
Security Evaluation of Deep Neural Network
Resistance Against Laser Fault Injection
Xiaolu Hou1, Jakub Breier1, Dirmanto Jap1, Lei Ma2, Shivam Bhasin1 and Yang Liu1

1Nanyang Technological University, Singapore
2 Kyushu University, Japan

Email: ho0001lu@e.ntu.edu.sg, jbreier@jbreier.com, djap@ntu.edu.sg,
malei@ait.kyushu-u.ac.jp, sbhasin@ntu.edu.sg, yangliu@ntu.edu.sg

Abstract—Deep learning is becoming a basis of decision making
systems in many application domains, such as autonomous
vehicles, health systems, etc., where the risk of misclassification
can lead to serious consequences. It is necessary to know to which
extent are Deep Neural Networks (DNNs) robust against various
types of adversarial conditions.

In this paper, we experimentally evaluate DNNs implemented
in embedded device by using laser fault injection, a physical
attack technique that is mostly used in security and reliability
communities to test robustness of various systems. We show
practical results on four activation functions, ReLu, softmax,
sigmoid, and tanh. Our results point out the misclassification
possibilities for DNNs achieved by injecting faults into the hidden
layers of the network. We evaluate DNNs by using several
different attack strategies to show which are the most efficient in
terms of misclassification success rates. Outcomes of this work
should be taken into account when deploying devices running
DNNs in environments where malicious attacker could tamper
with the environmental parameters that would bring the device
into unstable conditions, resulting into faults.

Index Terms—fault attack, neural networks, deep learning

I. Introduction

Deep learning is a family of neural networks composed
of an input layer, three or more hidden layers and an out-
put layer. Based on the internal structure, several candidates
exist like multi-layer perceptron (MLP), convolutional neural
networks (CNNs), recurrent neural networks (RNNs) etc.
These are popularly known as deep neural networks (DNN).
While each of these architectures has unique applications,
activation functions remain common across architectures and
are an important part of the algorithm to obtain non-linear
behaviors [1]. These commonly used activation functions are:
softmax, ReLu, sigmoid and tanh. Studying these functions
under fault attacks allows to derive general conclusions on
susceptibility of deep learning to fault attacks.

In this work, we focus on a class of physical attacks known
as fault attacks, which have become a reality owing to decreas-
ing price and expertise required to mount such attack. Fault
attacks are active attacks on a given implementation which
try to perturb the internal software/hardware computations
by external means. The adversary uses methods like voltage
glitches, electromagnetic pulses, or laser injection to introduce
perturbations for various purposes, ranging from erroneous
computation, denial of service etc. Such attacks are commonly

used for mounting secret key recovery attacks in cryptography
or for violating/bypassing security checks [2].

In this paper, we extend the scope of the work in [3]. We
first study practical laser fault injection on critical components
of DNN running on an embedded device. Later, we experi-
mentally evaluate the impact of identified fault models on big
networks.

To study the impact of faults on DNN, we implemented
the most common activation functions used across DNNs on
a low-cost microcontroller. Next, we performed practical laser
fault injection using a near-infrared diode pulse laser to inject
faults during the processing of activation function. The use of
laser facilitates a strong attacker model with extensive fault
injection capabilities. With the models, derived from practical
fault injection, we analyze the susceptibility of DNN against
such attacks. The primary goal of the performed attacks is to
achieve misclassification during the testing/deployment phase.
Our results indicate that in some cases, 30% of faulty neurons
in the last hidden layer can already present a high risk of
misclassification (≈ 82%). In the hindsight, the achieved miss-
classification can jeopardize the functioning of DNN-based
paradigms like autonomous driving, smart city etc..

A. Related Works

Fault injection attacks are popular physical attacks, used
against cryptographic circuits [4]. Recently, fault injection
attacks have been applied to create misclassification in neu-
ral networks, leading to accuracy degradation of the trained
network. For example, Liu et al. [5] proposed fault injection
attack on DNN in a white box model through software
simulation, while observing the changes in the output after
introducing faults in the network’s values. Hong et al. [6]
explore the impact of (simulated) single bit flip model on
accuracy loss of DNN. Zhao et al. [7] study method to
inject stealthy faults for selected inputs while keeping overall
accuracy unchanged. These works have been focusing only
on simulation. In contrast, our previous work, [3] present the
first practical fault injection on DNN using high power laser
pulses, targeting the activation function. Another practical
attack was proposed by Alam et al. [8], which exploit FPGA
features to create remote faults in a DNN, running on an
FPGA fabric. The difference is that [3] uses laser based fault

injection on embedded systems with precise control on timing
and operation while [8] proposes remote but rather difficult to
control timing and fault location.

