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Course Outline

• Vectors and matrices

• System of linear equations
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Recommended reading

• Andrilli, Stephen, and David Hecker. Elementary linear algebra. Academic Press,
2022. Fifth edition

• Sections 1.1, 1.2, 1.4, 1.5
• Free copy online

• Anton, Howard, and Chris Rorres. Elementary linear algebra: applications version.
John Wiley & Sons, 2013.

• Sections 1.3
• Free copy online
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https://thuvienso.hoasen.edu.vn/bitstream/handle/123456789/9493/Contents.pdf?sequence=1
https://thuvienso.hoasen.edu.vn/bitstream/handle/123456789/8937/Contents.pdf?sequence=3


Lecture Outline

• Definitions

• Vectors

• Matrices
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Vectors and matrices

• Definitions

• Vectors

• Matrices
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Sets
• ∅: empty set
• |S|: cardinality of S
• A set S is finite if |S| < ∞
• a ∈ S: a is an element in set S
• a ̸∈ S: a is not an element in set S
• S ⊆ T : if s ∈ S, then s ∈ T , S is a subset of T
• S = T : S ⊆ T and T ⊆ S
• The power set of a set S, denoted by 2S , is the set of all subsets of S.

Example

Let T = { 0, 1, 2, 3 } and S = { 2, 3 }, then
• S ⊆ T and T ̸⊆ S.

• 2 ∈ S, 0 ̸∈ S.

• |S| = 2, |T | = 4.

• 2S = { ∅, S, { 2 } , { 3 } }.
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Sets
• Union: A ∪B
• Intersection: A ∩B
• Difference: A−B = { a ∈ A, a ̸∈ B }
• Complement of A in S: Ac = S −A
• Cartesian product A×B = { (a, b) | a ∈ A, b ∈ B }

• ordered pairs

Example

• A = { 0, 1, 2 }, B = { 2, 3, 4 }
• A ∪B = { 0, 1, 2, 3, 4 }, A ∩B = { 2 }

Example

• A = { 2, 4, 6 }, B = { 1, 3, 5 }, S = A ∪B

• A−B = A. Complement of A in S is B

A×B = { (2, 1), (2, 3), (2, 5), (4, 1), (4, 3), (4, 5), (6, 1), (6, 3), (6, 5) } .
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Functions

Definition

A function/map f : S → T is a rule that assigns each element s ∈ S a unique element
t ∈ T .

• S – domain of f ; T – codomain of f .

• If f(s) = t, then t is called the image of s, s is a preimage of t.

• For any A ⊆ T , preimage of A under f is

f−1(A) := { s ∈ S | f(s) ∈ A }

Example

Define

f : R → R
x 7→ x2

where R is the set of real numbers. Then f has domain R and codomain R. 8 / 92



Functions – example

Example

Define

f : R → R
x 7→ x2

where R is the set of real numbers. Then f has domain R and codomain R.
Let A = { 1 } ⊆ R, the preimage of A under f is given by

f−1(A) = { −1, 1 } .

1 is the image of −1 and −1 is a preimage of 1. 1 is another preimage of 1.
Let B = { −1 } ⊆ R, then f−1(B) = ∅.

9 / 92



Composition of functions

Definition

For two functions f : T → U , g : S → T , the composition of f and g, denoted by
f ◦ g, is the function

f ◦ g : S → U

s 7→ f(g(s)).

Example

What is f ◦ g?

f : R → R
x 7→ x2,

g : R → R
x 7→ x3.
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Composition of functions

Example

f : R → R
x 7→ x2,

g : R → R
x 7→ x3.

f ◦ g : R → R
x 7→ (x3)2 = x6.
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Matrices
• R: the set of all real numbers

Definition

A matrix with coefficients in R is a rectangular array where each entry is an element of
R.
Matrix A is said to have m rows, n columns and is of size m× n.

A =




a11 . . . a1n
a21 . . . a2n

...
am1 . . . amn


 .

Example

The matrix

A =

[
1 7.5 6
2 3 4

]

has 2 rows, 3 columns and is of size 2× 3. 12 / 92



Vectors
• A 1× n matrix is called a row vector.
• An n× 1 matrix is called a column vector.

Example

• a =
[
1, −1, 3

]
is a row vector

• b =




1
−1
3


 is a column vector

Note
• By “vector,” we refer specifically to a row vector.

• Rn represents the set of all vectors with n entries, also referred to as coordinates.

• When written by hand, a⃗ is used to denote a vector.

Example

a ∈ R3
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Vectors and scalars

• Two vectors a, b ∈ Rn are equal, written a = b, if all corresponding coordinates
are equal

• 0 =
[
0, 0, · · · , 0

]
is the zero vector.

