (x2,y2) in the plane is given by

\/(562 —x1)? 4+ (y2 — y1)?

® The vector between the points is [z2 — 1, y2 — 1]

® This motivates the following definition

Definition
The norm (also called length) of a vector @ = [a1, as,

given by

lall = \/a? + a3 + - +a2.

A vector of norm 1 is called a unit vector

©, ap], denoted |al|, is
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Norm of a vector — Example

Example

® The norm of a = [4, -3, 0, 2] is given by

lall = V22 + (=32 + 02+ 22 =16 1 9+ 0+ 4 = V29
e [2, —2%] is a unit vector in R?
3\? 4\ 2
— - :1
(&5
e [-3, 1 1, —1]isa unit vector in R*

()6 () () -
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Scalar multiplication

a = |:a/17 az, -, an] GRTL
a€eR
The scalar multiple of a by « is the vector

aa:[aal, aag, -, aan]

It is easy to see that
eall = |off|al

since

loal = v/{aar? + (aaz)? + - + (aa,)? = y/a2(a? + a3 +

ot ap) = |of|all

20/92



Scalar multiplication

Example

a=[4, -5]
2a = [8, —10]
—3a=[-12, 15]

1 5

—5a=[-2 3]
a=[4, —5]

4

2a = [8, —10]
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Scalar multiplication

eal| = |aflall

¢ Multiplication by « dilates (expands) the norm of the vector when |a| > 1 and
contracts (shrinks) the norm when |a| < 1
® Scalar multiplication by 1 or —1 does not affect the norm

® Scalar multiplication by 0 always yields the zero vector.
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Direction
Definition
a,beR” a#0,b+#0, aandb are said to be
® in the same direction if Joa € Ry s.t. b= aa
® in the opposite direction if da € Rg s.t. b = aa

® parallel if they are in the same or in the opposite direction

Example

e [1, =3, 2] and [3, —9, 6] arein the same direction
1
[L—%,ﬂ:§p,—&6]
o [—3, 6, 15] and [4, —8, 20} are in the opposite direction

[-3, 6, 15] =——[4, -8, 20].
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Normalization of a vector

Lemma
For anya € R", a # 0,
a
lall
is unit vector in the same direction as a.
Proof
By the above observations
a 1
=l = 7 llell = 1.
lallll  llal

This process of “dividing” a vector by its norm to obtain a unit vector in the same
direction is called normalizting the vector.
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Vector addition

® Take two vectors a,b € R"
a = [alu az, -+, an]7 b= [blv b27 Tty bn]
® The sum of a and b is given by the vector

[al—"_bla a2+b27 7an+bn]

Example
Ifa=1[2, -3, 5],b=[-6, 4, —2], then

a+b=1[2-6, —3+4, 5-2]=[-4, 1, 3]
Note

Vectors cannot be added unless they have the same number of coordinates
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Vector addition — geometric interpretation

® Draw a vector a. Then draw a vector
b whose initial point is the terminal
point of a.

® The sum of a and b is the vector
whose initial point is the same as that
of a and whose terminal point is the
same as that of b.

® The total movement a + b is
equivalent to first moving along a and
then along b

Y

(a1 + by, az + by)

as +ba 1
b | B
o
as +
(a1,as2)
o
0 bl ay a + bl
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Subtraction of vectors

® | et —b denote the scalar product
between —1 and b y

® Define
a—-b=a+(-b)

(a1, az)
Example

a=[2, 1],b=1[1, 2]

a—-b = a+(-b) ¢
= (2, 1|+ |-1, =2
%1 _j|1 [ :| (a] 7!)1,&2*!)2)
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Fundamental properties of vector addition and scalar multiplication

Theorem
Take any a,b,c € R", any a, 5 € R, we have

lL.at+tb=b+a Commutative law of addition
2.a+(b+c)=(a+b)+c Associative law of addition
30+a=a+0=a Existence of identity element for addition
4. a+ (—a) =(—a)+a =0  Existence of inverse elements for addition
5 ala+b) =aa+ ab Distributive laws of scalar multiplication
6. (¢ + fB)a =aa+ pa over vector addition

7. (af)a = a(fa) Associativity of scalar multiplication

8. la=a Identity property for scalar multiplication

® 0 is called an identity element for vector addition because 0 does not change the
identity of any vector to which it is added

