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Abstract In this chapter, we are considering the physical security of Machine Learn-
ing (ML) implementations on Edge Devices. We list the state-of-the-art known
physical attacks, with the main attack objectives to reverse engineer and misclassify
ML models. These attacks have been reported for different target platforms with the
usage of both passive and active attacks. The presented works highlight the potential
threat of stealing an intellectual property or confidential model trained with private
data, and also the possibility to tamper with the device during the execution to cause
misclassification. We also discus possible countermeasures to mitigate such attacks.

1.1 Introduction

Security evaluation labs are facing new challenges every day as the adversaries are
becoming more powerful considering the resources available and more advanced
in terms of methods and techniques they use. Thus, machine learning (ML) is
becoming indispensable for secure cryptographic implementations andMLmethods
are becoming mandatory in security evaluations. This aspect of AI for physical
attacks is elaborated in more detail in [29, 33].

We are also witnessing an increase in intellectual property (IP) preserving strate-
gies for various industries such as media content protection (Netflix and Spotify),
automotive, wearables (such as watches and wristbands) etc. Basically, for those
cases when optimized neural networks are of commercial interest, model details are
often kept undisclosed. There are many reasons for keeping the neural network archi-
tectures secret. Often, those pre-trainedmodels might provide additional information
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regarding the training data, which can be very sensitive. One critical example, is that
if the model was trained onmedical records of patients [19], confidential information
could be encoded into the network during the training phase. Another use case of
a neural net as an IP is in products using deep learning for high definition maps
and cameras e.g. in automotive applications. As those markets are very competitive;
the more efficient and effective neural networks are, the more successful companies
selling them become.

Hence, determining the layout of the network with e.g. trained weights is a
desirable target for an attacker. There are several ways to do it. First, the attacker
might try to train newmodels, providing he/she has the access to target neural nets and
training data. Second, the attacker could reverse engineer the neural nets of interest
by using some additional information that becomes available while the device under
attack is operating. This additional information is often physical and provided as a
side channel e.g. timing, electromagnetic emanation (EM), or as a result of an active
manipulations such as through fault injection responses and similar.

Relevant previous works on reverse engineering neural nets via side channels
showed a lot of promise for this kind of research [4, 5]. It was demonstrated that
a side-channel attacker is capable of reverse engineering proprietary information
from an ARM Cortex-M3 microcontroller, which is a platform often used in edge
devices using neural networks such as wearables, surveillance cameras etc. Other
works considering fault injection techniques and the information learned from this
kind of attacks followed [6].

1.1.1 Machine Learning for Edge Devices

In this chapter, we are focusing on Edge devices that can be used in applications
like automotive, security cameras, wristbands, smart factory etc. Edge devices are
those that collect, process and store data, close to the things/edges/sensors where the
information is produced and gathered. This paradigm on computing saves a lot on
latency and enables real time processing, as compared to the cloud based alternatives.
With time edge devices have been strengthened with enhanced capabilities like
artificial intelligence (AI) to provide decisionmaking power to them. This integration
of AI or in particular machine learning capabilities to edge devices is popularly
known as EdgeML [14]. These devices can range from general purpose hardware
like an Arm CortexM3 microcontroller, or those with dedicated hardware support
for ML processing like Nvidia Jetson, Intel neural compute stick etc.
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1.1.2 Attacks on Machine Learning

Security and reliability of machine learning has been a rising matter of concern in
recent years. Here we briefly discuss some of the most prominent types of attacks
which have been reported.

Model extraction attacks were reported targeting machine learning algorithms.
The main idea behind such attacks is to query a victim model as a black box,
with chosen/known input data and try to construct another model which mimics the
victim model in prediction and performance. Such attacks are widely popular in
the Machine learning as a Service (MLaaS) paradigm, where an API of the victim
model is available to the adversary on a pay per use basis [53] and the adversary
aims to recover an equivalent model with minimum number of queries. Apart from
model extraction, known attacks were extended to the recovery of training data
by techniques like membership inference and model inversion. Shokri et al. [47]
reported the leakage of sensitive information from machine learning models about
individual data records used for training. They show that such models are vulnerable
to membership inference attacks. Details about training data can also be leaked
through model inversion as presented by Fredrikson et al. [18].

Other kinds of attacks compromising the reliability of machine learning were
reported. These attacks systematically lead a trained model to predict an incorrect
output, resulting in a so-called an evasion attack [50]. The modus operandi of this
attack involves small changes in the input that push the model to cross the decision
boundaries during the classification. This effectively changes the resulting output
class. The perturbed inputs were later called “adversarial examples” and can be used
for various different purposes, including targeted and untargeted misclassification,
denial of service, etc.

All such attacks target the model behavior and run independent of implementation
style. Normally, such an API model would be hosted on the cloud. As the attacks
appeared, appropriate mitigation were also proposed, for example, against model
extraction attacks [31, 37], evasion [11] and adversarial attacks [12].

With the adoption of machine learning for edge devices under EdgeML paradigm,
new vulnerabilities arose. The computation of resource intensive machine learning
algorithms leaves a non-negligible physical signature for every execution. This phys-
ical signature depends on the model parameters and inputs. If the adversary who
controls the inputs can measure this physical signature, it is possible to learn in-
formation about otherwise black box model. The physical signature can be in form
of timing, power consumption, cache access patterns etc. A survey of side-channel
based attacks on machine learning discussion on mitigation techniques is reported
in Section 1.2.

EdgeML also exposes the machine learning computation to active adversary
which are capable of disturbing the computation through intentional perturbations.
The introduced disturbances to the computation may often lead the trained model
to predict an incorrect output. From the higher level, these attack are similar to
evasion attacks with adversarial attacks. However, an advanced adversary capable
of fault injection can be much more powerful as the perturbations can potentially be
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inserted at an arbitrary point of the computation, giving a more precise control to the
adversary. Further modification of these attacks can also lead to model extraction or
denial of service. A survey of fault-injection based attacks on machine learning and
discussion on mitigation techniques is reported in Section 1.3.

1.2 Overview Side Channel Threats to Machine Learning

With the systematic deployment ofMLmodels on edge devices, unprecedented phys-
ical access to those models has lead to new security vulnerabilities. While classically
these ML models are considered a black box, physical access permits different ad-
versaries to snoop direct or indirect information about the internal execution. In this
section, we provide an overview of recent works which used side-channel analysis
to compromise ML models.

Side-channel attacks (SCA) are passive attacks that observe physical quantities
related to computation of sensitive variables (dependent on secret data) and exploit
it to gain confidential information. SCA have been widely studied in the community
of information security and cryptography over the past two decades to demonstrate
vulnerabilities in implementations of various security and cryptographic algorithms
including both symmetric and asymmetric key primitives. They exploit physical traits
like power consumption, computation time, cache access patterns, electromagnetic
(EM) emanation, etc. Typical attacks relying on statistical methods are Differential
Power Analysis (DPA) or Differential ElectroMagnetic Analysis (DEMA). Applica-
tion of SCA on cryptographic primitives and recent advances with application of
ML is previously discussed in [29, 33].

When a given implementation of ML model is executed, it generates a physical
signature. This physical signature, although unintentional, exists in various forms.
Let us take an example of execution time of a neural network. This execution time
will depend on structural parameters of the network like the number of layers,
number of neurons, etc. Even inside a single neuron, the choice of the activation
function influences the execution time, as shown in [5]. Activation functions like
ReLU are a lot less resource intensive compared to sigmoid or tanh that involve
complex operations like exponentiation. Moreover, the input-dependent execution
time of exponentiation can reveal information about the input to an adversary who
has access to detailed timing patterns. Similar vulnerabilities can also be exploited
by an adversary who has access to other physical signatures.