• An element x ∈ R is called a scalar

Example

• [
1, 0, 4

]
̸=

[
1, 0, −4

]

• 5 ∈ R is a scalar
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Vectors and matrices

• Definitions

• Vectors

• Matrices
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Geometric interpretation of vectors

• A vector with two coordinates, i.e. an element
of R2, is frequently used to represent a
movement from one point to another in a
coordinate plane

• From an initial point (3, 2) to a terminal point
(1, 5), there is a net decrease of 2 units along
the x−axis and a net increase of 3 units along
the y−axis. A vector representing this change
would thus be

[
−2, 3

]
, as indicated by the

arrow in the figure

Remark
• Points of a coordinate system: parentheses

• Vectors: brackets x

y

1 2 3 4

1

2

3

4

5

#    »

AB =
[
−2, 3

]

A = (3, 2)

B = (1, 5)
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Geometric interpretation of vectors

• In general, a vector starting at point
A = (x1, y1) and ending at B = (x2, y2),
denoted

#    »

AB is given by

#    »

AB =
[
x2 − x1, y2 − y1

]

x

y

#    »

AB =
[
x2 − x1, y2 − y1

]

A = (x1, y1)

B = (x2, y2)
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Norm of a vector

• The distance between two points (x1, y1) and (x2, y2) in the plane is given by

√
(x2 − x1)2 + (y2 − y1)2

• The vector between the points is
[
x2 − x1, y2 − y1

]

• This motivates the following definition

Definition

The norm (also called length) of a vector a =
[
a1, a2, · · · , an

]
, denoted ∥a∥, is

given by

∥a∥ =
√
a21 + a22 + · · ·+ a2n.

A vector of norm 1 is called a unit vector
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Norm of a vector – Example

Example

• The norm of a =
[
4, −3, 0, 2

]
is given by

∥a∥ =
√
42 + (−3)2 + 02 + 22 =

√
16 + 9 + 0 + 4 =

√
29

• [
3
5 , −4

5

]
is a unit vector in R2

√(
3

5

)2

+

(
−4

5

)2

= 1

• [
−1

2 ,
1
2 ,

1
2 , −1

2

]
is a unit vector in R4

√(
−1

2

)2

+

(
1

2

)2

+

(
1

2

)2

+

(
−1

2

)2

= 1
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Scalar multiplication

• a =
[
a1, a2, · · · , an

]
∈ Rn

• α ∈ R
• The scalar multiple of a by α is the vector

αa =
[
αa1, αa2, · · · , αan

]

• It is easy to see that
∥αa∥ = |α|∥a∥

since

∥αa∥ =
√

(αa1)2 + (αa2)2 + · · ·+ (αan)2 =
√
α2(a21 + a22 + · · ·+ a2n) = |α|∥a∥.
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Scalar multiplication

Example

x

y

-10 -5 5 10

-10

-5

5

10

a =
[
4, −5

]

2a =
[
8, −10

]

−3a =
[
−12, 15

]

−0.5a =
[
−2, 2.5

]

a =
[
4, −5

]

2a =
[
8, −10

]

−3a =
[
−12, 15

]

−1

2
a =

[
−2, 5

2

]

0
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Scalar multiplication

∥αa∥ = |α|∥a∥

• Multiplication by α dilates (expands) the norm of the vector when |α| > 1 and
contracts (shrinks) the norm when |α| < 1

• Scalar multiplication by 1 or −1 does not affect the norm

• Scalar multiplication by 0 always yields the zero vector.
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Direction

Definition

a, b ∈ Rn, a ̸= 0, b ̸= 0, a and b are said to be

• in the same direction if ∃α ∈ R>0 s.t. b = αa

• in the opposite direction if ∃α ∈ R<0 s.t. b = αa

• parallel if they are in the same or in the opposite direction

Example

• [
1, −3, 2

]
and

[
3, −9, 6

]
are in the same direction

[
1, −3, 2

]
=

1

3

[
3, −9, 6

]
.

• [
−3, 6, 15

]
and

[
4, −8, 20

]
are in the opposite direction

[
−3, 6, 15

]
= −3

4

[
4, −8, 20

]
.
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Normalization of a vector

Lemma

For any a ∈ Rn, a ̸= 0,
a

∥a∥
is unit vector in the same direction as a.

Proof

By the above observations ∥∥∥∥
a

∥a∥

∥∥∥∥ =
1

∥a∥∥a∥ = 1.

This process of “dividing” a vector by its norm to obtain a unit vector in the same
direction is called normalizting the vector.
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Vector addition
• Take two vectors a, b ∈ Rn

a =
[
a1, a2, · · · , an

]
, b =

[
b1, b2, · · · , bn

]

• The sum of a and b is given by the vector

[
a1 + b1, a2 + b2, · · · , an + bn

]

Example

If a =
[
2, −3, 5

]
, b =

[
−6, 4, −2

]
, then

a+ b =
[
2− 6, −3 + 4, 5− 2

]
=

[
−4, 1, 3

]

Note

Vectors cannot be added unless they have the same number of coordinates
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Vector addition – geometric interpretation

• Draw a vector a. Then draw a vector
b whose initial point is the terminal
point of a.

• The sum of a and b is the vector
whose initial point is the same as that
of a and whose terminal point is the
same as that of b.

• The total movement a+ b is
equivalent to first moving along a and
then along b

x

y

a

b

b

a
+
b

a

0

(a1, a2)

(b1, b2)

(a1 + b1, a2 + b2)

a1

a2

b1

b2

a1 + b1

a2 + b2
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Subtraction of vectors

• Let −b denote the scalar product
between −1 and b

• Define

a− b = a+ (−b)

Example

a =
[
2, 1

]
, b =

[
1, 2

]

a− b = a+ (−b)

=
[
2, 1

]
+
[
−1, −2

]

=
[
1, −1

]
.

x

y

a

b

−b

−ba−
b

(a1, a2)

(b1, b2)

(−b1,−b2)

(a1 − b1, a2 − b2)