® —q is called the Additive inverse of a because it “cancels out a” to produce the
additive identity element (i.e. the zero vector)
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Proof of property 6

(a+Ba = (a+p)|ar, az -, an]
= [(a+B)ar, (a+PBaz, -+, (a+B)an]
definition of scalar multiplication
= [aal + Bai, «@as+ Bas, -+ ,0a, + ﬁan]

coordinate-wise use of distributive law in R

= [aar, aay, -+, aan]+[Bai, Baz, -, Bay)
definition of vector addition

= a[al, as, -+, an]—i-ﬁ[al, az, -, an]
definition of scalar multiplication

= aa+ fa
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Dot product
Definition
Let
a:[ab az, -, an]ab:[bla b2a Tty bn]eRn

be two vectors. The dot product (inner product) of a and b is given by

n
a-b=ab; +agby + -+ ayb, = Zazbl
=1

Example

a=1[2, —4, 3],b=[1, 5, -2],a-b=2x1+(—4)x5+3x(-2)=—-24,

Note

® Dot product is not defined for vectors having different numbers of coordinates.

® Dot product involves two vectors and the result is a scalar, whereas scalar
multiplication involves a scalar and a vector and the result is a vector.
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Properties of dot product

Theorem
Take any a,b,c € R", a € R, then

Commutativity of dot product
Relationship between dot product and norm

Relationship between scalar multiplication and dot
product

Distributive laws of dot product

over addition

lL.a-b=b-a

2. a-a=|al>0

3. a-a=0iffa=0

4. a(a-b) = (aa)-b=a-(ab)
5a-(b+c)=a-b+a-c

6. (@a+b)-c=(a-¢)+(b-c)

Proof

We provide the proof for a few properties.
2.a:[a1, az, -, an]

a-a=aja+aay+ - +ana, =a2+ai+---a2=|al*>0
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Properties of dot product

5.a-(b+c¢)=a-b+a-c Distributive laws of dot product over addition

Proof

5. a= [al, as,

a-(b+ec) =
a-b+a-

° 9 an]7b: [bla b27 Ty bn]vc: |:Cl7 C2, -, Cn]
[alv az, -, an] : ([bly b27 ) bn] + [Cla C2, -, Cn])
[ala az, -, an] . [b1+cl7 b2+027 ;bn+cn]

a1(b1 + c1) +ag(bz +c2) + -+ + an(bn + cn)
a1b1 + aicr + agba + asca, + - - - + apby, + ancy,
(a1b1 + agba + -+ + anby) + (a1c1 + ageo + - - - + apcy)

c = ([a1, a2, -+, an]-[b1, b2, -+, ba)
arF ([ala az, ---, an] . [Clv Coy, v, Cn])
= (a1by +agby + -+ -+ apby) + (@11 + agca + - - - + ancy)
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Example

a-(b+c)

a-b+a-c

Dot product — example

a=11, 2, 3], b=[4, 5 6], c=[-1, -2, -3

[1, 2, 3]-([4-1, 5-2, 6-3])=[1, 2, 3]-[3, 3, 3]
103 +2X3+3x3=38+6+9=18,

[1, 2, 3]-[4, 5 6]=1x4+2x5+3x6=4+10+18= 32,
1, 2, 3]-[-1, =2, =3]=1x(-1)+2x(-2)+3x(-3)
—1-4-9=-14,

32-14=18.
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Orthogonal vectors

Definition
a,b € R" are orthogonal ifa-b =10

Example
a= [2, —5] and b= [—10, —4] are orthogonal in R?

a-b=2x(—10) + (=5) x (—4) = —20 + 20 = 0.
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Dot product of unit vectors

Recall
A vector of norm 1 is called a unit vector

Lemma
If a,b € R™ are unit vectors, then

—1<a-b<1.

Proof

We make use the results from different part of the previous theorem.
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Dot product of unit vectors

Lemma
If a,b € R™ are unit vectors, then

—1<a-b<1.

Proof
(@a+b)-(a+b)=|a+b|*>>0 part 2
—a-a+b-a+a-b+b-b>0 parts5h, 6
= |la||> +2(a-b) +[b||> >0 parts 1, 2
— 14+2a-b+1>0 a, b are unit vectors
—a-b>-1
A similar argument beginning with (a — b) - (@ — b) = ||la — b||> > 0 shows a - b < 1
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Cauchy-Schwarz Inequality

Theorem

Take any a,b € R™, we have
la- b < |[all]|b].