Those side channels have been demonstrated to leak sensitive parameters of a ML
model like number of layers, number of neurons, activation functions, secret weights,
filter size etc. The leakage can be exploited in several scenarios. We identified three
attack scenarios presented in the literature, which are as follows:

• Model Extraction: The adversary aims to recover parameters of the target model
with as much precision as possible. Such attacks are relevant for the IP theft
scenario where adversary has cost benefits to recover secret black box model and
evade payment for additional licences. Precise knowledge of the model can also
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be exploited to learn information on training data, which can be sensitive and
critical in certain settings like healthcare.

• Substitute Model Extraction: This is a weaker version of the model extraction
attack where an adversary aims at recovering a model that performs similarly to
the target black box model. The performance can be expressed in metrics like
testing accuracy.

• Input Recovery: For certain applications, where the input to a model is privacy
sensitive, appropriate security measures like encryption are used to not com-
municate the sensitive input in plaintext over an open communication channel.
However, for inference tasks, the input must be decrypted before any processing
by the ML model. Side-channel leakage of interactions between the model and
the secret input can also be exploited to learn information about the input. Most,
if not all attacks in this class exploit the processing of the input in the first layer
where processing is done on raw inputs.

1.2.1 State-of-the-Art

Previous works demonstrating vulnerabilities of ML models against side-channel
attacks have looked into the following physical quantities:

• Timing Side Channel: The vulnerabilities under this class exploit the fact that
the time of internal computation relates to the parameters of the target model.
Previous research has shown that both, execution time and the time to access the
model parameters can leak critical information.

• Power/EM Side Channel: Power consumption or EM emanations of internal
operations can be exploited to gain information on involved sensitive values.
Vulnerabilities in this class typically target, but are not limited to, basic operations
like weight multiplication or CONV filters.

• Microarchitectural Side Channel:ExecutingMLmodels on commodity hardware
like high-end CPU or GPU results in leakage at the microarchitectural level. Most
known works have exploited cache access patterns in terms of timing related to
cache hit or cache miss.

Table 1.1 provides the summary of recent attacks that have been reported. In the
rest of this section, we will provide more details on relevant previous works.

Timing side-channel

One of the earliest works on reverse engineering targeting Convolution Neural Net-
works (CNN) with Side-Channel Attacks (SCA) was proposed by Hua et al. [27].
The work acknowledges the sensitivity of the model and assumes standard protec-
tion like executing model computation in secure enclaves like Intel Software Guard
Extensions (SGX). It exploits information leakage through timing (and memory)
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Work Side-channel Attack Model Network Target Device

[27] timing, memory model extraction
(first layer)

AlexNet,
SqueezeNet CNN Accelerator

[17] timing substitute model ex-
traction VGG Intel CPU

[55] power input recovery Binarized CNN FPGA based CNN
accelerator

[5] EM input recovery MLP, CNN ARM microproces-
sor

[15] power, timing input recovery MLP Atmel microproces-
sor

[4] EM model extraction MLP, CNN AVR and ARM mi-
croprocessors

[58] EM, timing model extraction
binarized Con-
vNet, VGG, LeNet,
AlexNet

PYNQ board

[16] power model extraction
(weight recovery) BNN FPGA accelerator

[56] cache substitute model ex-
traction VGG, ResNet CPU

[24] cache substitute model ex-
traction

VGG, ResNet,
DenseNet, Incep-
tion, MobileNet,
Xception

CPU

[26] cache model extraction ResNet NVDIA GPU

Table 1.1 Summary of the state-of-the-art SCA for DL

side-channels targeting CNN accelerators running in a secure enclave. The secure
enclave prevents an adversary from accessing information of the execution, how-
ever, the off-chip memory accesses are still observable, which eventually allows
reverse engineering of CNN structure and weights. Owing to the huge size of CNN
models, it is not possible to store all weights/parameters on the on-chip memory,
rather off-chip memory stores the parameters and is accessed when required in the
computation. Memory access patterns reveal information of accessed memory loca-
tions and read/write patterns. The information leakage on access patterns remains
available even if the memory is encrypted. As a result, Hua et al. demonstrate the
retrieval of key network parameters like the number of layers, input/output sizes
of each layer, size of filters, data dependencies among layers, etc. This allows an
attacker to infer a small set of possible network structures by exploiting the execution
time of a computation on a CNN accelerator.

Two commonly popular networks were successfully targeted, AlexNet [35] and
SqueezeNet [28]. Once the network structure is recovered, the proposed attack can be
extended to reverse engineer the secret weights of theCNN. The attack assumes usage
of dynamic zero pruning in the CNN architecture and exploits it for weight recovery,
with knowledge of the inputs. However, the exploited memory access patterns are
available under a strong assumption like hardware Trojan, physical memory bus
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probing or compromised OS. Activation functions like ReLU which converts any
negative input to zero, result in a large number of zeros in intermediate results
of an inference. These extra zeros can be pruned to optimize storage. However,
this memory optimization leaks the number of zero-valued pixels pruned by the
activation function, which can then be exploited to retrieve information on weight
and bias, in particular their ratio. The knowledge of ratio significantly reduces the
entropy of weights. The authors demonstrated the recovery of the weight and the
bias for the first layer of AlexNet. Weight recovery attacks on deeper layers were not
investigated.

Duddu et al. [17] proposed a timing based attack on neural networks. The attack
can target different hardware architectures or dedicated accelerators as long as the
victim and the adversary use copies of the same hardware. The timing information
under the black box model is used to determine the network depth under a fixed
number of queries. With the information on network depth, the authors generate
a substitute model of comparable accuracy to the original model. Reinforcement
learning is used to reconstruct a substitute architecture. The attack is demonstrated
on VGG [48]-like deep architectures on an Intel Xeon Gold 5115 platform, and
the authors argue that the proposed method can be extended to any other hardware
accelerator as well. The test accuracy of the substitute model is within 5% error
margin from the targeted model architecture. Note that this method does not allow
model extraction but finds a substitute network.

Power and EM side-channel

Batina et al. [4] proposed a full reverse engineering of neural network parameters
based on power/EM side-channel analysis. The proposed attack is able to recover
key parameters i.e., activation function, pre-trained weights, number of hidden layers
and neurons in each layer, without access to any training data. The adversary uses
a combination of simple power/EM analysis, differential power/EM analysis and
timing analysis to recover different parameters. In the following, we describe in brief
how different parameters are recovered.

The attack targets a trained model of a feed-forward neural network deployed on
an embedded device for testing. The adversary feeds known random inputs in a form
of floating point real numbers and observes side channels. Fixed point numbers make
the attack easier. The measurement setup is shown in Fig.1.1(a). A sample EM trace
is shown in Fig. 1.1(b) for a 4-layer Multilayer Perceptron (MLP) with (50, 30, 20,
50) neurons. One can easily distinguish each of the 4-layers. Moreover, it is shown
in [4], that the adversary can zoom into each neuron and observe each multiplication
and activation function. In other words, the adversary can collect a large amount
of traces in one go and reuse individual parts of the traces for recovering different
parameters of the network.