27 / 92



Fundamental properties of vector addition and scalar multiplication

Theorem

Take any a, b, c ∈ Rn, any α, β ∈ R, we have

1. a+ b = b+ a Commutative law of addition
2. a+ (b+ c) = (a+ b) + c Associative law of addition
3. 0+ a = a+ 0 = a Existence of identity element for addition
4. a+ (−a) = (−a) + a = 0 Existence of inverse elements for addition
5. α(a+ b) = αa+ αb Distributive laws of scalar multiplication
6. (α+ β)a = αa+ βa over vector addition
7. (αβ)a = α(βa) Associativity of scalar multiplication
8. 1a = a Identity property for scalar multiplication

• 0 is called an identity element for vector addition because 0 does not change the
identity of any vector to which it is added

• −a is called the Additive inverse of a because it “cancels out a” to produce the
additive identity element (i.e. the zero vector)
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Proof of property 6

(α+ β)a = (α+ β)
[
a1, a2, · · · , an

]

=
[
(α+ β)a1, (α+ β)a2, · · · , (α+ β)an

]

definition of scalar multiplication

=
[
αa1 + βa1, αa2 + βa2, · · · , αan + βan

]

coordinate-wise use of distributive law in R
=

[
αa1, αa2, · · · , αan

]
+
[
βa1, βa2, · · · , βan

]

definition of vector addition

= α
[
a1, a2, · · · , an

]
+ β

[
a1, a2, · · · , an

]

definition of scalar multiplication

= αa+ βa
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Dot product

Definition

Let
a =

[
a1, a2, · · · , an

]
, b =

[
b1, b2, · · · , bn

]
∈ Rn

be two vectors. The dot product (inner product) of a and b is given by

a · b = a1b1 + a2b2 + · · ·+ anbn =

n∑

i=1

aibi.

Example

a =
[
2, −4, 3

]
, b =

[
1, 5, −2

]
, a · b = 2× 1 + (−4)× 5 + 3× (−2) = −24.

Note
• Dot product is not defined for vectors having different numbers of coordinates.

• Dot product involves two vectors and the result is a scalar, whereas scalar
multiplication involves a scalar and a vector and the result is a vector.
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Properties of dot product

Theorem

Take any a, b, c ∈ Rn, α ∈ R, then
1. a · b = b · a Commutativity of dot product
2. a · a = ∥a∥ ≥ 0 Relationship between dot product and norm
3. a · a = 0 iff a = 0
4. α(a ·b) = (αa) ·b = a ·(αb) Relationship between scalar multiplication and dot

product
5. a · (b+ c) = a · b+ a · c Distributive laws of dot product
6. (a+ b) · c = (a · c) + (b · c) over addition

Proof

We provide the proof for a few properties.
2. a =

[
a1, a2, · · · , an

]

a · a = a1a1 + a2a2 + · · ·+ anan = a21 + a22 + · · · a2n = ∥a∥2 ≥ 0
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Properties of dot product
5. a · (b+ c) = a · b+ a · c Distributive laws of dot product over addition

Proof

5. a =
[
a1, a2, · · · , an

]
, b =

[
b1, b2, · · · , bn

]
, c =

[
c1, c2, · · · , cn

]

a · (b+ c) =
[
a1, a2, · · · , an

]
·
([
b1, b2, · · · , bn

]
+

[
c1, c2, · · · , cn

])

=
[
a1, a2, · · · , an

]
·
[
b1 + c1, b2 + c2, · · · , bn + cn

]

= a1(b1 + c1) + a2(b2 + c2) + · · ·+ an(bn + cn)

= a1b1 + a1c1 + a2b2 + a2c2,+ · · ·+ anbn + ancn

= (a1b1 + a2b2 + · · ·+ anbn) + (a1c1 + a2c2 + · · ·+ ancn)

a · b+ a · c =
([
a1, a2, · · · , an

]
·
[
b1, b2, · · · , bn

])

+
([
a1, a2, · · · , an

]
·
[
c1, c2, · · · , cn

])

= (a1b1 + a2b2 + · · ·+ anbn) + (a1c1 + a2c2 + · · ·+ ancn)

32 / 92



Dot product – example

Example

a =
[
1, 2, 3

]
, b =

[
4, 5, 6

]
, c =

[
−1, −2, −3

]

a · (b+ c) =
[
1, 2, 3

]
·
([
4− 1, 5− 2, 6− 3

])
=

[
1, 2, 3

]
·
[
3, 3, 3

]

= 1× 3 + 2× 3 + 3× 3 = 3 + 6 + 9 = 18,

a · b =
[
1, 2, 3

]
·
[
4, 5, 6

]
= 1× 4 + 2× 5 + 3× 6 = 4 + 10 + 18 = 32,

a · c =
[
1, 2, 3

]
·
[
−1, −2, −3

]
= 1× (−1) + 2× (−2) + 3× (−3)

= −1− 4− 9 = −14,

a · b+ a · c = 32− 14 = 18.
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Orthogonal vectors

Definition

a, b ∈ Rn are orthogonal if a · b = 0

Example

a =
[
2, −5

]
and b =

[
−10, −4

]
are orthogonal in R2

a · b = 2× (−10) + (−5)× (−4) = −20 + 20 = 0.

34 / 92



Dot product of unit vectors

Recall

A vector of norm 1 is called a unit vector

Lemma

If a, b ∈ Rn are unit vectors, then

−1 ≤ a · b ≤ 1.