Proof
® |[fa=0or b=0, the theorem holds

® QOtherwise, the theorem is equivalent to
a-b

< <1
lall]|b]

We have discussed that
a b

lafl o]

are unit vectors. The result follows from the previous lemma.
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Cauchy-Schwarz Inequality — example

Example
a=[-1 4, 2, 0, -3],b=1[2, 1, 4, -1, 0].

a-b = —2+4-840+0=-6
la| = VI+16+4+0+9=+30
b = VA+1+16+1+0=V22
lalllb]l = /30 x 22 =2V165 ~ 25.7

la-bl =6

IN

lall]|b]
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Law of Cosines

xsinf

= 0

y—xcosf® Y zcosh

(y —xcosf)? + (zsinf)? = 22
y? + 2% cos? 0 — 2yrcosf + 2sin®f = 22
22 +y? —2yxcosf = 2?
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The angle between two vectors

® There are two angles formed by the
two vectors, but we always choose the
angle 6 between two vectors to be the
one measuring between 0 and 7w
radians, inclusive.

® By the Law of Cosines

(a1,az2)

la—b]* = [lal|*+[[b]|*~2l|all||b]| cos 0 ~ a
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Angle between two vectors

(a1, az)

)

la = b]* = llal* + [[b]* — 2||al||[b]| cos &

la—bl*=(a~b)-(a-b)=a-a-2a-b+b-b=|a|*~2a-b+|b]?
= ||al|||b]| cos® =a - b

a-b

lalll|b]]

cosf =

41/92



Angle between two vectors — example

Example
a=[6, —4],b=[-2, 3]

a-b  6x(=2)+(-4Yx3_ 24 __E~_09231
lallfo] 36+ 9v4+9 V52y13 13 B

which gives 6 &~ 2.74 radians (using calculator).

cosf =
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Angle between two vectors

® For higher dimensions we are outside the geometry of everyday experience

® We give the following definition

Definition
For any a,b € R™ with n > 2, the angle between a and b is the unique angle € such

that 0 < 6 < 7 and
a-b

lallljolI

cosl =

Note that according to Cauchy-Schwarz Inequality,

a-b
-1< <
all[lb]|

Thus this value equals cos @ for a unique 8 from 0 to 7 radians.
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Angle between two vectors

a-b
lall[[b]
By the properties of the cosine function, we have

cosf =

™

a-b>0 «— O§9<2

Note

By definition of orthogonal vectors, two nonzero vectors are orthogonal if and only if
they are perpendicular to each other (i.e. 6 = %)
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Projection vectors

The projection of one vector onto another is useful in
physics, engineering, computer graphics, and statistics.

a, b both in R2 or R?, drawn at the same initial point
Let 0 represent the angle between a and b

Drop a perpendicular line segment from the terminal
point of b to the straight line containing the vector a

The project of b onto a, denoted projgb, is the vector
from the initial point of a to the point where the
dropped perpendicular meets the straight line

_Proj,b ,

a
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Projection vectors

® Using trigonometry, for 0 < 6 < 5, proj,b is in the
direction of the unit vector a/||a||, and

[projabl| = [1B] cosé )

«__ Projg /
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Projection vectors

® Using trigonometry, when § < 6 <, proj,b is in the
direction of the unit vector —a/||a||, and

[projabll = —||b]| cos 0
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Projection vectors

When 0 < 6 < 7, projgb is in the direction of the unit vector a/||al|, and
[[projabll = [[b]| cos 6

When 5 < 6 <, proj,b is in the direction of the unit vector —a/||al|, and

[projab|l = —||b cos ¢
We know that
cosh = b
allllb]l
We have b b
a a- a a-
projqb = ||bl| cos 67— = [b]| = a.
lal [alll[o]l lall  [lal?
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Projection vectors — example

Example
a=[4, 0, =3], b=[3, 1, —7]
a-b  4x34+0x14(-3)x(-7)

lal2® = 2102+ (—-3)

33 132 99
= —[4, 0, -3]=|=2= —— .
25[ T ) [25 > 0 25]

proj,b a
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Vectors and matrices

e Matrices
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Matrices

e R: the set of all real numbers

Definition
A matrix with coefficients in R is a rectangular array where each entry is an element of
R.