The first step is to recover the activation function for each neuron. The activation
function is a non-linear component in the neural network processing and normalizing
its complex implementation results in a non-constant time execution. Note that
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(a) (b)

Fig. 1.1 (a) Experimental EM side-channel measurement setup, (b) Pattern of a 4-layer MLP
network with (50, 30, 20, 50) neuron in each layer [4].

the adversary does not need new timing measurements. The EM traces provides
precise timing patterns for each activation function in each neuron. Table 1.2 shows
minimum,maximumandmean execution times of sigmoid, tanh andReLU activation
functions which can be matched to a pre-characterized profile for recovery. The
pre-characterized timing profile of the activation functions, when compared with
unlabeled timing profile of target activation function, will reveal the function with
high probability. Even though some functions may have similar timing profiles
like sigmoid and tanh, still with enough test samples, the two functions are easily
distinguishable from each other owing to different mean timing and corresponding
ranges (see Table 1.2).

Table 1.2 Minimum, Maximum, and Mean computation times (in =B) for different activation
functions as measured from the EM trace.

Activation Function Minimum Maximum Mean
ReLU 9 767 9 837 9 801

Sigmoid 142 902 179 151 163 449
Tanh 157 693 220 790 208 231

The next step is to recover the individual weights. The weights are recovered
using differential power/EM analysis and the Pearson correlation coefficient is used
as a statistical distinguisher. The attack targets the multiplication < = G · F of a
known input G with a secret weight F. The leakage model for the used embedded
microcontroller is the Hamming weight (HW). The adversary makes hypothesis
on the weight and correlates the activity of the predicted output < with measured
traces C. The correct value of the weight F will show higher correlation compared
to all other wrong hypotheses F∗, given enough measurements. The attack was
demonstrated in real numbers in IEEE 754 format, where 32-bit representation is
used. To keep the number of hypothesis in check, the attack is performed byte-wise
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and the 32-bit weight is recovered in 4 parts. It is also observed, that unlike in
cryptography, exact weights are not required and some precision errors in recovery
can be tolerated without affecting the accuracy of the network. DEMA can also be
further used to determine layer boundaries, when not possible. Given an input to
the network, the correlation of weight multiplications will be much higher in the
first layer as compared to subsequent layers, thus allowing distinguishing neurons
belonging to the first layer.

The full network is recovered in an iterative manner with a combination of these
developed techniques. The network is recovered from input to output, neuron by
neuron and layer by layer. The attack scales linearly with the size of the network
and the same set of traces can be reused for various steps of the attack limiting the
measurement effort.

Dubey et al. [16] proposed a power-based side-channel attack on a Binarized
Neural Networks (BNN) to recover secret parameters such as weights and biases.
In contrast to Batina et al. [4], the target platform is parallel hardware accelerators
running a 7-series FPGAboardmounted on a SAKURA-Xboard. They exploit power
leakage and perform a basic correlation attack on 4-bit of theweights and demonstrate
a successful weight recovery with 200 measurements only. Authors further propose
design of BNN accelerators that can resist DPA using countermeasures like masking.

Yu et al. [58] proposed a model extraction attack based on combination of EM
side-channel measurement and adversarial active learning to recover the Binarized
Neural Networks (BNNs) architecture on popular large-scale NN hardware acceler-
ators. The network architecture is first inferred through EM leakage, and then, the
parameters are estimated with adversarial learning. For the layer topology reverse
engineering, the attacker observes the average timing behavior from the EM traces.
This is based on the observation that different layers will result in different execution
times. For example, the pooling layer typically requires a shorter time than a convo-
lution one, and a fully-connected layer is observed to have the longest execution time,
since it requires most of the sequential XNOR computations. Thus, by observing
the timing profile, the adversary could reconstruct the network architecture. In the
adversarial learning setting, the attacker crafts malicious inputs for the query, which
could be used to identify the decision boundary for the trained model. For the attack,
the adversary is assumed to be incapable of accessing the training data or knowing
the model. The attack shown through the experiment could recover 96 − 99% in
comparison to the black box model.

Considering input recovery attack using power/EM side-channel, the first attack
was reported by Wei et al. [55]. Authors demonstrate recovery of the input image
from FPGA based CNN accelerator. The proposed attack exploits a specific design
choice, i.e., the line buffer in a convolution layer of a CNN. Two attack scenarios
were presented considering different adversarial capabilities. The first one is the
passive model, where the adversary eavesdrops the power consumption during the
execution. Assuming that if the processed data is unchanged between cycles, the
internal transitions will be limited, resulting in lower power consumption, and thus,
by monitoring the power leakage, the adversary could determine if the pixels share
similar values, whether they belong to the background of the image. The other
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is the active model, where the adversary is profiling the correlation between power
signals, by building a power template. The power template characterizes the mapping
between pixel values and the corresponding power leakage, under different kernels.
The experiment conducted on a MNIST dataset reported a recovery success of 89%.

Batina et al. [5] also reported an input recovery attack on embedded platforms.
They consider known or commonly used networks where the weights are either
public or independently recovered using one of the reverse engineering techniques.
Only the first layer weights are crucial for this attack which targets the multiplication
between secret input and known weights. This attack is similar to the previous attack
on multiplication proposed in [4]. The attack targets the multiplication< = G ·F of a
secret input G with a known weight F. The issue in this case is that each input is only
processed once and thus must be recovered in a single measurement. To overcome
this limitation, an adversary can exploit individual weight multiplications in different
neurons, captured on different part of the same trace. Thus, EM measurements
corresponding to a fixed unknown input and several known weights are present in the
same measurement, which can be broken into short independent traces to conduct
a classical correlation-based attack. This kind of attacks which exploit different
computations in the same measurements are popularly known as horizontal attacks.
For bigger networks with a large input layer, the amount of individual multiplications
available to an adversary increases, thus allowing a bigger measurement set to
perform the attack. The recovery was shown onMNIST images with a precision error
of 2 decimal places resulting in almost no visual differences between original and
recovered images. The attack also applies on CNN, where a single input value might
be processed several times (due to convolution operation). A similar vulnerability
as shown in [5] was exploited through timing side-channel by Dong et al. [15] to
recover inputMNIST images with 96% accuracy on 4-layerMLP running on an 8-bit
Atmel XMEGA128 microprocessor. They exploit the fact that input multiplication
with constant weights will result in a variable time floating point multiplication.
The precise timing of the multiplication can be recovered by observing power side-
channel trace.

Microarchitectural side-channel

Recently, some works based on microarchitectural attacks have also been proposed
for the reverse engineering of Deep Learning (DL). Yan et al. [56] have proposed
the Cache Telepathy method. The observation is that, for typical NN , the multiplica-
tion operation depends on GEMM (Generalized Matrix Multiply). In this case, the
architecture parameters of the network will determine how many times the GEMM
is called or the dimension of the matrices, which can be revealed through cache
side-channel. The attack is based on common cache-based SCA, Flush+Reload [57]
and Prime+Probe [38]. The target networks are VGG-16 [48] and ResNet-50 [22].
Using the proposed method, the search space for the architecture can be significantly
reduced. In this work, the attack could reveal matrix multiplication related parameter
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such as convolutional or fully connected layers, and for others such as activation and
pooling layers, it might be harder to recover.

Similarly, the authors of [24] proposed DeepRecon, an attack methodology based
on cache side-channel that exploits Flush+Reload to reconstruct the Deep Neural
Network (DNN) architecture. In their attack model, rather than accessing the target
model directly like in other side-channel based attack, the adversary runs a co-located
process on the host machine, in which the victim’s model is also running. Similar to
earlier work [56], the proposed attack does not generalize to computations on hard-
ware other than a CPU. Also, they find that based on how the matrix multiplication
is implemented, they are unable to estimate the inputs and parameters of a victim’s
model. As such, they hypothesize that this might be the limit of cache-based SCA
on DNN.