II. Background

In this section, we recall basic concepts of deep neural
networks and activation functions.

A. Deep Neural Networks

Artificial neural networks (ANNs) are computing units
designed on basis of biological neural networks. ANN is a
network of interconnected nodes or neurons where a signal
is transmitted from input neurons towards output neurons.
Arranged in layers, each neuron computes an output based
on sum of (weighted) inputs from other neurons, followed by
a non-linear function. The weights are determined during the
training process. The non-linear layer function, also known as
the activation function, is what gives an ANN its power to
learn and classify difficult problems. A simple ANN can be
composed of an input layer, one hidden layer and an output
layer. To train the network, the backpropagation algorithm
is used, which is a generalization of the least mean squares
algorithm in the linear perceptron. Backpropagation is used
by the gradient descent optimization algorithm to adjust the
weight of neurons by calculating the gradient of the loss
function [9].

Deep neural networks (DNNs) are fairly new variants of
ANNs with three or more hidden layers. DNNs have become
realistic with the latest advances in computing power, thanks
to high performance graphical processing units (GPU). Sev-
eral variants of DNN exist, including multi-layer perceptron
(MLP), convolutional neural networks (CNNs), recurrent neu-
ral networks (RNNs), etc. Owing to the deep architecture, they
have shown great success across domains – the most prominent
being image classification, with the biggest ones composed of
as many as 152 layers (Resnet [10]).

As it was pointed out in [11], in case of large neural
networks, there are many nodes that do not contribute to the
neural network function. However, there are some nodes which
are crucial for correct functionality and if these are faulted, it
can result in a failure.

B. Activation Functions

The activation functions we consider are the following:
softmax, ReLu, sigmoid and Tanh [1].

Softmax is normally used as the activation function for
output layer. It takes a vector α as input, ith entry of the output
gives the probability of a given input belonging to class i:

softmax(α)i =
exp(αi)∑
j exp(α j)

, (1)

where exp is the exponentiation function with base e.
In modern neural networks, the default recommendation for

activation function is the rectified linear unit or ReLu defined
as follows:

ReLu(α) = max{0, α}. (2)

It is a piecewise linear function which preserves properties
that make the optimization of linear model easy.

Before the introduction of ReLu, commonly used activation
functions are logistic sigmoid activation function

sigmoid(α) =
1

1 + exp(−α)
, (3)

and hyperbolic tangent function

tanh(α) =
2

1 + exp(−2α)
− 1. (4)

The sigmoid function is normally used to introduce non-
linearity in the model. A reason for its popularity comes from
the simple equation between its derivative and itself

sigmoid′(α) = sigmoid(α)(1 − sigmoid(α)).

However, sigmoid functions becomes insensitive to inputs with
large absolute values. In such cases, the hyperbolic tangent
activation function is used as an alternative.

C. Difference from Adversarial Learning

A huge amount of research is undergoing towards adver-
sarial learning [12], [13]. It basically involves constructing
special inputs which are capable of confusing the machine
learning models, often leading to output misclassification. In
this work, we explore an alternate avenue to arrive at the
same. The proposed fault attacks target the implementation
of the DNN, particularly the critical activation function to
achieve misclassification without any perturbation of the input.
Depending on the application scenario and adversary model,
one attack might be more suited than the other.

III. Practical DNN attack feasibility analysis

In this part we first show the practical laser fault attack setup
in Section III-A. In Section III-B we show the possible fault
attacks on activation functions that we have discovered with
practical experiments. In Section 4, those attacks will be used
for simulating missclassification attacks on MNIST DNNs.