Matrix A is said to have m rows, n columns and is of size m X n.

ajl ... Q1p

a1 o Qop
A=

aml .- Amn

We also write A = (ai;)1<i<m,1<j<n. When the size is clear from the context, we
write A = (aij).
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Matrices — examples

Example

1 75 6 . .

° A= 9 3 4 has 2 rows, 3 columns and is of size 2 x 3. a11 = 1, a9 = 3.
i —2

° B = 1 7 is of size 3 x 2. bio = =2, b31 = =5
-5 3
(1 2 3

e =14 5 6| isofsize3 x3
17 8 9
[ 7

® D=1 1| isa3x 1 matrix
—2

e E=[4, -3, 0]isalx 3 matrix
F

= [4] isa 1l x 1 matrix
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Matrices

® The size of a matrix is always specified by stating the number of rows first. For
example, a 3 x 4 matrix always has three rows and four columns, never four rows
and three columns

® An m X n matrix can be thought of either as a collection of m row vectors, each
having n coordinates, or as a collection of n column vectors, each having m
coordinates.

Definition
Let M, «x, denote the set of all m x n matrices
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Rows and columns of matrices

ajl o Qp

asy ... Q9n
A =

aAml .. Amn

® a;; denotes the entry in the ith row and jth column.
® The ith row of A is
lait, @iz, .. ain).

® The jth column of A is
alj
agj

amj
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Rows and columns of matrices — Examples

Example

® The 1st row of A is

® The 2nd column of B is

e Ac ngg, B € Moyo
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Main diagonal of a matrix

a1l ... Qin
a1 ... Qop
A=
aAml ... Omn
The main diagonal entries of A are ai1,a99, ass, ..., those that lie on a diagonal line

drawn down to the right, beginning from the upper-left corner of the matrix.

Example

has main diagonal entries 1, 3.
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Equal matrices

® Two matrices A and B are equal iff they have the same size and all corresponding
entries are equal

o A, B € Mpxn then
A:B<:>aij:bij, Vi=1,2,....m, 3=1,2,....n
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Zero matrices

A zero matrix is any matrix with all entries equal to 0, denoted O.

oo oo

Example
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Square matrices

ail N AT

a1 ... Q9pn
A=

anpl ... Qpp

An n x n matrix is called a square matrix (i.e. a matrix with the same number of rows
and columns).

Example
1 2 3
A:[g _02], B=1|4 5 6
7 8 9
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Diagonal matrices

ailp] ... Qip

a1 ... Q2p
A=

anl ... Qpn

A square matrix of size n X n is a diagonal matrix if a;; = 0 for i # j

Example
4 0 0 O
6 0 O
00 0 O —4 0
a=lo7 ol m=l00 5 g e=[3" g
00 0 O

The following matrix is not a diagonal matrix

o[t ]
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Identity matrices

ail] ... Qip

asr ... Q9n
A pu—

anpl .. Qpnp

An n X n identity matrix, normally denoted I,,, is a diagonal matrix whose diagonal
entries are 1 and all other entries are 0, i.e. a; = 1fori=1,2...,n and a;; = 0 for

i .

Example
1000
100
10 0100
12_[01]’ 13_8(1)?’14_0010
0001
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Upper triangular matrices

a1 aln

a21 a2n
A=

anl Gnn

An upper triangular matrix is a square matrix with all entries below the main diagonal
equal to zero.
In other words, A € M,,«,, is an upper triangular matrix if a;; = 0 for i > j.

Example
6 9 11 g:igg
P=10 -2 3|, U=
0 0 5 0 0 0 8
0O 0 0 3
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Lower triangular matrices

ailp] ... Qip

asy ... Q2pn
A=

anpl .. Qpp

An lower triangular matrix is a square matrix with all entries above the main diagonal
equal to zero.

In other words, A € M,,x, is an lower triangular matrix if a;; = 0 for ¢ < j.

Example
3 0 0
L=19 -2 0
14 —6 1

63/92



Transpose of a matrix

The transpose of A € M,,xr, denoted AT, is the n x m matrix obtained by
interchanging the rows and columns of A.

ayy ... Qip ayy ... Qmi
A asy ... Qop | AT aia ... Gm2
Aml - Qmn ain .- Gmn
Example
A_B 7:;)5 2], AT = 715 g
6 4

Ais of size 2 x 3, AT is of size 3 x 2.