Hu et al. [26] proposed an attack targeting GPU platform and highlighted some
of the potential issues arising in contrast to other works. The attack is using the
bus snooping technique, exploiting the off-chip memory address traces and PCIe
events. The idea used in this work is that inter-layer DNN architecture features will
be considered as string of “sentences”, so by considering this instead of individual
“word”, it might maximize the likelihood of a correct match far more effectively
than character-by-character approaches. To perform the experiment, they consider
the Long short-term memory (LSTM) model, a common neural network, with CTC
(Connectionist Temporal Classification) decoder, which is commonly used in Auto-
matic SpeechRecognition. The attack only requires the assumption that the adversary
can observe the architectural side-channel over time. It also assumes the adversary
can feed specific input and observe the results. The experiments are conducted on
off-the-shelf Nvidia GPU running CNN, in a parallel manner, and the victim’s model
is ResNet-18 [22].

1.2.2 Countermeasures

The success of SCA on ML models can be mainly attributed to the naïve implemen-
tation of the model. Previously, ML models were rarely seen in hostile environments
with adversaries benefiting from physical access. However, with IoT and edge-based
devices, the threats have become real as highlighted by the range of works mentioned
above. Thus, countermeasures must be investigated. As such, there is a wide research
on SCA countermeasures against cryptographic implementations which can be also
applied on ML models. However, direct application of countermeasures would re-
sult in a non-negligible overhead. In the following, we discuss some directions for
countermeasures considering different physical side-channels.
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1.2.2.1 Timing Side-Channel

It has been shown by multiple works that the execution time depends on network
parameters which eventually leak sensitive information to the adversary. To over-
come this problem, the designer can take two approaches. The first approach is to
have constant time implementations of basic functions [45]. This can solve some
issues where the value of the input is determined from the execution time but other
issues like distinguishing between components (e.g. sigmoid vs. ReLU) may still be
possible. The other approach is to randomize the execution timing in a way that it
becomes independent of the sensitive information executed preventing an adversary
to learn by observing timing information. This would require access to a good source
of randomness and techniques like jitter and dummy operations can be used [40].

1.2.2.2 Power/EM Side-Channel

Hiding and Masking are the two typical types of countermeasures used against
power/EM side-channel. Hiding aims at reducing the signal to noise ratio in a mea-
surement, making attacks difficult. Masking uses randomization by mixing com-
putation with random data to remove any correlation between sensitive variables
and power/EM signature. Dubey et al. [16] proposed the first countermeasure for
DNN against SCA. The countermeasure, referred to as MaskedNet, is based on
masking. The resulting design uses novel masked components such as masked adder
trees for fully-connected layers and masked Rectifier Linear Units for activation
functions. They even use hiding countermeasure, like Wave Differential Dynamic
Logic (WDDL) [51], to protect the sign-bit computation. The proposed protection
increases the latency and area-cost by 2.8 and 2.3 times, respectively. When tested
against first-order DPA, the attack against masking fails evenwhen using 100k traces,
however second-order DPA on masking can still break it with just 3.7k traces. When
analyzing the Difference-of-Means (DoM) test on the sign-bit computation, after
40k of traces, bit 0 and bit 1 can be distinguished. The argument for this is in the
low noise platform used.

1.2.2.3 Microarchitectural Side-Channel

Much like timing and power/EM side-channel, hiding or randomizing cache activ-
ity of ML model execution can prevent such attacks. However, unsurprisingly, any
of those choices result in performance overheads. Alam and Mukhopadhyay [3]
proposed a countermeasure against microarchitectural side-channel attacks on ML
models by observing the Hardware Performance Counter (HPC). During the exe-
cution of CNN, an evaluator, who does not know the detail of the implementation
but can monitor various HPC events, conducts statistical hypothesis testing on the
distribution of the data that can detect an attack. The evaluator throws an alarm when
there is an anomaly in the distribution signifying potential side-channel leakage.
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Thus, as a general observation, ML models do suffer from side-channel vulner-
abilities and existing countermeasures stem from either hiding or masking families
of countermeasures. In practice, a combination of various countermeasures is more
likely deployed. However, for modern architectures, the network architecture can
easily grow to millions of parameters, and such, the countermeasure overhead might
make it impractical to implement. Thus, ML friendly countermeasures in terms of
the overhead in cost must be investigated.

1.3 Overview of Fault Injection Threats to Machine Learning

In this section, we focus on a special class of physical attacks known as fault
attacks, which have become a common practice owing to decreasing prices and
increasing expertise required to mount such attacks [21]. Fault attacks are active
attacks on a given implementation which try to perturb the internal computations by
external means. Such attacks are commonly used for mounting secret key recovery
attacks in cryptography or for violating/bypassing security checks [30]. Recently,
fault attacks have been applied to neural networks to achieve misclassification or
reverse engineering.

The rest of this section is organized as follows. Subsection 1.3.1 provides some
necessary background on fault injection attacks and the possible threats they pose
to neural network models. Subsection 1.3.2 outlines the current state-of-the-art and
gives details on the most prominent works in this area. Finally, Subsection 1.3.3
discusses possible countermeasures to protect neural networks against faults.

1.3.1 Background

Fault Injection Attacks (FIA) disrupt the device during the computation task, provid-
ing in this way some benefit to the attacker. Generally, this benefit can be anything
from denial of service and privilege escalation, to the secret data recovery.

For example, in case of FIA on cryptographic circuits, the goal is typically to
get the information on the secret key used during the encryption [30]. These attacks
mostly exploit the scenario where the attacker has access to the device and can
tamper with it, which is often the case for edge devices. However, there exist also
techniques that can flip bits remotely, such as Rowhammer [32].

Multiple types of fault attacks and their outcomes on hardware devices are possi-
ble, resulting in various ways to affect the target device. These are often referred to
as fault models. The most commonly deployed fault models in the literature are:

• Bit flips: allow the attacker to target a certain bit of the processed data and invert
its value.

• Stuck-at faults: allow the attacker to set or reset the value of a certain bit of the
processed data.
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• Random faults: allow the attacker to change the value of a data structure (in
register, memory, bus, etc.) to a random value.

• Instruction skips: allow the attacker to skip the execution of one or more instruc-
tions in the instruction sequence.

• Instruction changes: allow the attacker to change the executed instruction into
another instruction – this can be achieved by faulting the instruction opcode.

In the pre-attack phase, the attacker needs to determine what kind of the fault model
is realistic for the target device under test with the usage of specific fault injection
equipment. After this knowledge is obtained and classified, the attacker can identify
a fault analysis method that works fitting the given model.

When it comes to deployment of machine learning models in the field, there
are many AI accelerators offering small size, low power consumption and low cost
(e.g. Nvidia Jetson Nano, Google Coral, etc). It was shown that small IoT devices
like Raspberry Pi devices are also capable of running deep learning models [54].
These devices are ideal targets for fault injection attacks, as they might be physically
accessible to the attacker and their complexity is low, thus allowing precise fault
injection.

There are several attack scenarios affecting neural network models that can be
achieved by fault attacks, mainly:

• Denial of service: faults can disturb the device in a way that it is not able to
respond to a user’s queries, leading to denial of service [42]. This can be either a
permanent or a transient state.

• Evasion: classic evasion attack on ML models aims at misclassification of the
input by adding adversarial perturbations in the input. In the evasion attack by
faults, the attacker disturbs the computation of the model resulting in the misclas-
sification [39].