A. Attack Equipment Setup

The main component of the experimental laser fault injec-
tion station is the diode pulse laser. It has a wavelength of 1064
nm and pulse power of 20 W. This power is further reduced
to 8 W by a 20× objective lens which reduces the spot size
to 15×3.5 µm2.

As the device under test (DUT), we used ATmega328P mi-
crocontroller, mounted on Arduino UNO development board.
The package of this chip was opened so that there is a direct
visibility on a back-side silicon die with a laser. The board was
placed on an XYZ positioning table with the step precision of
0.05 µm in each direction. A trigger signal was sent from the
device at the beginning of the computation so that the injection
time could be precisely determined. After the trigger signal
was captured by the trigger and control device, a specified
delay was inserted before laser activation. Laser activation
timing was also checked by a digital oscilloscope for a greater
precision. Our setup is depicted in Figure 1. We assume the

25x Objective
lens

NIR
diode pulse

laser

Microcontroller

X-Y Table

Trigger
&

Control
Device

PC

Oscilloscope

(a) (b)

Fig. 1: Experimental laser fault injection setup – (a) device
under test, (b) setup components.

attacker has access to the target implementation of neural
network as well as to the device where the implementation
resides. We would like to point out that to carry out the attack
without the usage of trigger, it is possible to determine the
timing of the target operation by side-channel analysis [14].

B. DNN Activation Function Fault Analysis

To evaluate different activation functions, we implemented
three simple 3-layer neural networks with sigmoid, ReLu and
tanh as the activation fuction for the second layer respectively.
The activation function for the last layer was set to be softmax.
The neural networks were implemented in C programming
language, which were further compiled to AVR assembly and
uploaded to the DUT.

We surrounded the activation functions in the second layer
with a trigger signal that raised a voltage on a selected Arduino
board pin to 5 V, helping us to determine the laser timing.

As instruction skip/change are one of the most basic attacks
on microcontrollers, with high repeatability rates [15], we
aimed at this fault model in our experiments. The microcon-
troller clock is 16 MHz, one instruction takes 62.5 ns. Some of
the activation functions took over 2000 instructions to execute.
To check what are the vulnerabilities of the implementations,
we have carefully varied the timing of the laser glitch from
the beginning until the end of the function execution so that
every instruction would be eventually targeted.

Please note that we used a single fault adversarial model,
meaning that exactly one fault was injected during one acti-
vation function execution. We consider an attack is successful
for a given input data if the output classification is different
from the classification obtained by the original network. And
we refer to such a successful attack as misclassification.

After we observed a successful misclassification, we deter-
mined the vulnerable instructions by visual inspection of the
compiled assembly code and by checking the timing of the
laser in that particular fault injection instance. Area of the
chip vulnerable to these disturbances is depicted in Figure 2.
The chip area is 3×3 mm2, while the area sensitive to laser
is ≈ 70×100 µm2. With a laser power of 4.5% we were
able to disturb the algorithm execution, when tested with
reference codes. More details on the behavior on this particular
microcontroller under laser fault injection can be found in [15].

600 620 640 660 680

1,720

1,740

1,760

1,780

1,800

1,820

X (µm)

Y
(µ
m
)

Fig. 2: Area plot depicting successful instruction skip experi-
ments.

In this exploratory study, we implemented a random neural
network, consisting of 3 layers, with 19, 12, and 10 neurons
in input layer, hidden layer, and output layer, respectively. Our
fault attack was always targeting the computation of one of
the activation functions in hidden layer. In the following, we
will explain the experimental results on different activation
functions in detail.
ReLu. This function is implemented in C as follows:

if (Accum > 0) {

HiddenLayerOutput[i] = Accum;}

else {

HiddenLayerOutput[i] = 0;}

where i loops from 1 to 12 so that each loop gives one output
of the hidden layer. Accum is an intermediate variable that
stores the input of activation function for each neuron.