Note
(AT)T = 4
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Symmetric matrices

Definition
A € Myxn is symmetric if A= AT. It is skew-symmetric if A= —AT

Since AT € M, xm, it is easy to see that any symmetric or skew-symmetric matrix is a
square matrix:

Example
ORI
A=1|6 -1 0|, B=
10 3 3 -2 0 4
-6 5 —4 0

A is symmetric and B is skew-symmetric
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Matrix addition

Definition
Take A = (aij), B = (bij) € Myxn, the sum of A and B, A+ B, is the m x n matrix
whose (7, j)—entry is equal to a;; + bj;

Example

6 —3 2] [5 —6 =3]_[11 -9 -1
7 0 4] |-4 —2 -4 |-11 -2 0
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Matrix addition — example

Example

Notice that the definition does not allow addition of matrices with different sizes.
1
A= 2|, B=[4, 5, 6]
3

We cannot add those two matrices together. But

144 5
A+BT = |2+5| = |7
3+6 9

AT+B=11, 2, 3]+[4 5 6]=[1+4, 2+5 3+6]=[5 7, 9]
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Multiply a matrix by a scalar

Definition
Let A = (aij) € Myxpn and « € R. The scalar multiple of A by ais @A € My, xn
whose (%, j)—entry is equal to aa;;.

Example

.a:—2

4 -1 6 7 -8 2 12 -14
A_[2 4 9 —5]’_2‘4_[—4 -8 —18 10

® 0A = O for any matrix A
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Subtraction of matrices

® Let —A denote the matrix —1A, the scalar multiple of A by —1

® \We define subtraction of matrices as

A—B=A+(-B)

Example
1 2 5 6
A=l 2= ]

o B P -
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Fundamental properties of addition and scalar multiplication

Theorem
For any matrices A, B,C € My, xn and any scalars a, B € R, we have

1. A+B=B+ A Commutative law of addition

2. A+(B+C)=(A+B)+C Associative law of addition
30+A=A4+0=A4 Existence of identity element for addition
4. A+ (—A)=(—A)+ A =0 Existence of inverse elements for addition
5 a(A+ B)=aA+aB Distributive laws of scalar multiplication
6. (a+ p)a=aA+ A over vector addition

7. (af)A = a(BA) Associativity of scalar multiplication

8 1A=A Identity property for scalar multiplication

To prove each property, calculate corresponding entries on both sides and show they
agree by applying an appropriate law of real numbers.
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Fundamental properties of addition and scalar multiplication

Theorem
1. A+ B=B+A Commutative law of addition

To prove each property, calculate corresponding entries on both sides and show they
agree by applying an appropriate law of real numbers.

Proof

Part 1. Suppose A = (ai;), B = (bi;), then the (i, j)—entry of A+ B is a;; + b;;. And
the (i, j)—entry of B + A is b;; + a;;. By the commutativity property of addition for
real numbers, we have

ai; + bz‘j = bz‘j + a5,

which implies A+ B = B + A.
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Transpose of matrices

Theorem

For any A, B € M,,xn, @ € R, we have
1. (A+B)T=AT+ BT
2. (A—B)T =AT - BT
3. (@d)T =aAT

Proof

Proof of part 2. Suppose A = (a;;), B = (bi;) First we note that
(A+B)T,AT + BT € M,,xm. Next, we should that each of their (i,;)—entries are
equal fori =1,2,...,n, 7=1,2,...,m:

(i,§) — entry of (A+ B)" = (j,i) — entry of A+ B = a;; + bj;

(i,7) —entry of AT + BT = (j,i) — entry of A + (j,i) — entry of A = aj; + bj;
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Matrix multiplication

Definition
The product of A € M, and B € M,,«. is the matrix C = AB € M,,x, whose
(i,7)—entry is the dot product of the ith row of A with the jth column of B