Proof

We make use the results from different part of the previous theorem.
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Dot product of unit vectors

Lemma

If a, b ∈ Rn are unit vectors, then

−1 ≤ a · b ≤ 1.

Proof

(a+ b) · (a+ b) = ∥a+ b∥2 ≥ 0 part 2
=⇒ a · a+ b · a+ a · b+ b · b ≥ 0 parts 5, 6
=⇒ ∥a∥2 + 2(a · b) + ∥b∥2 ≥ 0 parts 1, 2
=⇒ 1 + 2a · b+ 1 ≥ 0 a, b are unit vectors
=⇒ a · b ≥ −1

A similar argument beginning with (a− b) · (a− b) = ∥a− b∥2 ≥ 0 shows a · b ≤ 1
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Cauchy-Schwarz Inequality

Theorem

Take any a, b ∈ Rn, we have
|a · b| ≤ ∥a∥∥b∥.

Proof
• If a = 0 or b = 0, the theorem holds

• Otherwise, the theorem is equivalent to

−1 ≤ a · b
∥a∥∥b∥ ≤ 1

We have discussed that
a

∥a∥
b

∥b∥
are unit vectors. The result follows from the previous lemma.
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Cauchy-Schwarz Inequality – example

Example

a =
[
−1, 4, 2, 0, −3

]
, b =

[
2, 1, −4, −1, 0

]
.

a · b = −2 + 4− 8 + 0 + 0 = −6

∥a∥ =
√
1 + 16 + 4 + 0 + 9 =

√
30

∥b∥ =
√
4 + 1 + 16 + 1 + 0 =

√
22

∥a∥∥b∥ =
√
30× 22 = 2

√
165 ≈ 25.7

|a · b| = 6 ≤ ∥a∥∥b∥
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Law of Cosines

z x

y
x cos θy − x cos θ

x sin θ

θ

(y − x cos θ)2 + (x sin θ)2 = z2

y2 + x2 cos2 θ − 2yx cos θ + x2 sin2 θ = z2

x2 + y2 − 2yx cos θ = z2
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The angle between two vectors

• There are two angles formed by the
two vectors, but we always choose the
angle θ between two vectors to be the
one measuring between 0 and π
radians, inclusive.

• By the Law of Cosines

∥a−b∥2 = ∥a∥2+∥b∥2−2∥a∥∥b∥ cos θ a

(a1, a2)

b

(b1, b2)

a− b

θ
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Angle between two vectors

a

(a1, a2)

b

(b1, b2)

a− b

θ

∥a− b∥2 = ∥a∥2 + ∥b∥2 − 2∥a∥∥b∥ cos θ
∥a− b∥2 = (a− b) · (a− b) = a · a− 2a · b+ b · b = ∥a∥2 − 2a · b+ ∥b∥2
=⇒ ∥a∥∥b∥ cos θ = a · b

cos θ =
a · b

∥a∥∥b∥
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Angle between two vectors – example

Example

a =
[
6, −4

]
, b =

[
−2, 3

]

cos θ =
a · b

∥a∥∥b∥ =
6× (−2) + (−4)× 3√

36 + 9
√
4 + 9

= − 24√
52
√
13

= −12

13
≈ −0.9231,

which gives θ ≈ 2.74 radians (using calculator).
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Angle between two vectors

• For higher dimensions we are outside the geometry of everyday experience

• We give the following definition

Definition

For any a, b ∈ Rn with n ≥ 2, the angle between a and b is the unique angle θ such
that 0 ≤ θ ≤ π and

cos θ =
a · b

∥a∥∥b∥ .

Note that according to Cauchy-Schwarz Inequality,

−1 ≤ a · b
∥a∥∥b∥ ≤ 1.

Thus this value equals cos θ for a unique θ from 0 to π radians.
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Angle between two vectors

cos θ =
a · b

∥a∥∥b∥ .

By the properties of the cosine function, we have

a · b > 0 ⇐⇒ 0 ≤ θ <
π

2

a · b = 0 ⇐⇒ θ =
π

2

a · b < 0 ⇐⇒ π

2
< θ ≤ π

Note

By definition of orthogonal vectors, two nonzero vectors are orthogonal if and only if
they are perpendicular to each other (i.e. θ = π

2 )
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Projection vectors

• The projection of one vector onto another is useful in
physics, engineering, computer graphics, and statistics.

• a, b both in R2 or R3, drawn at the same initial point

• Let θ represent the angle between a and b

• Drop a perpendicular line segment from the terminal
point of b to the straight line containing the vector a

• The project of b onto a, denoted projab, is the vector
from the initial point of a to the point where the
dropped perpendicular meets the straight line

b

projab

θ

a
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Projection vectors

• Using trigonometry, for 0 ≤ θ ≤ π
2 , projab is in the

direction of the unit vector a/∥a∥, and

∥projab∥ = ∥b∥ cos θ

b

projab

θ

a
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Projection vectors

• Using trigonometry, when π
2 < θ ≤ π, projab is in the

direction of the unit vector −a/∥a∥, and

∥projab∥ = −∥b∥ cos θ
a

b

projab

θ
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Projection vectors

• When 0 ≤ θ ≤ π
2 , projab is in the direction of the unit vector a/∥a∥, and

∥projab∥ = ∥b∥ cos θ

• When π
2 < θ ≤ π, projab is in the direction of the unit vector −a/∥a∥, and

∥projab∥ = −∥b∥ cos θ

• We know that

cos θ =
a · b

∥a∥∥b∥ .