• Model extraction: it was shown that faults can help in recovering the confiden-
tial parameters of neural networks, such as weights and biases, allowing higher
precision compared to other methods [9].

1.3.2 State-of-the-Art

The seminal work in the field of adversarial fault injection was published by Liu et
al. in 2017 [39]. They introduced two types of attacks: single bias attack changes the
bias value in either one of the hidden layers (in case of ReLU or similar activation
function) or output layer of the network to achieve the misclassification; while
gradient descent attack works in a similar way like Fast Gradient Sign Method [20],
but changes the internal parameters instead of the input to the network. For more
details on both types see below.

Practical fault injection by using a laser technique was shown by Breier et al.
in 2018 [6]. They were able to disturb the instruction execution inside the general-
purpose microcontroller to achieve the change of the neuron output. In their paper,
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they focused on behavior of three activation functions: in case of sigmoid and tanh,
the fault resulted to inverted output, while in case of ReLU, the output was forced to
be always zero.

Zhao et al. [59] proposed a fault sneaking attack on DNN models. The main
goal is to cause misclassification to labels specified by the attacker, while keeping
the fault injection stealthy. The stealthiness is achieved by keeping the accuracy of
the faulted network as close to the original accuracy as possible. According to their
results, they were able to keep the model accuracy loss to 0.8% for MNIST database
and 1% for CIFAR database.

Breier et. el. [9] analyzed reverse engineering in the context of transfer learning.
The parameters from the teacher network are assumed to be known to the attacker.
With the fault attack, the attacker can then recover the weights and biases of the new
layers in the student network.

A survey on error tolerance of neural networks, published in 2017 [52], examines
the effects of faults on DNN models.

In the rest of the section, we will provide more details on selected works.

Single Bias Attack and Gradient Descent Attack

Liu et al. [39] proposed the first work analyzing the effects of fault attacks on deep
neural networks to achieve misclassification. They investigated two attack methods:

• Single bias attack (SBA) aims to achieve misclassification by modifying only one
parameter in the neural network.

• Gradient descent attack (GDA) aims to achieve misclassificaiton for a targeted
input pattern while keeping the accuracy for other input patterns.

As a threat model, they considered a white-box attack, where the attacker has
knowledge of the structure, parameters as well as low-level implementation details
of the targeted DNN. They also assumed that the practical attack is achievable by
using current techniques so that the attacker can modify any parameter in DNN to
an arbitrary value in the valid range of the used arithmetic format.

They considered ReLU-like activation functions, which are defined as follows

6(D) =
{
D D ≥ 0
UD D < 0

,

where U > 0. They named DNN using ReLU-like activation function in the hidden
layers as ReLU-like DNN.

To analyze the single bias attack, they give the following definition:

Definition 1 [39] Given two variables G and H, if there exist two constants Y and X
such that 3H

3G
= X when G > Y, we say H is one side linear to G and the one side linear

slope is X.

With the notion of one side linearity, they prove the following result:
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Theorem 1 1. Let H1, H2, . . . , H= variables, which are all one side linear to variable
G with slopes X1, X2, . . . , X= respectively. If X= > X8 ,∀8 ≠ =, there exists a constant
YB8=: such that H= > H8 , ∀8 ≠ = when G > YB8=: .

2. In ReLU-like DNN, for a bias < in hidden layers, every output neuron is one side
linear to <.

Thus, to achieve a single bias attack that misclassifies any input to the target class,
the attacker analyzes the network structure to find a bias < in the hidden layer such
that the targeted class has the largest one side linear slope w.r.t. < among all the
output neurons. Then, by increasing < using fault the attacker would finally make
the DNN’s output converge at the target class.

They presented evaluation of SBA on a CIFAR model [49] which is a ReLU-like
DNN. They achieved the highest attack accuracy of 57.23% by targeting the 6Cℎ
layer of the network.

For the gradient descent attack, the authors aim at maximizing the following
objective function by changing the parameters of only one single layer, denoted by
\,

� (\) = �8 (\, G) − |\ − \1 |,

where \1 denote original parameter values for a single layer, �8 represents the output
for neuron corresponding to class 8, and _ is an L1-norm regulator.

During the gradient descent, they proposed “modification compression” – at
each iteration step, they replaced the element with the smallest absolute value in
\ by 0. They showed by experiements that conducting modification compression
can significantly reduce the number of modified parameters, by about 90%. The
experiments with MNIST model [13] and CIFAR model [49] showed that GDA
can achieve classification accuracy 95.20% and 81.66%, and degrades the benign
accuracy by 3.86 percent and 2.35 percent, respectively.

Practical Attack on Microcontrollers and Activation Function

To the best of our knowledge, the only practical fault attack on neural networkmodels
was published in [6], where the authors used a laser to induce faults in a general
purpose microcontroller. Next, we provide more details on this attack.

Attack Equipment Setup. The main component of the experimental laser fault
injection station was the diode pulse laser with a wavelength of 1064 =< and pulse
power of 20 W. This power was further reduced to 8 W by a 20 times objective lens
which reduced the spot size to 15×3.5 `<2.

As the device under test (DUT), ATmega328P microcontroller was used and
mounted on Arduino UNO development board. The package of this chip was opened
so that there is a direct visibility on a back-side silicon die with a laser. The board was
placed on an XYZ positioning table with a step precision of 0.05 `< in each direction.
A trigger signal was sent from the device at the beginning of the computation so
that the injection time could be precisely determined. After the trigger signal was
captured by the trigger and control device, a specified delay was inserted before laser
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Fig. 1.2 Experimental laser fault injection setup – (a) device under test, (b) setup components.

activation. Laser activation timing was also checked by a digital oscilloscope for a
greater precision. This setup is depicted in Figure 1.2.

DNN Activation Function Fault Analysis. To evaluate different activation func-
tions, three simple 3-layer neural networks were implemented, with sigmoid, ReLU
and tanh as the activation function for the second layer. The activation function for
the last layer was set to be softmax. The neural networks were implemented in C pro-
gramming language, which were further compiled to AVR assembly and uploaded
to the DUT.

The activation functions in the second layer were surrounded with a trigger signal
that raised a voltage on a selected Arduino board pin to 5 V, to help determine the
laser timing.

As an instruction skip/change are one of the most basic attacks on microcon-
trollers, with high repeatability rates [8], this fault model was used in the experi-
ments. The used microcontroller clock was 16 MHz, therefore one instruction took
62.5 =B. Some of the activation functions took over 2 000 instructions to execute.
To check what are the vulnerabilities of the implementations, the timing of the laser
glitch was varied from the beginning until the end of the function execution so that
every instruction would be eventually targeted.

After a successful misclassification was observed, vulnerable instructions could
be determined by visual inspection of the compiled assembly code and by checking
the timing of the laser in that particular fault injection instance. With a laser power of
4.5% it was possible to disturb the algorithm execution, when tested with reference
codes. More details on the behavior on this particular microcontroller under laser
fault injection can be found in [8].

In this exploratory study, a random neural network was implemented, consisting
of 3 layers, with 19, 12, and 10 neurons in input layer, hidden layer, and output layer,
respectively. The fault attack was always targeting the computation of one of the
activation functions in hidden layer. In the following, the experimental results on
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different activation functions will be explained in more detail.

