Errata

This is the errata for the book

Cryptography and Embedded Systems Security, Xiaolu Hou, Jakub Breier, ISBN: 978-3-031-62205-2, Springer Nature, 2024.

published version

https://link.springer.com/book/10.1007/978-3-031-62205-2

The author's copy with errors corrected can be found in the following link:

Location	Original	Change
Page 9, Algorithm 1.1, lines 2-4	Input: $m, n// m, n \in \mathbb{Z}, m \neq 0$ Output: $gcd(m, n)$ 1 while $m \neq 0$ do 2 $\qquad r = n\%m//$ remainder of n divided by m 3 $\qquad n = m$ 4 $\qquad m = r$ 5 return r	Input: $m, n// m, n \in \mathbb{Z}, m \neq 0$ Output: $gcd(m, n)$ 1 while $m \neq 0$ do 2 $r = m$ 3 $m = n\%m//$ remainder of n divided by m 4 $n = r$ 5 return n
Page 18, first paragraph below Definition 1.2.12	By definition, for any $a \in F$, there exists $b \in F$ such that	By definition, for any $a \in F$, $a \neq 0$, there exists $b \in F$ such that
Page 20, Example 1.2.24	$f(1 \oplus 0) = f(1) = a, \ f(1) + f(0) = a + b = a$	$f(1 \oplus 0) = f(1) = b, \ f(1) + f(0) = b + a = b$
Page 49, Theorem 1.5.1	of $\deg(f(x)) \ge 1$	if $\deg(f(x)) \ge 1$
Page 51, Example 1.5.6	$\mathbb{F}_{2}[x]/(f(x)) = \{1, x, x+1\}$ $\mathbb{F}_{2}[x]/(g(x)) = \{1, x, x+1\}$	$\mathbb{F}_2[x]/(f(x)) = \{0, 1, x, x+1\}$ $\mathbb{F}_2[x]/(g(x)) = \{0, 1, x, x+1\}$
Page 106 Table 2.2 (b)	$\begin{array}{c ccc} \dot{A} & 11000001 & {\tt C1} \\ \\ \ddot{A} & 11000100 & {\tt C4} \\ \\ \dot{f} & 11001101 & {\tt CD} \\ \\ \\ \times & 11010111 & {\tt D7} \\ \\ \\ \div & 11110111 & {\tt F7} \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Page 133	When $\omega_1 = \omega_2$ the Sbox is a ω_1 -bit Sbox	When $\omega_1 = \omega_2$ the Sbox is an ω_1 -bit Sbox
Page 139, RSA security	Nevertheless, post-quantum public key cryp- tosystems are being proposed (see e.g. [HPS98, BS08]) to protect communications af- ter a quantum computer is built.	Nevertheless, post-quantum public key cryptosystems are being proposed (see e.g. [HPS98, BS08]) to protect communi- cations after a sufficiently strong quantum computer is built.
Page 160, Example 3.2.4 last sentence	Then $\varphi_0(\boldsymbol{x}) = 0.$	Then $\varphi_0(0) = 0.$
Page 170, first paragraph	which is computationally infeasible according to property (c) of hash functions listed in Sect. 2.1.1.	which is computationally infeasible according to property (b) of hash functions listed in Sect. 2.1.1.
Page 177	$m = m_p y_q q + m_q y_p p \mod n = 2 \times 2 \times 5 + 2 \times 2 \times 3 = 32 \mod 15 = 2.$	$m = m_p y_q q + m_q y_p p \mod n = 2 \times 2 \times 5 + 2 \times 2 \times 3 \mod 15 = 32 \mod 15 = 2.$
Page 209, last paragraph of Section 4.1.1	Similar to SPA, the attack does not require statistical analysis of the traces, only visual inspection is enough.	The sentence should be removed
Page 236, Example 4.2.15	$\mathbb{E}\left[\operatorname{wt}\left(\boldsymbol{v}\right)^{2}\right] = \frac{1}{ \mathbb{F}_{2}^{8} } \sum_{\boldsymbol{v} \in \mathbb{F}_{2}^{8}} \operatorname{wt}\left(\boldsymbol{v}^{2}\right) = \dots$	$\mathbb{E}\left[\mathrm{wt}\left(\boldsymbol{v}\right)^{2}\right] = \frac{1}{ \mathbb{F}_{2}^{8} } \sum_{\boldsymbol{v} \in \mathbb{F}_{2}^{8}} \mathrm{wt}\left(\boldsymbol{v}\right)^{2} = \dots$
Page 248, Remark 4.3.1	For AES, the correlations between the first AddRoundKey outputs are higher than correlations between the first SubBytes operation outputs, that is why in	For the PRESENT cipher, correlations among outputs from the initial addRoundKey opera- tion are stronger than those between outputs of the initial sBoxLayer. Therefore, in