The assembly code inspection showed that the result of suc-
cessful attack was executing the statement after else such that
the output would always be 0. The corresponding assembly
code is as follows:

1 ldi r1, 0 ;load 0 to r1
2 cp r1, r15 ;compare MSB of Accum to r1
3 brge else ;jump to else if 0 >= Accum
4 movw r10, r15 ;HiddenLayerOutput[i] = Accum
5 movw r12, r17 ;HiddenLayerOutput[i] = Accum
6 jmp end ;jump after the else statement
7 else: clr r10 ;HiddenLayerOutput[i]= 0
8 clr r11 ;HiddenLayerOutput[i]= 0
9 clr r12 ;HiddenLayerOutput[i]= 0

10 clr r13 ;HiddenLayerOutput[i]= 0
11 end: ... ;continue the execution

where each float number is stored in 4 registers. For ex-
ample, Accum is stored in registers r15,r16,r17,r18 and
HiddenLayerOutput[i] is stored in r10,r11,r12,r13.
Line 4,5 executes the equation HiddenLayerOutput[i] =

Accum.
The attack was skipping the “jmp end” instruction

that would normally avoid the part of code setting
HiddenLayerOutput[i] to 0 in case Accum > 0. Therefore,
such change in control flow renders the neuron inactive no
matter what is the input value.
Sigmoid. This function is implemented by a following code
in C:

HiddenLayerOutput[i] = 1.0/(1.0 + exp(-Accum));

Target activation function Relation between x and x′

ReLu x′ = 0
sigmoid x′ = 1 − x

tanh x′ = −x

TABLE I: Relation between correct output x and faulted output
x′ when a single fault is injected in target activation function

After the assembly code inspection, we observed that the suc-
cessful attack was taking advantage of skipping the negation
in the exponent of exp() function, which compiles into one of
the two following codes, depending on the compiler version:

A) neg r16 ;compute negation r16
B) ldi r15, 0x80 ;load 0x80 into r15

eor r16, r15 ;xor r16 with r15

Laser experiments showed that both neg and eor could be
skipped, and therefore, significant change to the function
output was achieved.
Hyperbolic tangent. This function is implemented by a
following code in C:

HiddenLayerOutput[i] = 2.0/(1.0 + exp(-2*Accum)) - 1;

Similarly to sigmoid, the experiments showed that the suc-
cessful attack was exploiting the negation in the exponential
function, leading to an impact similar to sigmoid.
Softmax. In case of softmax function, we were unable to
obtain any successful misclassification. There were only two
different outputs as a result of the fault injection: either there
was no output at all, or the output contained invalid values.
This lack of valid output prevented us to do further fault
analysis to derive the actual fault model that happened in the
device. Therefore, a thorough analysis of softmax behavior
under faults would be an interesting topic for the future
work. Another line of future work would be to analyze bit
flip attacks [16]. The first application of such attack would
be to target IEEE754 floating point representation for the
weights. The representation follows 32-bit pattern (b31...b0):
1 sign bit (b31), 8 exponent bits (b30...b23) and 23 mantissa
(fractional) bits (b22...b0). The represented number is given by
(−1)b31×2(b30...b23)2−127×(1.b22...b0)2. A bit flip attack on the sign
bit or on the exponent bits would make significant influence
on the weight. Another application of bit flip attack would be
to fault interconnecting weights, resulting in incorrect input to
the next layer. We leave both directions for future investigation
as they are out of scope for the current work.

If we let x and x′ denote the correct and faulted output of
the target activation function, the relation between x and x′ is
summarized in Table I.

IV. Application to DNN

The results from previous section aiming at single functions
can be directly used to alter the behavior of a neural network.
In this section we extend the attack to a full network, while
targeting several function computations at once with a multi-
fault injection model. When it comes to deep neural networks,
there are three possible places to introduce a fault: input layer,

hidden layer(s), and output layer. Deciding on what layer to
attack, it makes sense to inject the fault as close to the output
layer as possible to make the impact highest. Therefore, for our
case, the attacker injects faults into the last hidden layer of the
network, targeting multiple activation function computations.

In the following we consider DNNs served for classification
purposes; the activation function of the output layer is sofmax.
We further assume the output layer is dense and the goal of
the attacker is to misclassify an input. In Section IV-A we
discuss the possible strategies of an attacker. In Section IV-B
we present the evaluation results using the strategies on a
sample DNN.