ReLU was implemented in C as follows:
if (Accum > 0) {

HiddenLayerOutput[i] = Accum;}

else {

HiddenLayerOutput[i] = 0;}

where 8 loops from 1 to 12 so that each loop gives one output of the hidden layer.
Accum is an intermediate variable that stores the input of the activation function for
each neuron. The assembly code inspection showed that the result of the successful
attack was executing the statement after else such that the output would always be
0. The corresponding assembly code is as follows:

1 ldi r1, 0 ;load 0 to r1
2 cp r1, r15 ;compare MSB of Accum to r1
3 brge else ;jump to else if 0 >= Accum
4 movw r10, r15 ;HiddenLayerOutput[i] = Accum
5 movw r12, r17 ;HiddenLayerOutput[i] = Accum
6 jmp end ;jump after the else statement
7 else: clr r10 ;HiddenLayerOutput[i]= 0
8 clr r11 ;HiddenLayerOutput[i]= 0
9 clr r12 ;HiddenLayerOutput[i]= 0
10 clr r13 ;HiddenLayerOutput[i]= 0
11 end: ... ;continue the execution

where each float number is stored in 4 registers. For example, Accum is stored in regis-
tersr15,r16,r17,r18 andHiddenLayerOutput[i] is stored inr10,r11,r12,r13.
Lines 4, 5 execute the equation HiddenLayerOutput[i] = Accum.

The attack was skipping the “jmp end” instruction that would normally avoid the
part of code setting HiddenLayerOutput[i] to 0 in case Accum > 0. Therefore,
such change in control flow renders the neuron inactive no matter what is the input
value.

Sigmoid is implemented by a following code in C:

HiddenLayerOutput[i] = 1.0/(1.0 + exp(-Accum));

After the assembly code inspection, it was observed that the successful attack was
taking advantage of skipping the negation in the exponent of exp() function, which
compiles into one of the two following codes, depending on the compiler version:

A) neg r16 ;compute negation r16
B) ldi r15, 0x80 ;load 0x80 into r15
eor r16, r15 ;xor r16 with r15

Laser experiments showed that both neg and eor could be skipped, and therefore,
significant change to the function output was achieved.

Hyperbolic tangent was implemented by a following code in C:
HiddenLayerOutput[i] = 2.0/(1.0 + exp(-2*Accum)) - 1;
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Similarly to sigmoid, the experiments showed that the successful attack was ex-
ploiting the negation in the exponential function, leading to an impact similar to
sigmoid.

Softmax. It was unable to obtain any successful misclassification. There were only
two different outputs as a result of the fault injection: either there was no output at
all, or the output contained invalid values. This lack of valid output prevented further
fault analysis to derive the actual fault model that happened in the device.

The summary of the results, showing the original and the faulted activation
functions is depicted in Figure 1.3, with the solid line depicting the original functions
and dotted lines depicting the faulted functions.

Authors pointed out that it would make sense to explore different fault models,
such as single bit flips that were experimentally achieved by laser in [1]. The first
application of such attack would be to target the IEEE754 floating point representa-
tion for the weights. The representation follows 32-bit pattern (131...10): 1 sign bit
(131), 8 exponent bits (130...123) and 23 mantissa (fractional) bits (122...10). The
represented number is given by (−1)131 × 2(130...123)2−127 × (1.122...10)2. A bit flip
attack on the sign bit or on the exponent bits would make significant influence on
the weight. This idea was later adopted in [25] to explore single bit upsets on the
network parameters. We detail this work in the next part.
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Fig. 1.3 (a) Sigmoid, (b) Hyperbolic tangent, and (c) ReLU functions. Solid lines indicate original
function, dotted lines indicate faulted ones.

Single Bit-Flip Attack

A comprehensive evaluation of bitwise corruptions on various deep learning models
was presented byHong et al. in 2019 [25]. They showed thatmostmodels have at least
one parameter such that if there is a bit-flip introduced in its bitwise representation,
it will cause an accuracy loss of over 90%. The assumed attacker model is remote
fault injection by using Rowhammer [32].

The main goal of [25] is to provide an investigation on how much damage can
be achieved by minimal changes to the network caused by fault injection. The
results are presented on popular image datasets – MNIST [36], CIFAR10 [34],
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and ImageNet [46]. Analysis is provided on 19 different DNN models, including
newly generated architectures, and publicly available networks, such as VGG16 and
AlexNet. To measure the impact, they defined a new metric called Relative Accuracy
Drop (RAD):

'�� =
�22?A8BC8=4 − �222>AAD?C43

�22?A8BC8=4
,

where �22?A8BC8=4 is the classification accuracy of the original (pristine) model
and �222>AAD?C43 is the classification accuracy of the corrupted model. For the
experiments in the paper, they set '�� > 0.1 to be the criterion for indiscriminate
damage to the model. For models working on MNIST dataset, it was possible to
exhaustively flip every bit of every model parameter and measure '�� on the entire
validation set. However, for larger models, this was not possible due to the number
of parameters, as such experiment would require significant amount of time and/or
processing power. Therefore, for CIFAR10 and ImageNet they defined three types of
heuristics – the first one samples 10% of the validation set, the second one flips only
the most significant bits of the numbers in IEEE754 floating-point representation,
and the third one, used for ImageNet models, samples a fixed number of 20,000
parameters to attack. Several different types of impact were characterized:

• Impact of number format representation: impact of the bit-flip position, flip
direction, and parameter sign;

• Impact of the model: impact of the layer width, activation function, dropout and
normalization, model architecture.

Two different scenarios were considered in terms of attacker knowledge: surgical
attack, where the adversary can precisely flip certain bit of the target parameter, and
blind attack, where the bit position of the target parameter is random.

The results show that approximately 40-50% of DNN parameters are vulnerable
to single bit-flips and can lead to ≈10% drop in accuracy. If a strong adversary is
considered, capable of inducing faults remotely by using Rowhammer, it is possible
to reach accuracy drop of 99% in the blind attacker scenario.

1.3.3 Countermeasures

Fault injection countermeasures can be deployed at different levels of the design –
model architecture, software implementation, and hardware layer. In this part, we
will discuss each of these in more detail.

Model architecture. Neural networks contain vast amount of interconnected
nodes. Because of their working principle, not all of them are activated for every
input. Therefore, if faults are injected into nodes that are unused in the current
execution, there will not be any outcome [43]. This behavior is known as partial fault
tolerance and it was shown that neural network implementations of cryptographic
operations canmake themmore resistant to faults than standard implementations [2].
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The more redundancy is in the network, the better fault tolerance can be achieved,
at the cost of higher memory usage and computation complexity.

Software implementation. Redundancy and checks can be added in the model
computation on the software level. A naïve approach would be to repeat the com-
putation two or more times and then compare the results. If they are not equal,
the device might have been tampered with. Redundant instruction sequences can
protect against pre-defined number of faults [41]. Data within the instructions can
be arranged in a redundant way that will protect against both data corruption and
instruction skips [44]. Non-linear codes can be used to implement the operations
that allow protection against multiple bit faults per operation [7].

Hardware Layer. Error detection and correction codes can be efficiently imple-
mented in hardware. Computational circuits, or parts of them can be implemented
in parallel and majority voting can be utilized to prevent outputting the faulty re-
sult [10]. Additional circuits can be deployed to detect voltage variations caused by
fault injection. These circuits can raise an alarm and a pre-defined action to prevent
the information leakage or release of incorrect output can be taken [23].

Additionally, there are physical measures that can be applied to prevent tampering,
such as special shielding of the chip or erasing of memory if the chip package is
damaged.