• We have

projab = ∥b∥ cos θ a

∥a∥ = ∥b∥ a · b
∥a∥∥b∥

a

∥a∥ =
a · b
∥a∥2a.
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Projection vectors – example

Example

a =
[
4, 0, −3

]
, b =

[
3, 1, −7

]

projab =
a · b
∥a∥2a =

4× 3 + 0× 1 + (−3)× (−7)

42 + 02 + (−3)2
a

=
33

25

[
4, 0, −3

]
=

[
132

25
, 0, −99

25

]
.
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Vectors and matrices

• Definitions

• Vectors

• Matrices
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Matrices

• R: the set of all real numbers

Definition

A matrix with coefficients in R is a rectangular array where each entry is an element of
R.

Matrix A is said to have m rows, n columns and is of size m× n.

A =




a11 . . . a1n
a21 . . . a2n

...
am1 . . . amn


 .

We also write A = (aij)1≤i≤m,1≤j≤n. When the size is clear from the context, we
write A = (aij).
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Matrices – examples

Example

• A =

[
1 7.5 6
2 3 4

]
has 2 rows, 3 columns and is of size 2× 3. a11 = 1, a22 = 3.

• B =




4 −2
1 7
−5 3


 is of size 3× 2. b12 = −2, b31 = −5

• C =



1 2 3
4 5 6
7 8 9


 is of size 3× 3

• D =




7
1
−2


 is a 3× 1 matrix

• E =
[
4, −3, 0

]
is a 1× 3 matrix

• F =
[
4
]
is a 1× 1 matrix

52 / 92



Matrices

• The size of a matrix is always specified by stating the number of rows first. For
example, a 3× 4 matrix always has three rows and four columns, never four rows
and three columns

• An m× n matrix can be thought of either as a collection of m row vectors, each
having n coordinates, or as a collection of n column vectors, each having m
coordinates.

Definition

Let Mm×n denote the set of all m× n matrices
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Rows and columns of matrices

A =




a11 . . . a1n
a21 . . . a2n

...
am1 . . . amn




• aij denotes the entry in the ith row and jth column.

• The ith row of A is [
ai1, ai2, . . . ain

]
.

• The jth column of A is 


a1j
a2j
...

amj


 .
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Rows and columns of matrices – Examples

Example

A =

[
1 7.5 6
2 3 4

]
, B =

[
1 0
3.5 7

]

• The 1st row of A is [
1, 7.5, 6

]
.

• The 2nd column of B is [
0
7

]
.

• A ∈ M2×3, B ∈ M2×2
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Main diagonal of a matrix

A =




a11 . . . a1n
a21 . . . a2n

...
am1 . . . amn




The main diagonal entries of A are a11, a22, a33, . . ., those that lie on a diagonal line
drawn down to the right, beginning from the upper-left corner of the matrix.

Example

A =

[
1 7.5 6
2 3 4

]

has main diagonal entries 1, 3.
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Equal matrices

• Two matrices A and B are equal iff they have the same size and all corresponding
entries are equal

• A,B ∈ Mm×n, then

A = B ⇐⇒ aij = bij , ∀i = 1, 2, . . . ,m, j = 1, 2, . . . , n
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Zero matrices

A zero matrix is any matrix with all entries equal to 0, denoted O.

Example
[
0 0
0 0

]
,

[
0 0 0
0 0 0

]
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Square matrices

A =




a11 . . . a1n
a21 . . . a2n

...
an1 . . . ann




An n× n matrix is called a square matrix (i.e. a matrix with the same number of rows
and columns).

Example

A =

[
5 0
9 −2

]
, B =



1 2 3
4 5 6
7 8 9
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Diagonal matrices

A =




a11 . . . a1n
a21 . . . a2n

...
an1 . . . ann




A square matrix of size n× n is a diagonal matrix if aij = 0 for i ̸= j

Example

A =



6 0 0
0 7 0
0 0 −2


 , B =




4 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 0


 , C =

[
−4 0
0 5

]

The following matrix is not a diagonal matrix

D =

[
4 3
0 1

]
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Identity matrices

A =




a11 . . . a1n
a21 . . . a2n

...
an1 . . . ann




An n× n identity matrix, normally denoted In, is a diagonal matrix whose diagonal
entries are 1 and all other entries are 0, i.e. aii = 1 for i = 1, 2 . . . , n and aij = 0 for
i ̸= j.

Example

I2 =

[
1 0
0 1

]
, I3 =



1 0 0
0 1 0
0 0 1


 , I4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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Upper triangular matrices

A =




a11 . . . a1n
a21 . . . a2n

...
an1 . . . ann




An upper triangular matrix is a square matrix with all entries below the main diagonal
equal to zero.
In other words, A ∈ Mn×n is an upper triangular matrix if aij = 0 for i > j.

Example

P =



6 9 11
0 −2 3
0 0 5


 , U =




7 −2 2 0
0 −4 9 5
0 0 0 8
0 0 0 3
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Lower triangular matrices

A =




a11 . . . a1n
a21 . . . a2n

...
an1 . . . ann




An lower triangular matrix is a square matrix with all entries above the main diagonal
equal to zero.
In other words, A ∈ Mn×n is an lower triangular matrix if aij = 0 for i < j.

Example

L =



3 0 0
9 −2 0
14 −6 1
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Transpose of a matrix
The transpose of A ∈ Mn×n, denoted A⊤, is the n×m matrix obtained by
interchanging the rows and columns of A.