A. Algorithms for attacking the last hidden layer

We model the last two layers of a DNN as follows: let x
denote the output of the last hidden layer and let W and B
denote the matrix of weights and the vector of bias weights
for output layer. Let z denote the input of softmax function.
Suppose there are m neurons in the last hidden layer and n
neurons in the output layer. Let Wk, k = 1, 2, . . . , n be the
columns of W. Then the output is given by

outputi =
exp(zi)∑n

j=1 exp(z j)
=

exp(xWi + Bi)∑n
j=1 xW j + B j

, i = 1, 2, . . . , n.

The final classification is given by ` such that maxi outputi =

output`. For any sequence of z j, j = 1, 2, . . . , n, we have

max
i

outputi = max
i

exp(zi)∑n
j=1 exp(z j)

=
maxi exp(zi)∑n

j=1 exp(z j)
=

exp
(
max

i
zi

)
∑n

j=1 exp(z j)
.

And the output classification is equal to ` s.t. maxi zi = z`.
The attacker injects faults in the computation of the activa-

tion functions for neurons in the last hidden layer and gets
a faulted x′. Correspondingly we have a faulted vector z′.
Thus, for a given input with correct classification `, the goal
of misclassification is equivalent to: achieve z′ such that there
exists j with z′j > z′` or z′j − z′` > 0. Consequently, an input can
be misclassified if and only if

(x′W j + B j) − (x′W` + B`) > 0
(xW j + B j + (x′ − x)W jk) − (xW` + B` + (x′ − x)W`k) > 0

xW j + B j − xW` − B` + (x′ − x)(W jk −W`k) > 0
z j − z` + (x′ − x)(W jk −W`k) > 0

z j − z` +
∑
x′k,xk

(x′k − xk)(W jk −W`k) (5)

Algorithm 1 gives matrix A such that A[k][j] = (x′k− xk)(W jk−

W`k) and diagonal matrix D whose diagonal is given by x′−x.
Line 2 calculates the matrix A with column i given by Wi−W`.
Depending on the activation function, x′ is related to x as
described in Table I. At line 13, the (k, j)−entry of matrix A
is given by (x′k − xk)(W jk −W`k).
Single fault strategy. When a single fault model is considered,
x and x′ only differs in one entry, say xk. Equation (5) becomes

z j − z` + (x′k − xk)(W jk −W`k) > 0 (6)

Algorithm 1: Calculation of matrix A
Input : W: matrix of weights for the last layer with

columns W1,W2, . . . ,Wn; B vector of bias weights
for the last layer; `: the correct class of target input;
x: output of the last hidden layer for target input;
activation function: ReLu, sigmoid or Tanh.

Output: Matrices A,D.
1 for i = 1, 2, . . . , n do
2 A[i] = Wi −W`;

3 if activation function is ReLu then
4 for k = 1, 2, . . . ,m do
5 x′[i] = 0;

6 if activation function is sigmoid then
7 for k = 1, 2, . . . ,m do
8 x′[i] = 1 − x[i];

9 if activation function is Tanh then
10 for k = 1, 2, . . . ,m do
11 x′[i] = −x[i];

12 D = diagonal matrix with diagonal x′ − x;
13 A = DA;
14 return A,D;

Algorithm 2: Single fault strategy
Input : A:obtained from Algorithm 1; z: input of softmax

function.
Output: True/False indicating if an attack exists or not; k

s.t. the input can be misclassified with fault attack
on neuron k.

1 for k = 1, 2, . . . ,m do
2 for j = 1, 2, . . . , n, j , ` do
3 if z j − z` + A[k][j] > 0 then
4 output k;
5 return True;

6 return False;

For given DNN and a target input, Algorithm 2 outputs k, the
neuron to attack so that a misclassification can be achieved.
In particular, line 3 checks if Equation (6) is satisfied for any
j, k. If it can be satisfied for some k, j, the target input can be
misclassfied with a fault attack on neuron k.

For multiple fault model, a natural strategy is random
faults, i.e. random number of neurons in the last hidden layers
are faulted. Here we provide another strategy which utilizes
the information of weights and bias of the last layer.
Multiple faults strategy. For a target input with correct
class `, we aim to find neurons such that when attacked the
probability of class ` in the output will be reduced. More
precisely, we look for indices k such that (x′k − xk)W` < 0.
This strategy was implemented using Algorithm 3.