[a11 a2 a3 -+  Qin] ¢l ci2 - Clj cc Clp
as1 a2 ass -+ agp | [b11 bz oo by b1y ca1 Caz - Caj - Cop
ba1 baa -+ b2y --- bor
bs1 b3z -+ [ b3; -+ b3 | _
b
a;1 @;2 a;3 o Qin . . i . . . Cil Ci2 o Cij o Cir
bnl an e bnj e bnr
LaAm1 am?2 am3 e Amn LCm1 Cm2 ctr Cmy ctr Cmerd
where

n
Cij = ainbyy + aighoj + -+ + Ginbn; = > _ airby;.
k=1
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Matrix multiplication

® Two matrices A, B can be multiplied (in that order) only if the number of
columns of A is equal to the number of rows of B

® This ensures that each row of A contains the same number of entries as each
column of B. Thus it is possible to perform the dot products needed to calculate

C

Note

The dot product of two vectors a, b € R™ is the same as the product of a € My, and
b' € My

Example

4
[1, 2, 3]-[4, 5, —6] =11, 2, 3] |5| = 1x4+2x54+3x(—6) =1+10-18 = —7.
6
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Matrix multiplication — example

Example
9 4 -8 2
A:[_E)g _61 3‘] B=|7 6 -1 0
-2 5 3 -4

A € Myys, B € M3xy4, A and B can be multiplied and the product C' € Mo y4.
To calculate ¢11, we compute the dot product of the 1st row of A and the 1st column
of B:

en=1[5 -1, 4-[9, 7, -1]=5x9+(-1)x7+4x(-2)=45—-7—8=30.
co3=[-3, 6, 0]-[-8, =1, 3] =(-3)x(-8)+6x(-1)+0x3=24—6=18
The other entries are computed similarly, we have

30 34 27 —6
i 15 24 18 —6
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ldentity matrix

Let A € M,,«xn be any matrix, I, € My, and I, € M« be identity matrices. We
have

Al,=1,A=A
Proof
Suppose I, = (¢;j), then for i =1,2,... n.
{0 i#]
Cij = o
1 1=y

Let B = AI, = (b;j), then B € My;,xpn. And fori=1,2,...,m, j=1,2,...,n

n

bij = E A Clj = Qij x 1= Q-
k=1
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Transpose of matrix product

Theorem
Let A € M,y xn, B € M, «r, then

(AB)"' =B"TAT

Proof

First we note that both matrices are of size » x m.

(i,7) — entry of (AB)T = (j,4) —entry of AB
[7th row of A] - [ith column of B

(i,7) —entry of BTAT [ith row of BT] - [jth column of AT]
[ith column of B] - [jth row of A]

= [jth row of A] - [ith column of B
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Matrix multiplication — example

Example
-2 1 7
D=0 5 ,E:B 26},1?:[—4, 2, 1], G=|-1 H—[? _03]
4 =3 )

The order in which multiplication is performed is important. Given two matrices
® Neither product may be defined (e.g. DG, GD).
® One product may be defined but not the other (e.g. ED is not defined)
® Both products may be defined, but the resulting sizes may differ (e.g. F, G)

® Both products may be defined, and the resulting sizes may agree, but the entries
may differ (e.g. £ and H)

-2 14 —28 14 7 1 1s .
DE=|0 10|,GF=|4 -2 -1 ,FG:[—25],EH:[2 6],HE:[1
4 =30 —20 10 5

-30
—12
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Fundamental properties of matrix multiplication

Theorem

For any matrices A, B, C' where the following operations are well-defined, and for any
scalars a € R, we have

1. A(BC) = (AB)C Associative law of multiplication

2. A(B+C)=AB+ AC Distributive law of matrix multiplication

3. (A+B)C = AC + BC over addition

4. a(AB) = A(aB) Associative law of scalar and matrix multiplication

Proofs for 2, 3, 4 are easy - compute both sides, show they are equal. Proof for 1 can
be found in the book Appendix A.
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Distributive law of matrix multiplication — example

1 2 -2 0 3 —2
il ST C A P Bl
243 0+(-2)] _[1 -2
4+1 -1+0] [5 -1

Example

B+o=|

awvo= [0 3 [ -5 ARG -

- [ g el

2+12 6—3 14 -3 0 2
We have
11 —4
AB+AC:[14 _J:A(B—l—C)
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Remark

Example

Continue from the previous example

=43 m=[2 8 e[

—-2+3 0+(—2)} _ [1 —2]

B+C_[4+1 —140

(B+C)A= [; _ﬂ [11 g] - [éi? 120_63] - [g
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Cancellation laws do not hold