1.4 Conclusion

Wehave surveyed known physical attacks used for the purpose of reverse engineering
ML models on a range of platforms and discussed possible countermeasures. The
results published so far demonstrate that stealing the models in this way (as possible
IP) is a clear and present threat. Specific use cases and applications on various edge
and IoT devices should be carefully examined against those threats and accordingly
protected.

1.5 Open Research Problems

Powerful adversaries today include those exploiting side-channel leakage from im-
plementations on ML models and the ability to actively disturb the device’s op-
erations. Combining the two poses even more challenge to the engineering efforts
in designing adequate defenses. The countermeasures considered so far are mainly
from the crypto/security applications,whichmakes them sub-optimal.On top, typical
overheads in resources such as power/energy makes those defenses often unsuitable
for low-end devices. As the adversaries are becoming ever more powerful and knowl-
edgeable, it is necessary to revisit the design cycle andmake it open at various phases
such that the results of preliminary security evaluation can still be fed back to the
implementations.
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We see future works going more into directions of ML-specific countermeasures
and new frameworks to evaluate the leakages before the models are put into the field.

Acknowledgement

This project has received funding from the EuropeanUnion’s Horizon 2020Research
and Innovation Programme under the Programme SASPRO 2 COFUND Marie
Sklodowska-Curie grant agreement No. 945478.

References

1. Agoyan, M., Dutertre, J.M., Mirbaha, A.P., Naccache, D., Ribotta, A.L., Tria, A.: How to flip
a bit? In: On-Line Testing Symposium (IOLTS), 2010 IEEE 16th International. pp. 235–239.
IEEE (2010)

2. Alam,M.,Bag,A., Roy,D.B., Jap,D., Breier, J., Bhasin, S.,Mukhopadhyay,D.: Enhancing fault
tolerance of neural networks for security-critical applications. arXiv preprint arXiv:1902.04560
(2019)

3. Alam, M., Mukhopadhyay, D.: How secure are deep learning algorithms from side-channel
based reverse engineering? In: Proceedings of the 56th Annual Design Automation Con-
ference 2019, DAC 2019, Las Vegas, NV, USA, June 02-06, 2019. p. 226. ACM (2019),
https://doi.org/10.1145/3316781.3322465

4. Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI NN: reverse engineering of neu-
ral network architectures through electromagnetic side channel. In: Heninger, N.,
Traynor, P. (eds.) 28th USENIX Security Symposium, USENIX Security 2019, Santa
Clara, CA, USA, August 14-16, 2019. pp. 515–532. USENIX Association (2019),
https://www.usenix.org/conference/usenixsecurity19/presentation/batina

5. Batina, L., Bhasin, S., Jap, D., Picek, S.: Poster: Recovering the input of neural networks
via single shot side-channel attacks. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.)
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019. pp. 2657–2659. ACM (2019),
https://doi.org/10.1145/3319535.3363280

6. Breier, J., Hou, X., Jap, D., Ma, L., Bhasin, S., Liu, Y.: Practical fault attack on deep neural
networks. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 2204–2206 (2018)

7. Breier, J., Hou, X., Liu, Y.: On evaluating fault resilient encoding schemes in software. IEEE
Transactions on Dependable and Secure Computing (2019)

8. Breier, J., Jap, D., Chen, C.N.: Laser profiling for the back-side fault attacks: with a practical
laser skip instruction attack on aes. In: Proceedings of the 1st ACM Workshop on Cyber-
Physical System Security. pp. 99–103. ACM (2015)

9. Breier, J., Jap, D., Hou, X., Bhasin, S., Liu, Y.: Sniff: Reverse engineering of neural networks
with fault attacks. arXiv preprint arXiv:2002.11021 (2020)

10. Breier, J., Khairallah, M., Hou, X., Liu, Y.: A countermeasure against statistical ineffective
fault analysis. IEEE Transactions on Circuits and Systems II: Express Briefs (2020)

11. Cao, X., Gong, N.Z.: Mitigating evasion attacks to deep neural networks via region-
based classification. In: Proceedings of the 33rd Annual Computer Security Applica-
tions Conference, Orlando, FL, USA, December 4-8, 2017. pp. 278–287. ACM (2017),
https://doi.org/10.1145/3134600.3134606

12. Chakraborty,A., Alam,M.,Dey,V., Chattopadhyay,A.,Mukhopadhyay,D.:Adversarial attacks
and defences: A survey. arXiv preprint arXiv:1810.00069 (2018)



1 On Implementation-level Security of Edge-based Machine Learning Models 23

13. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible, high perfor-
mance convolutional neural networks for image classification. In: Twenty-Second International
Joint Conference on Artificial Intelligence (2011)

14. Dennis, D.K., Gaurkar, Y., Gopinath, S., Gupta, C., Jain, M., Kumar, A., Kusupati, A., Lovett,
C., Patil, S.G., Simhadri, H.V.: Edgeml: Machine learning for resource-constrained edge de-
vices. URL https://github. com/Microsoft/EdgeML (2020)

15. Dong, G., Wang, P., Chen, P., Gu, R., Hu, H.: Floating-point multiplication timing at-
tack on deep neural network. In: 2019 IEEE International Conference on Smart Inter-
net of Things (SmartIoT), Tianjin, China, August 9-11, 2019. pp. 155–161. IEEE (2019),
https://doi.org/10.1109/SmartIoT.2019.00032

16. Dubey, A., Cammarota, R., Aysu, A.: Maskednet: A pathway for secure inference against power
side-channel attacks. CoRR abs/1910.13063 (2019), http://arxiv.org/abs/1910.13063

17. Duddu, V., Samanta, D., Rao, D.V., Balas, V.E.: Stealing neural networks via timing side
channels. CoRR abs/1812.11720 (2018), http://arxiv.org/abs/1812.11720

18. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence infor-
mation and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. pp. 1322–1333 (2015)

19. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig,M.,Wernsing, J.: Cryptonets:
Applying neural networks to encrypted data with high throughput and accuracy. In: Balcan,M.,
Weinberger, K.Q. (eds.) Proceedings of the 33nd International Conference on Machine Learn-
ing, ICML2016,NewYorkCity,NY,USA, June 19-24, 2016. JMLRWorkshop andConference
Proceedings, vol. 48, pp. 201–210. JMLR.org (2016), http://proceedings.mlr.press/v48/gilad-
bachrach16.html

20. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
arXiv:1412.6572 (2014)

21. Guillen, O.M., Gruber, M., De Santis, F.: Low-cost setup for localized semi-invasive optical
fault injection attacks. In: International Workshop on Constructive Side-Channel Analysis and
Secure Design. pp. 207–222. Springer (2017)

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016. pp. 770–778. IEEE Computer Society (2016),
https://doi.org/10.1109/CVPR.2016.90

23. He, W., Breier, J., Bhasin, S., Miura, N., Nagata, M.: An fpga-compatible pll-based sen-
sor against fault injection attack. In: 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC). pp. 39–40. IEEE (2017)

24. Hong, S., Davinroy, M., Kaya, Y., Locke, S.N., Rackow, I., Kulda, K., Dachman-Soled, D.,
Dumitras, T.: Security analysis of deep neural networks operating in the presence of cache
side-channel attacks. CoRR abs/1810.03487 (2018), http://arxiv.org/abs/1810.03487

25. Hong, S., Frigo, P., Kaya, Y., Giuffrida, C., Dumitras, , T.: Terminal brain damage: Exposing
the graceless degradation in deep neural networks under hardware fault attacks. In: 28th
{USENIX} Security Symposium ({USENIX} Security 19). pp. 497–514 (2019)