B. Evaluation of a sample DNN

To test how our attack can influence a real-world DNN,
we trained and evaluated different DNNs with the attack
strategies described above. The attack vectors considered are
as described in Section III-B. We have selected a popular

Algorithm 3: Multiple faults strategy
Input : D: obtained from Algorithm 1; W`: the `th column

of W; M: number of faults.
Output: indices: a list of neurons to attack.

1 indices= [];
2 B = DW`;
3 for k = 1, 2, . . . ,m do
4 if B[k][j] < 0 then
5 add k to indices;
6 if length of indices== M then
7 return indices;

8 return indices;

Layer No. of neurons Activation function
Input layer 784 -

Hidden layer 1 500 ReLu
Hidden layer 2 500 ReLu
Hidden layer 3 500 ReLu
Hidden layer 4 n target activation function

Output layer 10 Softmax

TABLE II: Structure of the DNN used in evaluations.

MNIST dataset [17]. The training of DNNs was accomplished
using Keras (ver.2.1.6) and Tensorflow libraries (ver.1.8.0).
The structures of the DNNs are detailed in Table II. For each
target function (ReLu, sigmoid and tanh), 10 DNNs with dif-
ferent number of neurons (n = 50, 100, 150, 200, 250, 300, 350,
400, 450, 500) in hidden layer 4 were evaluated. We used a
partially fixed structure of DNN in order to study the effects
of fault attacks on different activation functions. The training
and test accuracy obtained are summarized in Table III. The
accuracy shows that although the DNNs used are relatively
simple, their accuracy is comparable with the state of the art.

For multiple fault model, we evaluated the DNNs with
number of faults equal to 10, 20, 30, 40, 50 percent of the
number of neurons in hidden layer 4. The simulation results
for targeting activation function being ReLu, Sigmoid and tanh
are presented in Figures 3, 4 and 5 respectively.

Overall, it can be concluded that in case of sigmoid and
tanh, if the attacker wants to have a reasonable success rate
(>50%), she should inject faults in at least 40% of the neurons
using multiple faults strategy in the chosen layer. But for
ReLu, when the number of neurons is big, the DNN becomes
more resistant to fault attacks.

The results also show that sigmoid and tanh functions follow
the same trend, which is caused by the same type of fault as
explained in the previous section – skipping the negation in
the exponentiation function.

Target ReLu sigmoid tanh
Train. Acc. 98.4 – 99.2 99.0 – 99.4 98.2 – 99.3
Test. Acc. 97.3 – 98.0 97.6 – 98.1 97.4 – 98.1

TABLE III: Training/testing accuracy of DNNs used in eval-
uation. Number of neurons in Hidden layer 4 ranges from 50
to 500.

50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

No. of neurons in hidden layer 4

Su
cc

es
s

ra
te

(M
is

cl
as

si
fic

at
io

n
ra

te
)

single fault strategy
10% multiple fault strategy

10% random fault
20% multiple fault strategy

20% random fault
30% multiple fault strategy

30% random fault
40% multiple fault strategy

40% random fault
50% multiple fault strategy

50% random fault

Fig. 3: Target activation function – ReLu.

50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

No. of neurons in hidden layer 4

Su
cc

es
s

ra
te

(M
is

cl
as

si
fic

at
io

n
ra

te
)

single fault strategy
10% multiple fault strategy

10% random fault
20% multiple fault strategy

20% random fault
30% multiple fault strategy

30% random fault
40% multiple fault strategy

40% random fault
50% multiple fault strategy

50% random fault

Fig. 4: Target activation function – Sigmoid.

V. Conclusion and FutureWork
In this paper, we have studied laser fault injection attack

technique on the major activation functions of deep neural
networks. We stated implications how such attack can alter
the behavior of targeted network, together with simulations.
Our results demonstrate practicality of the attack on ReLu,
sigmoid, and tanh.

It will also be interesting to look at possible countermea-
sures. While there are already techniques available that correct
non-malicious alterations of the processed values in DNN
(due to environmental conditions) [18], the fault tolerance
techniques against malicious entities have to be developed in
the same way as in the area of applied cryptography [19], [20].