We note that if AB = AC and A # O, it does not necessarily follow that B = C'. For

example
2 1 -1 0 3 1
SRR E R

3 2 3 2
ap= 3ol ac=[5 ]

Similarly, if BA=CA, A# O, it does not necessarily follow that B = C
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Linear combination of matrices

Definition

Given Ay, As, ..., Ar € Mpxn, a1,09,...,q, € R, an expression of the form
a1Ar + agAs + - + o Ay

is called a linear combination of Ay, Ao, ..., A, with coefficients a1, o, . . ., au..
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Let
Then
al1xy
a11x1
Ax =

Am1T1

Linear combination of matrices

ailr a2
as1 Q22
A=
Am1 Am?2
+  appxe +

+ ajpgxs +

+  amax2 +

_l’_
+

Aln X1
a2n €2
M a: =
Gmn T,
A1nTn ali
A1nTn a21

+  amnTn am1

ai
a21

am1

a1
a21

am1
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Linear combination of matrices

Observation

Given A € My, xn, ¢ € R™ (or equivalently € M,,x1), the product Ax can be
expressed as a linear combination of the columns of A in which the coefficients are the
entries of .

Example
The matrix product
-1 3 2 2 1
1 2 =3 |-1|=1[-9
2 1 =2 3 -3
can be written as
-1 3 2 1
211 | =12 +3(-3[=1|9
2 1 -2 -3
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Linear combination of matrices and matrix product

Consider
AB_[1 2 4] é _11 g ? _[12 27 30 13}
26 0/, » 5, 8 —4 26 12

It follows from the previous theorem that the jth column of AB can be expressed as a
linear combination of the columns of A in which the coefficients in the linear
combination are the entries from the jth column of B

5] = el ol 2 )

5] = -kl

) =+l ol o)
:

13]
[12_ =3
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Linear combination of matrices and matrix product

AB — [1 2 4] g _}1 g ? _ {12 27 30 13]
2.6 0], - &, 8 —4 26 12

Similarly, the ith row of AB can be considered as linear combinations of the rows of B
with coefficients given by the entries from the ith row of A

(12, 27, 30, 13] = 1[4, 1, 4, 3]+2[0, -1, 3, 1]+4[2, 7, 5 2]
8, —4, 26, 12] = 2[4, 1, 4, 3]+6[0, -1, 3, 1]+0[2, 7, 5, 2]
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The zero matrix

* AO=0A=0
e If AB = O, it is not necessarily true that A = O or B = O. For example

2 1 —1 2 0 0
I R P L

88/92



Powers of a square matrix

® Square matrices are the only matrices that can be multiplied by themselves

® Aec M,yxn, AA can be computed iff m =n

Definition
For A € M,,xn, the (nonnegative) powers of A are given by

A'=71, A=A, A =A"TAfork > 2.
Example
2 1
2= %)

0 5

—20 15
—-20 5 '

2 _ _
A_AA_[ 50 s

}, A3:A2A:[
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Special cases when AB = BA

Take A € Miypxn, B € Mpyxr
For AB to be defined, we need p = n
For BA to be defined, we need r = m

Then
AB € mer” BA € My xm

For AB = BA, we need m = n, i.e.
A, B e M,xn

are square matrices

In case AB = BA, we say A and B commute or A commutes with B.
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Special cases when AB = BA
Take A, B € M,,xn

e n=1 AB=BA
e If B= A, then AB = BA = A?
e IfA=0Oor B=0, then AB=BA=0
® If da € Rs.t. A = al,, then according to the associative law of scalar and matrix

multiplication, and the property of the identity matrix

BA = B(al,) = «(BI,) = a(I,B) = (al,)B = AB

® Similarly, if dJa € R s.t. B = al,,, we have AB = BA

Example

1 2 2 0 2 4
a=3 3 m=[0 5 am=ma-|;
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Trace of a square matrix

Definition
Let A = (a;j) € Myxn, be a square matrix. The trace of A, denoted tr (A) is given by
the sum of the main diagonal entries of A, i.e.

n
tr (A) =aj1 +age+ -+ ap, = Zaii-
i=1

Example
1 2 3
A= |5 =3 4|, tr(A)=1+(-3)+(-2)=-4
1 1 =2
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