A =




a11 . . . a1n
a21 . . . a2n

...
am1 . . . amn


 , A⊤ =




a11 . . . am1

a12 . . . am2
...

a1n . . . amn


 .

Example

A =

[
1 7.5 6
2 3 4

]
, A⊤ =




1 2
7.5 3
6 4


 .

A is of size 2× 3, A⊤ is of size 3× 2.

Note

(A⊤)⊤ = A
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Symmetric matrices

Definition

A ∈ Mm×n is symmetric if A = A⊤. It is skew-symmetric if A = −A⊤

Since A⊤ ∈ Mn×m, it is easy to see that any symmetric or skew-symmetric matrix is a
square matrix:

Example

A =



2 6 4
6 −1 0
4 0 −3


 , B =




0 −1 3 6
1 0 2 −5
−3 −2 0 4
−6 5 −4 0




A is symmetric and B is skew-symmetric
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Matrix addition

Definition

Take A = (aij), B = (bij) ∈ Mm×n, the sum of A and B, A+B, is the m× n matrix
whose (i, j)−entry is equal to aij + bij

Example
[
6 −3 2
−7 0 4

]
+

[
5 −6 −3
−4 −2 −4

]
=

[
11 −9 −1
−11 −2 0

]
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Matrix addition – example

Example

Notice that the definition does not allow addition of matrices with different sizes.

A =



1
2
3


 , B =

[
4, 5, 6

]
.

We cannot add those two matrices together. But

A+B⊤ =



1 + 4
2 + 5
3 + 6


 =



5
7
9




A⊤ +B =
[
1, 2, 3

]
+
[
4, 5, 6

]
=

[
1 + 4, 2 + 5, 3 + 6

]
=

[
5, 7, 9

]
.
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Multiply a matrix by a scalar

Definition

Let A = (aij) ∈ Mm×n and α ∈ R. The scalar multiple of A by α is αA ∈ Mm×n

whose (i, j)−entry is equal to αaij .

Example
• α = −2

A =

[
4 −1 6 7
2 4 9 −5

]
,−2A =

[
−8 2 12 −14
−4 −8 −18 10

]

• 0A = O for any matrix A
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Subtraction of matrices

• Let −A denote the matrix −1A, the scalar multiple of A by −1

• We define subtraction of matrices as

A−B = A+ (−B)

Example

A =

[
1 2
3 4

]
, B =

[
5 6
7 8

]

A−B = A+ (−B) =

[
1 2
3 4

]
+

[
5 6
7 8

]
=

[
1− 5, 2− 6
3− 7 4− 8

]
=

[
−4, −4
−4, −4

]
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Fundamental properties of addition and scalar multiplication

Theorem

For any matrices A,B,C ∈ Mm×n and any scalars α, β ∈ R, we have

1. A+B = B +A Commutative law of addition
2. A+(B+C) = (A+B)+C Associative law of addition
3. O +A = A+O = A Existence of identity element for addition
4. A+(−A) = (−A)+A = O Existence of inverse elements for addition
5. α(A+B) = αA+ αB Distributive laws of scalar multiplication
6. (α+ β)a = αA+ βA over vector addition
7. (αβ)A = α(βA) Associativity of scalar multiplication
8. 1A = A Identity property for scalar multiplication

To prove each property, calculate corresponding entries on both sides and show they
agree by applying an appropriate law of real numbers.
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Fundamental properties of addition and scalar multiplication

Theorem

1. A+B = B +A Commutative law of addition

To prove each property, calculate corresponding entries on both sides and show they
agree by applying an appropriate law of real numbers.

Proof

Part 1. Suppose A = (aij), B = (bij), then the (i, j)−entry of A+B is aij + bij . And
the (i, j)−entry of B +A is bij + aij . By the commutativity property of addition for
real numbers, we have

aij + bij = bij + aij ,

which implies A+B = B +A.
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Transpose of matrices

Theorem

For any A,B ∈ Mm×n, α ∈ R, we have

1. (A+B)⊤ = A⊤ +B⊤

2. (A−B)⊤ = A⊤ −B⊤

3. (αA)⊤ = αA⊤

Proof

Proof of part 2. Suppose A = (aij), B = (bij) First we note that
(A+B)⊤, A⊤ +B⊤ ∈ Mn×m. Next, we should that each of their (i, j)−entries are
equal for i = 1, 2, . . . , n, j = 1, 2, . . . ,m:

(i, j)− entry of (A+B)⊤ = (j, i)− entry of A+B = aji + bji

(i, j)− entry of A⊤ +B⊤ = (j, i)− entry of A+ (j, i)− entry of A = aji + bji
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Matrix multiplication

Definition

The product of A ∈ Mm×n and B ∈ Mn×r is the matrix C = AB ∈ Mm×r whose
(i, j)−entry is the dot product of the ith row of A with the jth column of B

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

...
...

...
. . .

...
ai1 ai2 ai3 · · · ain

...
...

...
. . .

...
am1 am2 am3 · · · amn




b11 b12 · · · b1j · · · b1r
b21 b22 · · · b2j · · · b2r
b31 b32 · · · b3j · · · b3r
...

...
. . .

...
. . .

...
bn1 bn2 · · · bnj · · · bnr

 =



c11 c12 · · · c1j · · · c1r
c21 c22 · · · c2j · · · c2r
...