Acknowledgment
National Research Foundation (NRF) Singapore, Prime Ministers Office

under its National Cyber-security R&D Program (Award No. NRF2014NCR-
NCR001-30 and No. NRF2018NCR-NCR005-0001), National Research Foun-
dation (NRF) Singapore, National Satellite of Excellence in Trustwor-
thy Software Systems under its Cybersecurity R&D Program (Award No.
NRF2018NCR-NSOE003-0001), and National Research Foundation Inves-
tigatorship Singapore (Award No. NRF-NRFI06-2020-0001). The authors
acknowledge the support from the ’National Integrated Centre of Evaluation’
(NICE); a facility of Cyber Security Agency, Singapore (CSA).

References
[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016, http://www.deeplearningbook.org.
[2] M. Joye and M. Tunstall, Fault analysis in cryptography. Springer,

2012, vol. 40.
[3] J. Breier, X. Hou, D. Jap, L. Ma, S. Bhasin, and Y. Liu, “Practical

fault attack on deep neural networks,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018,
pp. 2204–2206.

50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

No. of neurons in hidden layer 4

Su
cc

es
s

ra
te

(M
is

cl
as

si
fic

at
io

n
ra

te
)

single fault strategy
10% multiple fault strategy

10% random fault
20% multiple fault strategy

20% random fault
30% multiple fault strategy

30% random fault
40% multiple fault strategy

40% random fault
50% multiple fault strategy

50% random fault

Fig. 5: Target activation function – tanh.

[4] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in CRYPTO’97. Springer, 1997, pp. 513–525.

[5] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault injection attack on deep
neural network,” in Proceedings of the 36th International Conference
on Computer-Aided Design. IEEE Press, 2017, pp. 131–138.

[6] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, , “Termi-
nal brain damage: Exposing the graceless degradation in deep neural
networks under hardware fault attacks,” in 28th {USENIX} Security
Symposium ({USENIX} Security 19), 2019, pp. 497–514.

[7] P. Zhao, S. Wang, C. Gongye, Y. Wang, Y. Fei, and X. Lin, “Fault
sneaking attack: A stealthy framework for misleading deep neural
networks,” in 2019 56th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2019, pp. 1–6.

[8] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte, “Ram-
jam: Remote temperature and voltage fault attack on fpgas using memory
collisions,” in 2019 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC). IEEE, 2019, pp. 48–55.

[9] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA:
McGraw-Hill, Inc., 1997.

[10] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” arXiv preprint
arXiv:1611.05431, 2016.

[11] A. M. Nia and K. Mohammadi, “A generalized abft technique using
a fault tolerant neural network,” Journal of Circuits, Systems, and
Computers, vol. 16, no. 03, pp. 337–356, 2007.

[12] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of
the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining. ACM, 2005, pp. 641–647.

[13] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, 2020.

[14] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: reverse engineering
of neural network architectures through electromagnetic side channel,”
in 28th USENIX Security Symposium, N. Heninger and P. Traynor, Eds.
USENIX Association, 2019, pp. 515–532.

[15] J. Breier, D. Jap, and C.-N. Chen, “Laser profiling for the back-side
fault attacks: with a practical laser skip instruction attack on aes,”
in Proceedings of the 1st ACM Workshop on Cyber-Physical System
Security. ACM, 2015, pp. 99–103.

[16] M. Agoyan, J.-M. Dutertre, A.-P. Mirbaha, D. Naccache, A.-L. Ribotta,
and A. Tria, “How to flip a bit?” in On-Line Testing Symposium (IOLTS),
2010 IEEE 16th International. IEEE, 2010, pp. 235–239.

[17] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[18] M. Lee, K. Hwang, and W. Sung, “Fault tolerance analysis of digital
feed-forward deep neural networks,” in Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Conference on. IEEE,
2014, pp. 5031–5035.

[19] J. Breier and X. Hou, “Feeding two cats with one bowl: On designing
a fault and side-channel resistant software encoding scheme,” in Cryp-
tographers’ Track at the RSA Conference. Springer, 2017, pp. 77–94.

[20] V. Servant, N. Debande, H. Maghrebi, and J. Bringer, “Study of a novel
software constant weight implementation,” in International Conference
on Smart Card Research and Advanced Applications. Springer, 2014,
pp. 35–48.