26. Hu, X., Liang, L., Deng, L., Li, S., Xie, X., Ji, Y., Ding, Y., Liu, C., Sherwood, T., Xie, Y.:
Neural network model extraction attacks in edge devices by hearing architectural hints. CoRR
abs/1903.03916 (2019), http://arxiv.org/abs/1903.03916

27. Hua, W., Zhang, Z., Suh, G.E.: Reverse engineering convolutional neural networks through
side-channel information leaks. In: Proceedings of the 55th Annual Design Automation Con-
ference, DAC 2018, San Francisco, CA, USA, June 24-29, 2018. pp. 4:1–4:6. ACM (2018),
https://doi.org/10.1145/3195970.3196105

28. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and <0.5mb model size. arXiv:1602.07360
(2016)

29. Jovic, A., Jap, D., Papachristodoulou, L., Heuser, A.: Traditional machine learning methods for
side-channel analysis. In: Security and Artificial Intelligence: A Crossdisciplinary Approach,
pp. 25–47. Springer (2022)



24 Lejla Batina1, Shivam Bhasin2, Jakub Breier3,4, Xiaolu Hou5, and Dirmanto Jap2

30. Joye, M., Tunstall, M.: Fault analysis in cryptography, vol. 147. Springer (2012)
31. Juuti, M., Szyller, S., Dmitrenko, A., Marchal, S., Asokan, N.: PRADA: protecting against

DNN model stealing attacks. CoRR abs/1805.02628 (2018), http://arxiv.org/abs/1805.02628
32. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai, K., Mutlu, O.:

Flipping bits in memory without accessing them: An experimental study of dram disturbance
errors. ACM SIGARCH Computer Architecture News 42(3), 361–372 (2014)

33. Krček, M., Li, H., Paguada, S., Rioja, U., Wu, L., Perin, G., Chmielewski, Ł.: Deep learning on
side-channel analysis. In: Security and Artificial Intelligence: A Crossdisciplinary Approach,
pp. 48–71. Springer (2022)

34. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Wein-
berger, K.Q. (eds.) Advances in Neural Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Systems 2012. Proceedings of a meeting
held December 3-6, 2012, Lake Tahoe, Nevada, United States. pp. 1106–1114 (2012),
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-
Abstract.html

36. LeCun, Y.: The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/
(1998)

37. Lee, T., Edwards, B., Molloy, I., Su, D.: Defending against neural network model steal-
ing attacks using deceptive perturbations. In: 2019 IEEE Security and Privacy Workshops,
SP Workshops 2019, San Francisco, CA, USA, May 19-23, 2019. pp. 43–49. IEEE (2019),
https://doi.org/10.1109/SPW.2019.00020

38. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel attacks are prac-
tical. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015. pp. 605–622. IEEEComputer Society (2015), https://doi.org/10.1109/SP.2015.43

39. Liu, Y., Wei, L., Luo, B., Xu, Q.: Fault injection attack on deep neural network. In: Proceedings
of the 36th International Conference on Computer-Aided Design. pp. 131–138. IEEE Press
(2017)

40. Mentens, N., Gierlichs, B., Verbauwhede, I.: Power and fault analysis resistance in hardware
through dynamic reconfiguration. In: Oswald, E., Rohatgi, P. (eds.) Cryptographic Hardware
and Embedded Systems - CHES 2008, 10th International Workshop, Washington, D.C., USA,
August 10-13, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5154, pp. 346–362.
Springer (2008), https://doi.org/10.1007/978-3-540-85053-3_22

41. Moro, N., Heydemann, K., Encrenaz, E., Robisson, B.: Formal verification of a software
countermeasure against instruction skip attacks. Journal of Cryptographic Engineering 4(3),
145–156 (2014)

42. Murvay, P.S., Groza, B.: Dos attacks on controller area networks by fault injections from the
software layer. In: Proceedings of the 12th International Conference on Availability, Reliability
and Security. pp. 1–10 (2017)

43. Neggaz, M.A., Alouani, I., Niar, S., Kurdahi, F.: Are cnns reliable enough for critical applica-
tions? an exploratory study. IEEE Design & Test (2019)

44. Patrick, C., Yuce, B., Ghalaty, N.F., Schaumont, P.: Lightweight fault attack resistance in
software using intra-instruction redundancy. In: International Conference on Selected Areas in
Cryptography. pp. 231–244. Springer (2016)

45. Reparaz, O., Balasch, J., Verbauwhede, I.: Dude, is my code constant time? In: Atienza,
D., Natale, G.D. (eds.) Design, Automation & Test in Europe Conference & Exhibition,
DATE 2017, Lausanne, Switzerland, March 27-31, 2017. pp. 1697–1702. IEEE (2017),
https://doi.org/10.23919/DATE.2017.7927267

46. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla,A., Bernstein,M., et al.: Imagenet large scale visual recognition challenge. International
journal of computer vision 115(3), 211–252 (2015)

47. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against
machine learning models. In: 2017 IEEE Symposium on Security and Privacy, SP 2017,



1 On Implementation-level Security of Edge-based Machine Learning Models 25

San Jose, CA, USA, May 22-26, 2017. pp. 3–18. IEEE Computer Society (2017),
https://doi.org/10.1109/SP.2017.41

48. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), http://arxiv.org/abs/1409.1556

49. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: The all
convolutional net. arXiv preprint arXiv:1412.6806 (2014)

50. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

51. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA resistant ASIC
or FPGA implementation. In: 2004 Design, Automation and Test in Europe Conference and
Exposition (DATE 2004), 16-20 February 2004, Paris, France. pp. 246–251. IEEE Computer
Society (2004), https://doi.org/10.1109/DATE.2004.1268856

52. Torres-Huitzil, C., Girau, B.: Fault and error tolerance in neural networks: A review. IEEE
Access 5, 17322–17341 (2017)

53. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models
via prediction apis. In: 25th {USENIX} Security Symposium ({USENIX} Security 16). pp.
601–618 (2016)

54. Velasco-Montero, D., Fernández-Berni, J., Carmona-Galán, R., Rodríguez-Vázquez, Á.: Per-
formance analysis of real-time dnn inference on raspberry pi. In: Real-Time Image and Video
Processing 2018. vol. 10670, p. 106700F. International Society for Optics and Photonics (2018)

55. Wei, L., Luo, B., Li, Y., Liu, Y., Xu, Q.: I know what you see: Power side-channel attack
on convolutional neural network accelerators. In: Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC 2018, San Juan, PR, USA, December 03-07, 2018.
pp. 393–406. ACM (2018), https://doi.org/10.1145/3274694.3274696

56. Yan, M., Fletcher, C.W., Torrellas, J.: Cache telepathy: Leveraging shared resource attacks to
learn DNN architectures. CoRR abs/1808.04761 (2018), http://arxiv.org/abs/1808.04761

57. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low noise, L3 cache side-
channel attack. In: Fu, K., Jung, J. (eds.) Proceedings of the 23rd USENIX Security Sympo-
sium, San Diego, CA, USA, August 20-22, 2014. pp. 719–732. USENIX Association (2014),
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

58. Yu, H., Ma, H., Yang, K., Zhao, Y., Jin, Y.: Deepem: Deep neural networks model recovery
through em side-channel information leakage. In: HOST (2020)

59. Zhao, P., Wang, S., Gongye, C., Wang, Y., Fei, Y., Lin, X.: Fault sneaking attack: A stealthy
framework for misleading deep neural networks. In: 2019 56th ACM/IEEEDesign Automation
Conference (DAC). pp. 1–6. IEEE (2019)