...
. . .

...
. . .

...
ci1 ci2 · · · cij · · · cir
...

...
. . .

...
. . .

...
cm1 cm2 · · · cmj · · · cmr


,

where

cij = ai1b1j + ai2b2j + · · ·+ ainbnj =

n∑

k=1

aikbkj .
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Matrix multiplication
• Two matrices A,B can be multiplied (in that order) only if the number of
columns of A is equal to the number of rows of B

• This ensures that each row of A contains the same number of entries as each
column of B. Thus it is possible to perform the dot products needed to calculate
C

Note

The dot product of two vectors a, b ∈ Rn is the same as the product of a ∈ M1×n and
b⊤ ∈ Mn×1

Example

[
1, 2, 3

]
·
[
4, 5, −6

]
=

[
1, 2, 3

]


4
5
6


 = 1×4+2×5+3×(−6) = 1+10−18 = −7.
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Matrix multiplication – example

Example

A =

[
5 −1 4
−3 6 0

]
, B =




9 4 −8 2
7 6 −1 0
−2 5 3 −4




A ∈ M2×3, B ∈ M3×4, A and B can be multiplied and the product C ∈ M2×4.
To calculate c11, we compute the dot product of the 1st row of A and the 1st column
of B:

c11 =
[
5, −1, 4

]
·
[
9, 7, −1

]
= 5× 9 + (−1)× 7 + 4× (−2) = 45− 7− 8 = 30.

c23 =
[
−3, 6, 0

]
·
[
−8, −1, 3

]
= (−3)× (−8) + 6× (−1) + 0× 3 = 24− 6 = 18

The other entries are computed similarly, we have

C = AB =

[
30 34 −27 −6
15 24 18 −6

]
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Identity matrix
Let A ∈ Mm×n be any matrix, In ∈ Mn×n and Im ∈ Mm×m be identity matrices. We
have

AIn = ImA = A

Proof

Suppose In = (cij), then for i = 1, 2, . . . , n.

cij =

{
0 i ̸= j

1 i = j

Let B = AIn = (bij), then B ∈ Mm×n. And for i = 1, 2, . . . ,m, j = 1, 2, . . . , n

bij =

n∑

k=1

aikckj = aij × 1 = aij .
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Transpose of matrix product

Theorem

Let A ∈ Mm×n, B ∈ Mn×r, then

(AB)⊤ = B⊤A⊤

Proof

First we note that both matrices are of size r ×m.

(i, j)− entry of (AB)⊤ = (j, i)− entry of AB

= [jth row of A] · [ith column of B]

(i, j)− entry of B⊤A⊤ = [ith row of B⊤] · [jth column of A⊤]

= [ith column of B] · [jth row of A]

= [jth row of A] · [ith column of B]
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Matrix multiplication – example

Example

D =



−2 1
0 5
4 −3


 , E =

[
1 −6
0 2

]
, F =

[
−4, 2, 1

]
, G =




7
−1
5


 , H =

[
5 0
1 −3

]

The order in which multiplication is performed is important. Given two matrices

• Neither product may be defined (e.g. DG, GD).

• One product may be defined but not the other (e.g. ED is not defined)

• Both products may be defined, but the resulting sizes may differ (e.g. F, G)

• Both products may be defined, and the resulting sizes may agree, but the entries
may differ (e.g. E and H)

DE =



−2 14
0 10
4 −30


 , GF =



−28 14 7
4 −2 −1

−20 10 5


 , FG = [−25], EH =

[
−1 18
2 −6

]
, HE =

[
5 −30
1 −12

]
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Fundamental properties of matrix multiplication

Theorem

For any matrices A,B,C where the following operations are well-defined, and for any
scalars α ∈ R, we have

1. A(BC) = (AB)C Associative law of multiplication
2. A(B + C) = AB +AC Distributive law of matrix multiplication
3. (A+B)C = AC +BC over addition
4. α(AB) = A(αB) Associative law of scalar and matrix multiplication

Proofs for 2, 3, 4 are easy - compute both sides, show they are equal. Proof for 1 can
be found in the book Appendix A.
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Distributive law of matrix multiplication – example

Example

A =

[
1 2
−1 3

]
, B =

[
−2 0
4 −1

]
, C =

[
3 −2
1 0

]

B + C =

[
−2 + 3 0 + (−2)
4 + 1 −1 + 0

]
=

[
1 −2
5 −1

]

A(B+C) =

[
1 2
−1 3

]
·
[
1 −2
5 −1

]
=

[
1 · 1 + 2 · 5 1 · (−2) + 2 · (−1)
−1 · 1 + 3 · 5 −1 · (−2) + 3 · (−1)

]
=

[
11 −4
14 −1

]

AB =

[
−2 + 8 0 + (−2)
2 + 12 6− 3

]
=

[
6 −2
14 −3

]
, AC =

[
5 −2
0 2

]

We have

AB +AC =

[
11 −4
14 −1

]
= A(B + C)
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Remark

Example

Continue from the previous example

A =

[
1 2
−1 3

]
, B =

[
−2 0
4 −1

]
, C =

[
3 −2
1 0

]

B + C =

[
−2 + 3 0 + (−2)
4 + 1 −1 + 0

]
=

[
1 −2
5 −1

]

A(B + C) = AB +AC =

[
11 −4
14 −1

]

(B + C)A =

[
1 −2
5 −1

] [
1 2
−1 3

]
=

[
1 + 2 2− 6
5 + 1 10− 3

]
=

[
3 −4
6 7

]
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Cancellation laws do not hold

We note that if AB = AC and A ̸= O, it does not necessarily follow that B = C. For
example

A =

[
2 1
6 3

]
, B =

[
−1 0
5 2

]
, C =

[
3 1
−3 0

]

AB =

[
3 2
9 6

]
, AC =

[
3 2
9 6

]

Similarly, if BA = CA, A ̸= O, it does not necessarily follow that B = C
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Linear combination of matrices

Definition

Given A1, A2, . . . , Ar ∈ Mm×n, α1, α2, . . . , αr ∈ R, an expression of the form

α1A1 + α2A2 + · · ·+ αrAr

is called a linear combination of A1, A2, . . . , Ar with coefficients α1, α2, . . . , αr.

83 / 92



Linear combination of matrices

Let

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 , x =




x1
x2
...
xn




Then

Ax =




a11x1 + a12x2 + · · · + a1nxn
a11x1 + a12x2 + · · · + a1nxn

...
...

. . .
...

am1x1 + am2x2 + · · · + amnxn


 = x1




a11
a21
...

am1


+x2




a11
a21
...

am1


+· · ·+xn




a11
a21
...

am1
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Linear combination of matrices

Observation

Given A ∈ Mm×n, x ∈ Rn (or equivalently x ∈ Mn×1), the product Ax can be
expressed as a linear combination of the columns of A in which the coefficients are the
entries of x.

Example

The matrix product 

−1 3 2
1 2 −3
2 1 −2






2
−1
3


 =




1
−9
−3




can be written as

2



−1
1
2


− 1



3
2
1


+ 3




2
−3
−2


 =




1
9
−3
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Linear combination of matrices and matrix product
Consider

AB =

[
1 2 4
2 6 0

]

4 1 4 3
0 −1 3 1
2 7 5 2


 =

[
12 27 30 13
8 −4 26 12

]

It follows from the previous theorem that the jth column of AB can be expressed as a
linear combination of the columns of A in which the coefficients in the linear
combination are the entries from the jth column of B

[
12
8

]
= 4

[
1
2

]
+ 0

[
2
6

]
+ 2

[
4
0

]

[
27
−4

]
=

[
1
2

]
−
[
2
6

]
+ 7

[
4
0

]

[
30
26

]
= 4

[
1
2

]
+ 3

[
2
6

]
+ 5

[
4
0

]

[
13
12

]
= 3

[
1
2

]
+

[
2
6

]
+ 2

[
4
0

]
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Linear combination of matrices and matrix product

AB =

[
1 2 4
2 6 0

]

4 1 4 3
0 −1 3 1
2 7 5 2


 =

[
12 27 30 13
8 −4 26 12

]

Similarly, the ith row of AB can be considered as linear combinations of the rows of B
with coefficients given by the entries from the ith row of A

[
12, 27, 30, 13

]
= 1

[
4, 1, 4, 3

]
+ 2

[
0, −1, 3, 1

]
+ 4

[
2, 7, 5, 2

]
[
8, −4, 26, 12

]
= 2

[
4, 1, 4, 3

]
+ 6

[
0, −1, 3, 1

]
+ 0

[
2, 7, 5, 2

]
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The zero matrix

• AO = OA = O

• If AB = O, it is not necessarily true that A = O or B = O. For example

A =

[
2 1
6 3

]
, B =

[
−1 2
2 −4

]
, AB =

[
0 0
0 0

]
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Powers of a square matrix

• Square matrices are the only matrices that can be multiplied by themselves

• A ∈ Mm×n, AA can be computed iff m = n

Definition

For A ∈ Mn×n, the (nonnegative) powers of A are given by

A0 = In, A1 = A, Ak = Ak−1A for k ≥ 2.

Example

A =

[
2 1
−4 3

]

A2 = AA =

[
0 5

−20 5

]
, A3 = A2A =

[
−20 15
−60 −5

]
.
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Special cases when AB = BA

• Take A ∈ Mm×n, B ∈ Mp×r

• For AB to be defined, we need p = n

• For BA to be defined, we need r = m

• Then
AB ∈ Mm×n, BA ∈ Mn×m

• For AB = BA, we need m = n, i.e.

A,B ∈ Mn×n

are square matrices

• In case AB = BA, we say A and B commute or A commutes with B.
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Special cases when AB = BA

Take A,B ∈ Mn×n

• n = 1, AB = BA

• If B = A, then AB = BA = A2

• If A = O or B = O, then AB = BA = O

• If ∃α ∈ R s.t. A = αIn, then according to the associative law of scalar and matrix
multiplication, and the property of the identity matrix

BA = B(αIn) = α(BIn) = α(InB) = (αIn)B = AB

• Similarly, if ∃α ∈ R s.t. B = αIn, we have AB = BA

Example

A =

[
1 2
3 4

]
, B =

[
2 0
0 2

]
, AB = BA =

[
2 4
6 8

]
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Trace of a square matrix

Definition

Let A = (aij) ∈ Mn×n be a square matrix. The trace of A, denoted tr (A) is given by
the sum of the main diagonal entries of A, i.e.

tr (A) = a11 + a22 + · · ·+ ann =

n∑

i=1

aii.

Example

A =



1 2 3
5 −3 4
1 1 −2


 , tr (A) = 1 + (−3) + (−2) = −4.
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